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GENERAL CONSIDERATIONS KINETIC MODEL CONSTRUCTION AND RESULTS MODEL COMPARISON AND DISCUSSION

For both experimental sets, the estimated activation energies increase in
the following order: Ea,,; < Ea,, < Eas, the total oxidation reaction requires
more energy to be carried out.

°* The most sensitive reaction activation energy is for the total oxidation of
ethylene (Ea;),the one estimated with the total oxygen conversions is <20
kJ/mol higher than those estimated with the other experimental set.

* For both models, the best fit by species is for ethane and ethylene.

* According to the values of the adsorption enthalpies and the concentration
of adsorbed species on the surface, depending of the experimental set
used, the adsorbed species distribution is totally different.

* Simulations performed using the parameters obtained for the different sets
revealed, that in the case of non-total oxygen conversion set the
predominant surface specie Is the water and for the total oxygen conversion
set Is the oxygen..

°* Experiments were performed under two oxygen conversion regimes, one dataset
iInvolving 51 experiments at non-total oxygen conversion and a second dataset
accounting for 60 observations at total oxygen conversion.

* Parallel-consecutive reaction network is considered.

* Catalyst consists of one type active site (*) with two functionalities.

* The models were developed assuming the steady state approach.

* Competitive adsorption of reactants (ethane and oxygen) and products (ethylene,
carbon oxides and water) on the active sites was considered.

* Taking account thermodynamics surface reactions are considered irreversible.

* All products are susceptible to be re-adsorbed on the active sites.

* According with the rate equations, the model does not consider an specific
rate determining step.
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