Advanced search
1 file | 11.85 MB Add to list

Characterising termite mounds in a tropical savanna with UAV laser scanning

(2021) REMOTE SENSING. 13(3).
Author
Organization
Project
Abstract
Termite mounds are found over vast areas in northern Australia, delivering essential ecosystem services, such as enhancing nutrient cycling and promoting biodiversity. Currently, the detection of termite mounds over large areas requires airborne laser scanning (ALS) or high-resolution satellite data, which lack precise information on termite mound shape and size. For detailed structural measurements, we generally rely on time-consuming field assessments that can only cover a limited area. In this study, we explore if unmanned aerial vehicle (UAV)-based observations can serve as a precise and scalable tool for termite mound detection and morphological characterisation. We collected a unique data set of terrestrial laser scanning (TLS) and UAV laser scanning (UAV-LS) point clouds of a woodland savanna site in Litchfield National Park (Australia). We developed an algorithm that uses several empirical parameters for the semi-automated detection of termite mounds from UAV-LS and used the TLS data set (1 ha) for benchmarking. We detected 81% and 72% of the termite mounds in the high resolution (1800 points m−2) and low resolution (680 points m−2) UAV-LS data, respectively, resulting in an average detection of eight mounds per hectare. Additionally, we successfully extracted information about mound height and volume from the UAV-LS data. The high resolution data set resulted in more accurate estimates; however, there is a trade-off between area and detectability when choosing the required resolution for termite mound detection Our results indicate that UAV-LS data can be rapidly acquired and used to monitor and map termite mounds over relatively large areas with higher spatial detail compared to airborne and spaceborne remote sensing.
Keywords
cavelab, termite mounds, LiDAR, UAV, UAV-LS, remote sensing

Downloads

  • Dhont-etal-2021-RemoteSensing.pdf
    • full text (Published version)
    • |
    • open access
    • |
    • PDF
    • |
    • 11.85 MB

Citation

Please use this url to cite or link to this publication:

MLA
D’hont, Barbara, et al. “Characterising Termite Mounds in a Tropical Savanna with UAV Laser Scanning.” REMOTE SENSING, vol. 13, no. 3, 2021, doi:10.3390/rs13030476.
APA
D’hont, B., Calders, K., Bartholomeus, H., Whiteside, T., Bartolo, R., Levick, S., … Verbeeck, H. (2021). Characterising termite mounds in a tropical savanna with UAV laser scanning. REMOTE SENSING, 13(3). https://doi.org/10.3390/rs13030476
Chicago author-date
D’hont, Barbara, Kim Calders, Harm Bartholomeus, Tim Whiteside, Renee Bartolo, Shaun Levick, Sruthi Krishna Moorthy Parvathi, Louise Terryn, and Hans Verbeeck. 2021. “Characterising Termite Mounds in a Tropical Savanna with UAV Laser Scanning.” REMOTE SENSING 13 (3). https://doi.org/10.3390/rs13030476.
Chicago author-date (all authors)
D’hont, Barbara, Kim Calders, Harm Bartholomeus, Tim Whiteside, Renee Bartolo, Shaun Levick, Sruthi Krishna Moorthy Parvathi, Louise Terryn, and Hans Verbeeck. 2021. “Characterising Termite Mounds in a Tropical Savanna with UAV Laser Scanning.” REMOTE SENSING 13 (3). doi:10.3390/rs13030476.
Vancouver
1.
D’hont B, Calders K, Bartholomeus H, Whiteside T, Bartolo R, Levick S, et al. Characterising termite mounds in a tropical savanna with UAV laser scanning. REMOTE SENSING. 2021;13(3).
IEEE
[1]
B. D’hont et al., “Characterising termite mounds in a tropical savanna with UAV laser scanning,” REMOTE SENSING, vol. 13, no. 3, 2021.
@article{8690887,
  abstract     = {{Termite mounds are found over vast areas in northern Australia, delivering essential ecosystem services, such as enhancing nutrient cycling and promoting biodiversity. Currently, the detection of termite mounds over large areas requires airborne laser scanning (ALS) or high-resolution satellite data, which lack precise information on termite mound shape and size. For detailed structural measurements, we generally rely on time-consuming field assessments that can only cover a limited area. In this study, we explore if unmanned aerial vehicle (UAV)-based observations can serve as a precise and scalable tool for termite mound detection and morphological characterisation. We collected a unique data set of terrestrial laser scanning (TLS) and UAV laser scanning (UAV-LS) point clouds of a woodland savanna site in Litchfield National Park (Australia). We developed an algorithm that uses several empirical parameters for the semi-automated detection of termite mounds from UAV-LS and used the TLS data set (1 ha) for benchmarking. We detected 81% and 72% of the termite mounds in the high resolution (1800 points m−2) and low resolution (680 points m−2) UAV-LS data, respectively, resulting in an average detection of eight mounds per hectare. Additionally, we successfully extracted information about mound height and volume from the UAV-LS data. The high resolution data set resulted in more accurate estimates; however, there is a trade-off between area and detectability when choosing the required resolution for termite mound detection Our results indicate that UAV-LS data can be rapidly acquired and used to monitor and map termite mounds over relatively large areas with higher spatial detail compared to airborne and spaceborne remote sensing.}},
  articleno    = {{476}},
  author       = {{D'hont, Barbara and Calders, Kim and Bartholomeus, Harm and Whiteside, Tim and Bartolo, Renee and Levick, Shaun and Krishna Moorthy Parvathi, Sruthi and Terryn, Louise and Verbeeck, Hans}},
  issn         = {{2072-4292}},
  journal      = {{REMOTE SENSING}},
  keywords     = {{cavelab,termite mounds,LiDAR,UAV,UAV-LS,remote sensing}},
  language     = {{eng}},
  number       = {{3}},
  pages        = {{19}},
  title        = {{Characterising termite mounds in a tropical savanna with UAV laser scanning}},
  url          = {{http://dx.doi.org/10.3390/rs13030476}},
  volume       = {{13}},
  year         = {{2021}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: