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Summary

The hazard ratio is one of the most commonly reported measures of treatment effect

in randomised trials, yet the source of much misinterpretation. This point was made

clear by Hernán (2010) in commentary, which emphasised that the hazard ratio contrasts

populations of treated and untreated individuals who survived a given period of time,

populations that will typically fail to be comparable - even in a randomised trial - as a

result of different pressures or intensities acting on both populations. The commentary

has been very influential, but also a source of surprise and confusion. In this note, we aim

to provide more insight into the subtle interpretation of hazard ratios and differences, by

investigating in particular what can be learned about treatment effect from the hazard ratio

becoming 1 after a certain period of time. Throughout, we will focus on the analysis of

randomised experiments, but our results have immediate implications for the interpretation

of hazard ratios in observational studies.
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1 Introduction

The popularity of the Cox regression model has contributed to the enormous success of the

hazard ratio as a concise summary of the effect of a randomised treatment on a survival

endpoint. Notwithstanding this, use of the hazard ratio has been criticised over recent

years. Hernán (2010) argued that selection effects render a causal interpretation of the

hazard ratio difficult when treatment affects outcome. While the treated and untreated

people are comparable by design at baseline, the treated people who survive a given time t

may then tend to be more frail (as a result of lower mortality if treatment is beneficial) than

the untreated people who survive the given time t, so that the crucial comparability of both

groups is lost at that time. Aalen et al. (2015) re-iterated Hernán’s concern. They viewed

the problem more as one of non-collapsibility (Martinussen and Vansteelandt, 2013), which

is a concern about the interpretation of the hazard ratio, though not about its justification

as a causal contrast. In particular, they argued that the magnitude of the hazard ratio

typically changes as one evaluates it in smaller subgroups of the population (e.g. frail

people), even in the absence of interaction effects on the log hazard scale. In this paper, we

aim to develop more insight into these matters. We will focus in particular on what can be

learned about the treatment effect from the hazard ratio becoming 1 after a certain point

in time. Throughout, we will assume that data are available from a randomised experiment

on the effect of a dichotomous treatment A (coded 1 for treatment and 0 for control) on

a survival endpoint T , so that issues of confounding can be ignored, although our findings

naturally extend to observational studies.
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2 The Cox model and causal reasoning

Analyses of time-to-event endpoints in randomised experiments are commonly based on

the Cox model

λ(t; a) = λ0(t)eβa,

where λ(t; a) denotes the hazard function of T given A = a, evaluated at time t, and λ0(t)

is the unspecified baseline hazard function. This model implies that for all t

P (T > t|A = 1) = P (T > t|A = 0)exp(β), (1)

which suggests that the exponential of β can be interpreted as

exp(β) =
logP (T > t|A = 1)

logP (T > t|A = 0)
.

This represents a causal contrast (i.e., it compares the same population under different

interventions). Indeed, let T a denote the potential event time we would see if the exposure

A is set to a. Then, since randomisation ensures that T a ⊥⊥ A for a = 0, 1, we have that

exp(β) =
logP (T 1 > t)

logP (T 0 > t)
.

This shows that, under the proportional hazard assumption, exp(β) forms a relative con-

trast of what the log survival probability would be at an arbitrary time t if everyone were

treated, versus what it would be at that time if no one were treated.

The log-transformation makes the above interpretation of exp(β), while causal, diffi-

cult. It is therefore more common to interpret exp(β) as a hazard ratio

exp(β) =
limh→0 P (t ≤ T < t+ h|T ≥ t, A = 1)

limh→0 P (t ≤ T < t+ h|T ≥ t, A = 0)
=

limh→0 P (t ≤ T 1 < t+ h|T 1 ≥ t)

limh→0 P (t ≤ T 0 < t+ h|T 0 ≥ t)
.

Interpretation appears simpler now, but this is somewhat deceptive for two reasons. First,

the righthand expression shows that exp(β) contrasts the hazard functions with and with-

out intervention for two separate groups of individuals, those who survive time t > 0 with
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treatment (T 1 ≥ t) and those who survive time t > 0 without treatment (T 0 ≥ t). Those

groups will typically fail to be comparable if treatment affects outcome (Hernán, 2010).

In particular, when treatment has a beneficial effect then, despite randomisation, the sub-

group T 1 ≥ t in the numerator will generally contain more frail people than the subgroup

T 0 ≥ t in the denominator, where the frailest people may have died already. When viewed

as a hazard ratio, exp(β) therefore does not represent a causal contrast. Second, the inter-

pretation of exp(β) as a hazard ratio is further complicated by it being non-collapsible, so

that its magnitude typically becomes more pronounced as one evaluates smaller subgroups

of the study population (Martinussen and Vansteelandt, 2013; Aalen et al., 2015).

The summary so far is that, under the assumption of proportional hazards, the pa-

rameter exp(β) in the Cox model expresses a causal effect, namely the ratio of log survival

probabilities with versus without treatment in the study population. Because this interpre-

tation is not insightful, results are best communicated by visualising identity (1) in terms

of estimated survival curves with versus without treatment (Hernán, 2010). This has the

advantage that it provides better insight into the possible public health impact of the in-

tervention, but the drawback that it does not permit a compact way of reporting and that

survival curves do not provide an understanding of a possible dynamic treatment effect.

To enable a more in-depth understanding, it is tempting to interpret exp(β) as a hazard

ratio, but then interpretation becomes subtle. We will demonstrate this in more detail

in the next section, where we will investigate to what extent hazard ratios may provide

insight into the dynamic nature of the treatment effect.
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3 Time-varying hazard ratios are not causally interpretable

Consider now a study where the hazard ratio changes with time in the following sense:

λ(t;A = 1)

λ(t;A = 0)
=

{
exp(β1) if t ≤ ν
exp(β2) if t > ν

(2)

with β1 6= β2, where ν > 0 denotes the change point, which we assume to be known based

on subject matter knowledge. Suppose in particular that β1 < 0 and β2 = 0. This is

commonly interpreted as if treatment is initially beneficial, but becomes ineffective from

time ν onwards. We present a practical example in Section 4.2 where this situation arises.

In the following sections, we will reason whether such interpretation is justified, and thus

whether hazard ratios permit a dynamic understanding of the treatment effect.

3.1 A closer look at the causal mechanism

To develop a greater understanding, we will first develop insight into data-generating pro-

cesses (DGP) that could give rise to (2). Let Z represent the participants’ unmeasured

baseline frailty (higher means more frail), which affects T , but is independent of A by

randomisation. Suppose that the hazard function λ(t; a, z) of T given A = a and Z = z

satisfies

λ(t; a, z) = zλ∗(t; a), (3)

for some function λ∗(t; a), and let Z be Gamma distributed with mean 1 and variance θ.

This specific choice is not essential, however, and we later consider a situation where Z is

binary.

We will investigate what choices of λ∗(t; a) give rise to model (2). With φZ(u) =

E(e−Zu) the Laplace transform associated with the distribution of Z, the following rela-

tionship between the hazard function of interest λ(t;A), and λ∗(t;A), can be shown to
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hold:

Λ∗(t; a) = φ−1
Z (e−Λ(t;a)) =

1− e−θΛ(t;a)

θe−θΛ(t;a)
,

where Λ(t; a) =
∫ t

0
λ(s; a) ds and similarly with Λ∗(t; a). Simple calculations then show

that model (3) implies model (2) when

λ(t;A,Z) =

{
Zλ0(t)eβ1A exp {θΛ0(t)eβ1A} if t ≤ ν
Zλ0(t)eβ2A exp

{
θΛ0(ν)eβ1A + θΛ0(ν, t)eβ2A

}
if t > ν

(4)

where Λ0(ν, t) =
∫ t
ν
λ0(s) ds. For subjects with given Z = z, it follows that the conditional

hazard ratio, which we term HRZ(t), is

λ(t;A = 1, Z)

λ(t;A = 0, Z)
=

{
exp(β1) exp [θΛ0(t){exp(β1)− 1}] if t ≤ ν
exp(β2) exp [θΛ0(ν){exp(β1)− 1}+ θΛ0(ν, t){exp(β2)− 1}] if t > ν

For β2 = 0, this simplifies to

λ(t;A = 1, Z)

λ(t;A = 0, Z)
=

{
exp(β1) exp [θΛ0(t){exp(β1)− 1}] if t ≤ ν
exp [θΛ0(ν){exp(β1)− 1}] if t > ν

which is smaller than 1 at all time points when, as previously assumed, β1 < 0. We

conclude that treatment appears beneficial at all times amongst individuals with the same

value z of Z, regardless of z. This contradicts the earlier, naïve interpretation that, across

all individuals combined, treatment is ineffective from time ν onwards.

The root cause of these contradictory conclusions is the fact that the hazard ratio at

a given time does not express a causal effect (Hernán, 2010). This has nothing to do with

model misspecification, as all considered models hold by construction. In particular, when

β2 = 0 and θ = 1, then

E(Z|T > t,A = 1)

E(Z|T > t,A = 0)
=

{
exp {Λ0(t)(1− eβ1)} if t ≤ ν

exp {Λ0(ν)}+Λ0(ν,t)

exp {Λ0(ν)eβ1}+Λ0(ν,t)
if t > ν.

While Z is independent of A by randomisation, it is thus no longer so amongst subgroups

of survivors, where we are left with more frail subjects in the active treatment group:
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E(Z|T > t,A = 1) > E(Z|T > t,A = 0). That selection takes place does not rely on Z

being Gamma-distributed; see Appendix A.1, where we consider a situation with a binary

frailty variable.

To illustrate further, we generated a single data set with Z binary with P (Z = 0.2) =

0.2 and P (Z = 1.2) = 0.8 corresponding to low and high risk groups. The treatment

variable A was binary with P (A = 1|Z) = 0.5. Further, we took β1 = − log (2), β2 = 0, the

baseline hazard function λ0(t) = 0.4, and the change point ν = 4. We took a large sample

size n = 20000 so that sampling variability is small, and induced censoring according to a

uniform distribution on [0, 10], randomly for half of the individuals, and the rest censored

at t = 8, resulting in an overall censoring percent of approximately 19%. The result from

a change point Cox analysis was β̂1 = −0.67 (SE 0.018) and β̂2 = −0.03 (SE 0.034).

The corresponding hazard ratios are 0.51 for t ≤ 4 and 1.03 for t > 4. In contrast, the

conditional hazard ratio in Figure 1 is seen to be smaller than 1 at all times, not only in

the first initial period. Indeed, no matter the value of Z, it lies between 0.33 and 0.80 in

the considered time period from 0 to 8.

That we are misled by the hazard ratios calculated from the extended Cox regression

analysis is due to selection taking place. This is shown in Figure 2, where we have plotted

E(Z|T > t,A = a) for a = 0, 1. Since the treatment has a beneficial effect, we are left with

more and more frail subjects in this group compared to the untreated group. In Figure 2,

the blue curve (A = 1) therefore lies consistently above the green curve (A = 0).

As just shown, the DGP given by λ(t;A,Z) with ν = ∞ implies the marginal Cox

model. It is tempting to interpret HRZ(t) as a causal hazard ratio, but this only holds

under further untestable assumptions as shown in Section 3.2 and 3.4. In Appendix A.2,

we formulate a more general DGP so that both the marginal Cox model and the model

λ(t;A,Z) are correctly specified.
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3.2 Towards a causal hazard ratio

To remedy this problem, it seems intuitively of interest to evaluate conditional hazard

ratios

limh→0 P (t ≤ T < t+ h|T ≥ t, A = 1, Z = z)

limh→0 P (t ≤ T < t+ h|T ≥ t, A = 0, Z = z)
=

limh→0 P (t ≤ T 1 < t+ h|T 1 ≥ t, Z = z)

limh→0 P (t ≤ T 0 < t+ h|T 0 ≥ t, Z = z)
,

for a large collection of baseline variables Z, such that those who survive time t > 0 with

treatment (T 1 ≥ t) are comparable to those who survive time t > 0 without treatment

(T 0 ≥ t), but have the same covariate values z. Such comparability would be attained if

T 1 ⊥⊥ T 0|Z. (5)

Under this assumption, it follows via Bayes’ rule that the righthand side of the above

identity equals
limh→0 P (t ≤ T 1 < t+ h|T 0 ≥ t, T 1 ≥ t, Z = z)

limh→0 P (t ≤ T 0 < t+ h|T 0 ≥ t, T 1 ≥ t, Z = z)
. (6)

This estimand expresses the instantaneous risk at time t on treatment versus control for

the principal stratum of individuals with covariates z who would have survived up to time

t, no matter what treatment. It represents a causal contrast, which is closely related to the

so-called survivor average causal effect (Rubin, 2000). We will refer to it as the conditional

causal hazard ratio.

Unfortunately, the assumption (5) is untestable and biologically implausible, as it is

essentially impossible to believe that one can get hold of all predictors of the event time

such that knowledge of the event time without treatment does not further predict the event

time with treatment. Furthermore, even if one could get hold of all such predictors, then

because Z would probably carry so much information about the event time, one would

logically expect the numerator and denominator of (6) to be so close to 0 or 1 that it

would render the conditional causal hazard ratio essentially meaningless. Below, we will
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therefore focus on the marginal causal hazard ratio HR(t) obtained from (6) with Z empty:

HR(t) =
limh→0 P (t ≤ T 1 < t+ h|T 0 ≥ t, T 1 ≥ t)

limh→0 P (t ≤ T 0 < t+ h|T 0 ≥ t, T 1 ≥ t)
. (7)

3.3 Why causal hazard ratios are not identified without strong
assumptions

The reason why the causal hazard ratio (7) is not identifiable without invoking strong as-

sumptions is that it attempts to answer an overly ambitious question. Imagine a trial that

randomises participants over an implanted medical device (e.g. a stent or a pacemaker)

versus no treatment (or placebo). Suppose that the medical device gradually deteriorates

and stops being operational after some time ν. Then we would say that treatment no

longer works from time ν onwards. This would correspond with HR(t) = 1 for t ≥ ν. How-

ever, how could data from a randomised trial be informative about the effect of treatment

after time ν when no information is collected on the times at which the medical device is

operational or not? To learn about the treatment effect at each time t, we should ideally

need data At on whether (At = 1) or not (At = 0) the device is operational at that time.

When the operation time is ignorable, then one may learn about the treatment effect at

each time t through contrasts of the form

limh→0 P (s ≤ T < s+ h|T ≥ s, At− = 1, At = 1)

limh→0 P (s ≤ T < s+ h|T ≥ s, At− = 1, At = 0)
,

for all s ≥ t, where At− is the information generated by all Au, u < t. It is unsurprising that

without detailed data on the operation times of each device, strong assumptions are needed

to develop insight into the dynamic nature of the treatment effect. Likewise, consider a trial

that randomises participants over a once-daily treatment regimen versus placebo. Then

we would say that treatment no longer works from time ν onwards when, from that time

onwards, patients with the same history of treatment experience the same outcomes (in
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distribution), whether or not they continue treatment. To infer when treatment becomes

ineffective, a multi-stage design is ideally needed where patients on the treatment arm

may randomly be switched to the control arm at designated points in time. Without such

design, some progress can still be made with data on daily pill intake. However, without

such design and data, inferring when treatment becomes ineffective remains an ambitious

undertaking.

3.4 Sensitivity analysis

Some further insight into the magnitude of the causal hazard ratio at a given time t can

be obtained under the monotonicity assumption that no one is harmed by treatment, i.e.

T 1 ≥ T 0 with probability 1.

Under this assumption, we can write

P (t ≤ T < t+h|T ≥ t, A = 0) = P (t ≤ T 0 < t+h|T 0 ≥ t) = P (t ≤ T 0 < t+h|T 0 ≥ t, T 1 ≥ t)

and

P (t ≤ T < t+ h|T ≥ t, A = 1) = P (t ≤ T 1 < t+ h|T 1 ≥ t)

= P (t ≤ T 1 < t+ h|T 0 ≥ t, T 1 ≥ t)π(t)

+P (t ≤ T 1 < t+ h|T 0 < t, T 1 ≥ t) {1− π(t)} ,

with

π(t) ≡ P (T 0 ≥ t|T 1 ≥ t) =
P (T 0 ≥ t)

P (T 1 ≥ t)
=
P (T ≥ t|A = 0)

P (T ≥ t|A = 1)
.

It follows that
λ(t;A = 1)

λ(t;A = 0)
= HR(t) [π(t) + SR(t) {1− π(t)}] , (8)
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where

SR(t) ≡ limh→0 P (t ≤ T 1 < t+ h|T 0 < t, T 1 ≥ t)

limh→0 P (t ≤ T 1 < t+ h|T 0 ≥ t, T 1 ≥ t)
.

compares the instantaneous risk at time t on treatment for individuals who remained event-

free at time t thanks to treatment versus individuals who would have been event-free at time

t regardless of treatment. It can be viewed as a selection effect and is therefore termed a

sensitivity ratio (SR). Expression (8) thus conveys that the dependence of the hazard ratio

λ(t;A = 1)/λ(t;A = 0) on time t may differ from the causal hazard ratio on time as a result

of selection effects. In particular, when the observed hazard ratio λ(t;A = 1)/λ(t;A = 0) is

constant, e.g. suggesting a beneficial treatment effect of 0.8, then this will often correspond

with a more pronounced treatment effect HR(t) ≤ 0.8. This results from (8), if SR(t) ≥ 1,

as 0 ≤ π(t) ≤ 1. The causal hazard ratio HR(t) then need not be constant. This may be

the result of varying treatment effectiveness over time, but may also be the result of the

patient population (the principal stratum T 0 ≥ t, T 1 ≥ t) changing with time. It follows

from the above results that

HR(t) =
λ(t;A = 1)

λ(t;A = 0)
[π(t) + SR(t) {1− π(t)}]−1 .

All terms in the righthand side, apart from SR(t), are identified from the observed data.

The above expression may therefore be used as the basis of a sensitivity analysis where

the user tries different choices of SR(t). However, it is not clear what would be reasonable

values of SR(t), and the monotonicity assumption may also not be plausible.

Assume instead that there is a Z so that (5) holds, and so that the DGP is governed

by

λ(t;A,Z) = exp {ψ0(t, A) + ψ1(t, Z)} (9)

for some general functions ψ0 and ψ1, then

HR(t) =
E{P (T 1 = t|T 1 ≥ t, Z)|T 0 ≥ t, T 1 ≥ t}
E{P (T 0 = t|T 0 ≥ t, Z)|T 0 ≥ t, T 1 ≥ t}

= exp {ψ0(t, 1)− ψ0(t, 0)} = HRZ(t)
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Thus, if (5) and (9) hold then HR(t) = HRZ(t). In the worked application in Section 4.1

we compare HR(t) to the Cox hazard ratio while modelling the correlation between T 0 and

T 1 letting Z be Gamma distributed with varying variance so that (5) and (9) hold. As a

further illustration we now describe how to simulate data so that (5) and (9) are fulfilled,

and so that the marginal Cox model, conditioning only on A, is also correctly specified.

Take A, Z, V0 and V1 to be independent so that Z is Gamma distributed with mean 1 and

variance θ, V0 and V1 are exponentially distributed with mean 1, and the exposure A is

binary with P (A = 1) = 1/2. Then let T 0 = 1
θ

log ( θ
Z
V0 + 1), T 1 = 1

θeβ
log ( θ

Z
V1 + 1), and

let T = (1−A)T 0 +AT 1. It follows directly that (5) holds, and further that the marginal

Cox model is correctly specified, and also that

λ(t;A,Z) = Z exp {βA+ θeβAt}

so (9) also holds. Thus, HR(t) = HRZ(t), and

HR(t) = eβ exp {tθ(eβ − 1)}.

Different values of θ will give different values of Kendall’s τ corresponding to different

correlation between T 0 and T 1. In the specific setting, we have τ = θ/(θ + 2). Figure 3

displays HR(t) in scenarios with different values of Kendall’s τ . Note that the marginal

Cox model induces the hazard ratio eβ, which is taken to be eβ = 0.5. It is seen that

HR(t) is equal to eβ only under independence between T 0 and T 1; otherwise HR(t) looks

like a decreasing function in t with HR(0) = eβ. When T 0 and T 1 are highly correlated

(Kendall’s τ = 0.93) then HR(t) is sharply decreasing towards zero. In Appendix A.4

we describe another DGP where again (5) holds and the marginal Cox model is correctly

specified, but HR(t) and HRZ(t) are different due to failure of (9).
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3.5 Hazard differences

Under some conditions, hazard differences - as opposed to hazard ratios - have a more ap-

pealing interpretation, apart from them being collapsible (Martinussen and Vansteelandt,

2013). In particular, suppose that the additive hazards model

λ(t;A,Z) = ψ(t)A+ ω(t, Z), (10)

holds for general functions ψ, ω and baseline covariates Z. It has been shown that under

this model, the baseline exchangeability of treated and untreated individuals w.r.t. the

covariates Z, as guaranteed by randomisation, implies that A ⊥⊥ Z|T > t (Vansteelandt

et al., 2014; Aalen et al., 2015). However, since this is equivalent to

P (Z = z |T 0 > t) = P (Z = z |T 1 > t), (11)

it does not mean that there is a balance in the risk set, because (11) shows that this is

a comparison between two different groups of people: those with T 0 > t and those with

T 1 > t. Indeed, the hazard difference

ψ(t) = lim
h→0

P (t ≤ T 1 < t+ h|T 1 ≥ t)− lim
h→0

P (t ≤ T 0 < t+ h|T 0 ≥ t)

may not represent a causal contrast. If (5) holds, e.g. that Z is a sufficiently rich collection

of variables that includes T 0 and T 1 (or deterministically predicts T 0 and T 1) then the

above hazard difference reduces to

ψ(t) = lim
h→0

P (t ≤ T 1 < t+ h|T 0 ≥ t, T 1 ≥ t)− lim
h→0

P (t ≤ T 0 < t+ h|T 0 ≥ t, T 1 ≥ t),

which represents a causal contrast. This is shown in Appendix A.5. While it is implau-

sible to have such rich collection of data that it essentially deterministically predicts T 0,

interestingly, when model (10) holds for Z including T 0, then it can be fitted without data
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on T 0. Indeed, by collapsibility of the hazard difference (Martinussen and Vansteelandt,

2013), the hazard difference ψ(t) can be consistently estimated via Aalen least squares

estimation in the unadjusted model

λ(t;A) = ψ(t)A.

Unfortunately, however, the additive structure of model (10) will often be unlikely satisfied

w.r.t. a rich collection of variables that predict T 0, and thus the practical implications of

the above reasoning remain limited. For instance, in the simulation study of Section 3.1,

the marginal Aalen additive hazards model fits the data perfectly, because A is binary, but

also suggests a beneficial effect of the treatment in the first 4 years, which then disappears,

see Figure 4.

4 Applications

4.1 MRC RE01 study

As an illustration, we reconsider the kidney cancer data described in White and Roys-

ton (2009). These data are from the MRC RE01 study that was a randomised controlled

trial comparing interferon-α (IFN) treatment with the best supportive care and hormone

treatment with medroxyprogesterone acetate (control) in patients with metastatic renal

carcinoma. We use the same 347 patients as in White and Royston (2009). In this illustra-

tive analysis we consider only the first 30 months of follow up. The median follow-up time

was 242 days, and 85% of the patients died within the considered time frame. The two

Kaplan-Meier estimates in Figure 5 contain all the available information about the treat-

ment effect. IFN treatment seems superior to the standard treatment (control), although

a supremum test comparing the two survival curves results in a non-significant p-value

of 0.09. The score process plot of Lin et al. (1993) was calculated using the R-package
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timereg (Martinussen and Scheike, 2006), giving no evidence against the proportional

hazards assumption (P 0.43 according to the supremum test). We therefore fitted the Cox

model, giving the estimate β̂ = −0.29 (SE 0.12, P 0.01), showing evidence that the IFN

treatment reduces the risk of dying for these patients. The hazard ratio of 0.75 expresses

the magnitude of the causal effect, but interpretation is subtle as explained before. As

a sensitivity analysis we now assume (5) and (9), and take Z to be Gamma distributed

with mean 1 and variance θ. This model fits the observed data equally well and thus

cannot be refuted based on the observed data. The parameter θ expresses the correlation

between T 0 and T 1 and was chosen to give a Kendall’s τ of 0.1 and 0.2 corresponding

to estimated Kendall’s τ concerning the correlation between lifetimes for dizygotic and

monozygotic Danish twins (Scheike et al., 2015). A higher correlation between T 0 and T 1,

corresponding to a Kendall’s τ of 0.3, was also considered. Figure 6 displays HR(t) under

these three scenarios. It is seen that HR(t) is smaller than 0.75 at all times and decreases

with time indicating a stronger treatment effect when comparing the instantaneous risk at

time t on treatment versus control for the principal stratum of individuals who would have

survived up to time t, no matter what treatment. This is more pronounced with the larger

correlation. In view of these subtleties of interpretation, in this section, we will focus on a

number alternative ways of describing the treatment effect.

We may alternatively use the Cox model to estimate the relative risk function

RR(t) =
P (T ≤ t|A = 1)

P (T ≤ t|A = 0)
=
P (T 1 ≤ t)

P (T 0 ≤ t)
,

which can be estimated consistently by

R̂R(t) =
1− exp {−Λ̂0(t)eβ̂}
1− exp {−Λ̂0(t)}

,

where β̂ is the Cox partial likelihood estimator and Λ̂0(t) is the corresponding Breslow

estimator. This estimate, along with 95% pointwise and uniform confidence bands, is
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displayed in Figure 7, where we see that the estimated relative risk function is below 1 at

all times, in favour of the IFN treatment. For instance, it is seen that the relative risk

at one year is estimated to be approximately 0.85, and, judging from the 95% confidence

bands (dashed curves), this is close to being significant. A uniform test over the considered

time span is also close to being significant judging from the 95% uniform confidence bands.

Another way of quantifying the treatment effect is by using the restricted mean survival

time (RMST) (Uno et al., 2014; Zhao et al., 2016). The RMST up to time t is defined

as RMST(t) = E{min(T, t)}. This is the area under the survival curve of T up to time

t and can easily be estimated using the corresponding Kaplan-Meier curve up to time t

(see Zhao et al. (2016) for details on inference). Contrasts of the RMST(t) corresponding

to different (randomised) treatment groups therefore carry a causal interpretation. The

restricted mean time lost, RMTL(t) is defined as t − RMST(t). Here, the ‘months of life

lost up to 30 months’ is given by RMTL(30) and estimated to 17.3 for the IFN treatment

and to 19.8 for the control treatment. The ratio of these two (IFN vs control) is 0.87 (95%

CI, 0.70 to 1.04). Thus, on IFN treatment there is a 13% less loss of lifetime compared to

the control treatment during the first 30 months of follow up.

We also fitted Aalen’s additive hazard model

λ(t;A, V ) = β0(t) + ψ(t)A+ β1(t)TV, (12)

where V includes days from metastasis to randomization (log-transformed), WHO perfor-

mance status (0, 1 and 2; with group 0 and 1 collapsed into one group), and Haemoglobin

(g/dl). As the treatment variable A is independent of the other covariates, the above Aalen

model is collapsible meaning that the interpretation of ψ(t) is the same in the conditional

and marginal model. The Cox model does not have this property. Model (12) appeared

to fit the data well, using the tools described in Chapter 5 in Martinussen and Scheike
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(2006); specifically no interaction between the treatment indicator and the baseline risk

factors was found. We estimated Ψ̂(t) =
∫ t

0
ψ(s)ds both from the conditional model and

the marginal model, and the two estimators were almost identical, which, as pointed out,

should be the case if model (12) is correctly specified. Using model (12), we next tested the

null hypothesis ψ(t) = ψ of a constant effect (P 0.58), which was subsequently estimated to

be ψ̂ = −0.02 (SE, 0.009). If T 0 ⊥⊥ T 1|V (or if the addition of additional variables Z con-

ditional on which T 0 and T 1 become independent, does not change the additive structure

of the model), then this is also the causal hazard difference. This would mean that over

the course of the follow-up, an average of approximately 2 additional deaths will occur for

each month of follow-up in each 100 persons under the control treatment alive at the start

of the month and who would also be alive under the IFN treatment, compared with each

100 IFN treated persons alive at the start of the month and who would also be alive under

the control treatment. As suggested before, the assumption that T 0 ⊥⊥ T 1|V is implausible

however.

4.2 Gastrointestinal tumour study

Stablein and Koutrouvelis (1985) presented survival data from a randomized clinical trial on

locally unresectable gastric cancer. Half of the total 90 patients were assigned to chemother-

apy, and the other half to combined chemotherapy and radiotherapy. It was suggested that

there was superior survival for patients who received chemotherapy, but only in the first

year or so. The same application was considered by Collett (2015) p. 386-389. For illustra-

tive purposes we consider here the first 720 days of follow up corresponding to the two first

time periods considered by Collett (2015). Figure 8 displays the Kaplan Meier curves cor-

responding to the two groups, and shows that the survival curves become close at the end

of the considered time interval. Applying a Cox regression model with time-by-treatment-
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interaction, allowing for separate HR’s before and after 1 year of follow-up gives estimated

HR’s (Combined vs chemotherapy) of 2.40 (95% CI; 1.25, 4.63) in the first year and 0.78

(95% CI; 0.34,1.76) thereafter (the supremum score process test of Lin et al. (1993) gave no

convincing evidence against these two models, with P 0.07 in the first interval and P 0.26

in the second interval). Thus one might be tempted to conclude that the chemotherapy is

beneficial in the first year only, and that there might even be a reverse effect afterwards,

see Collett (2015) for a similar analysis and conclusion. However, arguing based on the

two hazard ratios is subtle as we have shown. If chemotherapy is more effective then there

will be more and more frail subjects in that group making the interpretation of hazard

function difficult. We illustrate this using the two estimated hazard ratios and taking the

frailty variable to be Gamma distributed mean and variance equal to θ corresponding to a

Kendall’s τ of 0.3. Figure 9 displays the estimated λ(t, A = 1, Z)/λ(t, A = 0, Z) which is

seen to depend on time, being larger than 2.4 and increasing towards 3.7 in the first year

and, after the change-point (1 year), starting at around 1.2 and then decreasing but being

larger than 1 at all times.

5 Concluding Remarks

We have argued that the treatment effect in a proportional hazards model carries a causal

interpretation, but that its interpretation is subtle. The proportional hazards assumption

does not express, for instance, that treatment works equally effectively at all times, as the

hazard ratio at a given time mixes differences between treatment arms due to treatment

effect as well as selection. The danger of over interpreting hazard ratios become most

pronounced when the hazard ratio is not constant over time (e.g. when the hazard ratio

is below 1 for some time and then becomes 1). We have argued that this cannot be

interpreted as implying that treatment effectiveness disappears after some time. In our
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opinion, this is the source of much confusion, and a real concern. Non-constant hazard

ratios are indeed fairly common in real life because the proportional hazards assumption is

a rather unstable assumption in the following sense. Even when valid in some population,

this assumption is likely to fail in subgroups of that population (e.g. if one studies men and

women separately), and vice versa. This makes the assumption, at best, an approximation

in practice.

We have suggested possibilities to estimate hazard ratios that are causally interpretable

because they compare intensities at a given time t with and without treatment for the

same patient population: those who would survive that time, no matter what treatment.

Inferring such hazard ratios necessitates a sensitivity analysis, however. Furthermore, they

have the disadvantage of describing the effect for an unknown subgroup of the population.

A better strategy in practice, when interest lies in the dynamic aspects of a treatment, is

therefore to design the study such that the collected data provide immediate insight into

the dynamic aspects of treatment (e.g. by modifying treatment assignments over time).
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Appendix A

A.1 Binary frailty variable

Let Z be binary, for instance P (Z = 0.2) = 0.2 and P (Z = 1.2) = 0.8, low and high risk

groups, then E(Z) = 1, and similar results as in the Gamma-distribution case (Section

3.1) are obtained. In this binary case, the Laplace transform is

φZ(u) = 0.2e−0.2u + 0.8e−1.2u.

Therefore

HRZ(t)
gZ(e−Λ(t,a=1))

gZ(e−Λ(t,a=0))
=
λ(t; a = 1)

λ(t; a = 0)
,

where

gZ(u) = {D log (φZ)}{φ−1
Z (u)}, (13)

which is an increasing function. Hence, if we take β1 < 0 and β2 = 0, then again

HRZ(t) < 1

for all t.

A.2 Frailty model arising by marginalization

It was shown in Section 3.1 that one can always pick a DGP λ(t;A,Z) so that the Cox

model holds marginally, only conditioning on the observed A. Rename Z to Z1. We

show now that similarly we can also pick a DGP λ(t;A,Z1, Z2) so that it marginalizes to

λ(t;A,Z1) that further marginalizes to λ(t;A), the latter being the Cox model. For ease

of calculations, let

λ(t;A,Z1, Z2) = Z2λ
∗(t;A,Z1)
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with Z2 being Gamma distributed with mean and variance equal to 1, and independent of

Z1 and A. Similar calculations as those in Section 3.1 gives the following expression

λ(t;A,Z1, Z2) = Z1Z2λ0(t)eβA exp
[
Λ0(t)eβA + Z1{exp {Λ0(t)eβA − 1}

]
(14)

Hence, if the DGP is governed by (14) then model (4), with ν =∞, and the marginal Cox

model, only conditioning on A, are also correctly specified.

A.3 Selection and Cox model

Assume that the Cox model λ(t;A) is correctly specified. Will there always be selection?

The answer is yes. The Cox model induces randomness as

Λ0(T ) = e−AβV,

where V is exponentially distributed with mean 1. But then

E(V |T > t,A = a) = E(V |V > eaβΛ0(t), A = a) = 1 + eaβΛ0(t).

If eβ < 1 then

E(V |T > t,A = 1) < E(V |T > t,A = 0).

A.4 A DGP with HR(t) and HRZ(t) being different

Let Z be Gamma distributed with mean 1− α, α ∈ (0, 1), and variance 1, and let V0 and

V1 be independent Gamma distributed with mean α and variance 1. Exposure A is binary

with P (A = 1) = 1/2. Generate data as follows: T 0 = V0 + Z, T 1 = e−β(V1 + Z) and

T = (1− A)T 0 + AT 1. Condition (5) holds, and the marginal Cox model is also correctly

specified. But in this case HR(t) 6= HRZ(t), and it also easily seen that HRZ(t) depends

on Z. Different values of α results in different values of Kendall’s τ thus controlling the

correlation between T 0 and T 1.
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A.5 Hazard differences

We assume (5) and (10). Then

lim
h→0

P (t ≤ T 1 < t+ h|T 0 ≥ t, T 1 ≥ t) = ψ(t) +
E{ω(t, Z)e−2

∫ t
0 ω(s,Z) ds}

E{e−2
∫ t
0 ω(s,Z) ds}

and

lim
h→0

P (t ≤ T 0 < t+ h|T 0 ≥ t, T 1 ≥ t) =
E{ω(t, Z)e−2

∫ t
0 ω(s,Z) ds}

E{e−2
∫ t
0 ω(s,Z) ds}

and therefore

ψ(t) = lim
h→0

P (t ≤ T 1 < t+ h|T 0 ≥ t, T 1 ≥ t)− lim
h→0

P (t ≤ T 0 < t+ h|T 0 ≥ t, T 1 ≥ t).
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Figure 1: Simulation study. Plot of HRZ(t).
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Figure 2: Simulation study. Plot of E(Z|T > t,A = a), a = 0, 1.
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Figure 3: HR(t) in scenarios with eβ = 0.5 and with Kendall’s τ equal to 0, 0.04, 0.2, 0.49, 0.83
and 0.98 (starting from top with τ equal to 0, corresponding to independence between T 0 and
T 1).
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Figure 4: Simulation study. Estimated cumulated regression coefficient and 95% pointwise
confidence bands obtained from fitting the Aalen additive hazards model.
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Figure 5: MRC RE01 study. Kaplan Meier plot, control group (green curve) and IFN group
(blue curve).
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Figure 6: MRC RE01 study. Estimated HR(t) with Kendall’s τ equal to 0.3 (dotted curve), 0.2
(broken curve) and 0.1 (full curve). Horizontal line corresponds to the Cox hazard ratio of 0.74.
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Figure 7: MRC RE01 study. IFN treatment vs control treatment. Estimate of relative risk RR(t)
along with 95% pointwise confidence bands (dashed curves) and 95% uniform bands (shaded area).
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Figure 8: Gastrointestinal tumour study. Kaplan-Meier plot, chemotherapy (full curve) and
combined therapy (broken curve).
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Figure 9: Gastrointestinal tumour study. Plot of λ(t;A = 1, Z)/λ(t;A = 0, Z) based on (4) with
change-point at 1 year and the frailty variable being Gamma distributed with mean 1 and variance
so that Kendall’s τ is equal to 0.3. Dashed curves show the estimated regression coefficients based
on the change-point Cox analysis. Combined therapy vs chemotherapy.
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