Research Paper

Adakite-like granitoids of Songkultau: A relic of juvenile Cambrian arc in Kyrgyz Tien Shan

Abstract

The early Paleozoic Terskey Suture zone, located in the southern part of the Northern Tien Shan domain in Kyrgyzstan, comprises tectonic slivers of dismembered ophiolites and associated primitive volcanics and deep-marine sediments. In the Lake Songkul area, early-middle Cambrian pillow basalts are crosscut by the Songkultau intrusion of coarse-grained gneissose quartz diorites and tonalites with geochemical characteristics typical for high-SiO₂ adakites (SiO₂ > 56 wt.%, Al₂O₃ > 15 wt.%, Na₂O > 3.5 wt.% and high Sr/Y and La/Yb ratios). The Songkultau granitoids have positive initial εNd (+3.8 to +6.4) and εHf (+12.3 to +13.5) values indicating derivation from sources with MORB-like isotopic signature. Volcanic formations, surrounding the Songkultau intrusion, have geochemical affinities varying from ocean floor to island arc series. This rock assemblage is interpreted as a relic of an early-middle Cambrian primitive arc where the adakite-like granitoids were derived from partial melting of young and hot subducted oceanic crust. An age of 505 Ma, obtained for the Songkultau intrusion, shows that hot subduction under the Northern Tien Shan continued until middle Cambrian. The primitive arc complexes were obducted onto the Northern Tien Shan domain, where the Andean type continental magmatic arc developed in Cambrian and Ordovician. Formation of the Andean type arc was accompanied by uplift, erosion and deposition of coarse clastic sediments. A depositional age of ca. 470 Ma, obtained for the gravellites in the Lake Songkul area, is in agreement with the timing of deposition for lower Ordovician conglomerates elsewhere in the Northern Tien Shan, and corresponds to the main phase of the Andean type magmatism. The Songkultau adakites in association with surrounding ocean floor and island arc formations constitute a relic of a primitive Cambrian arc and represent a juvenile domain of substantial size identified so far within the predominantly crustal-derived terranes of Tien Shan. On a regional scale this primitive arc can be compared with juvenile Cambrian arcs of Kazakhstan, Gorny Altai and Mongolia.

1. Introduction

The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth that formed by continuous accretion of terranes from Neoproterozoic to late Paleozoic (Zonenshain et al., 1990; Şengör et al., 1993; Windley et al., 2007; Burtman, 2010; Xiao et al., 2013). During the last decades several large domains containing significant amounts of juvenile crust have been recognized in the CAOB, which lead some authors to postulate unusually high juvenile crust production rates in the CAOB during the Paleozoic (Jahn et al., 2000; Jahn, 2004; Wang et al., 2009). Although the theory of anomalously high crustal growth in the CAOB was recently disputed (Kröner et al., 2014, 2017), it is generally accepted that large domains of the juvenile crust occur in NE Kazakhstan and Junggar, in the Altai-Sayan
region of Siberia and in the Lake and Trans-Altai zones of Mongolia, while a broad belt stretching from NW Kazakhstan via the Uzbek and Kyrgyz Tien Shan to NW China formed on older continental crust (Kröner et al., 2017).

In this paper we present (i) new SHRIMP zircon U–Pb age, (ii) whole rock Nd data and (iii) Hf-in-zircon data for a rare example of a mantle-derived granitoid suite from the predominantly crustal Kyrgyz Tien Shan. Contrastingly juvenile isotopic compositions for the Cambrian Songkultau granites were originally recognized within the frame of a larger Sr-Nd-Hf isotopic mapping project (Seltmann et al., 2008), which lead us to conduct additional investigations that resulted in the recognition of a relic primitive arc complex with adakite geochemical affinity. The obtained results confirm Cambrian age of the Songkultau intrusion and characterize the geochemistry of the Songkultau granitoids and associated volcanic and sedimentary formations. These data have important implications for deciphering the early Paleozoic history of the Kyrgyz Northern Tien Shan where Cambro–Ordovician formations remain poorly studied due to lack of geochemical and geochronological data. In addition, conventional stratigraphic correlation of these early Paleozoic suites is difficult as they do not contain datable fossils and occur in relatively small, disconnected and often metamorphosed tectonic blocks. On a regional scale, a primitive Cambrian arc recognized in the Northern Tien Shan belongs to a system of the early Paleozoic continental arcs that were originally recognized within the frame of a larger Sr-Nd-Hf isotopic mapping project (Seltmann et al., 2008), which led us to conduct additional investigations that resulted in the recognition of a relic primitive arc complex with adakite geochemical affinity. The obtained results confirm Cambrian age of the Songkultau intrusion and characterize the geochemistry of the Songkultau granitoids and associated volcanic and sedimentary formations. These data have important implications for deciphering the early Paleozoic history of the Kyrgyz Northern Tien Shan where Cambro–Ordovician formations remain poorly studied due to lack of geochemical and geochronological data. In addition, conventional stratigraphic correlation of these early Paleozoic suites is difficult as they do not contain datable fossils and occur in relatively small, disconnected and often metamorphosed tectonic blocks. On a regional scale, a primitive Cambrian arc recognized in the Northern Tien Shan belongs to a system of the early Paleozoic continental arcs that were originally recognized within the frame of a larger Sr-Nd-Hf isotopic mapping project (Seltmann et al., 2008), which led us to conduct additional investigations that resulted in the recognition of a relic primitive arc complex with adakite geochemical affinity. The obtained results confirm Cambrian age of the Songkultau intrusion and characterize the geochemistry of the Songkultau granitoids and associated volcanic and sedimentary formations. These data have important implications for deciphering the early Paleozoic history of the Kyrgyz Northern Tien Shan where Cambro–Ordovician formations remain poorly studied due to lack of geochemical and geochronological data. In addition, conventional stratigraphic correlation of these early Paleozoic suites is difficult as they do not contain datable fossils and occur in relatively small, disconnected and often metamorphosed tectonic blocks. On a regional scale, a primitive Cambrian arc recognized in the Northern Tien Shan belongs to a system of the early Paleozoic continental arcs that were originally recognized within the frame of a larger Sr-Nd-Hf isotopic mapping project (Seltmann et al., 2008), which led us to conduct additional investigations that resulted in the recognition of a relic primitive arc complex with adakite geochemical affinity. The obtained results confirm Cambrian age of the Songkultau intrusion and characterize the geochemistry of the Songkultau granitoids and associated volcanic and sedimentary formations. These data have important implications for deciphering the early Paleozoic history of the Kyrgyz Northern Tien Shan where Cambro–Ordovician formations remain poorly studied due to lack of geochemical and geochronological data. In addition, conventional stratigraphic correlation of these early Paleozoic suites is difficult as they do not contain datable fossils and occur in relatively small, disconnected and often metamorphosed tectonic blocks. On a regional scale, a primitive Cambrian arc recognized in the Northern Tien Shan belongs to a system of the early Paleozoic continental arcs that were originally recognized within the frame of a larger Sr-Nd-Hf isotopic mapping project (Seltmann et al., 2008), which led us to conduct additional investigations that resulted in the recognition of a relic primitive arc complex with adakite geochemical affinity. The obtained results confirm Cambrian age of the Songkultau intrusion and characterize the geochemistry of the Songkultau granitoids and associated volcanic and sedimentary formations. These data have important implications for deciphering the early Paleozoic history of the Kyrgyz Northern Tien Shan where Cambro–Ordovician formations remain poorly studied due to lack of geochemical and geochronological data. In addition, conventional stratigraphic correlation of these early Paleozoic suites is difficult as they do not contain datable fossils and occur in relatively small, disconnected and often metamorphosed tectonic blocks. On a regional scale, a primitive Cambrian arc recognized in the Northern Tien Shan belongs to a system of the early Paleozoic continental arcs that were originally recognized within the frame of a larger Sr-Nd-Hf isotopic mapping project (Seltmann et al., 2008), which led us to conduct additional investigations that resulted in the recognition of a relic primitive arc complex with adakite geochemical affinity. The obtained results confirm Cambrian age of the Songkultau intrusion and characterize the geochemistry of the Songkultau granitoids and associated volcanic and sedimentary formations. These data have important implications for deciphering the early Paleozoic history of the Kyrgyz Northern Tien Shan where Cambro–Ordovician formations remain poorly studied due to lack of geochemical and geochronological data. In addition, conventional stratigraphic correlation of these early Paleozoic suites is difficult as they do not contain datable fossils and occur in relatively small, disconnected and often metamorphosed tectonic blocks. On a regional scale, a primitive Cambrian arc recognized in the Northern Tien Shan belongs to a system of the early Paleozoic continental arcs that were originally recognized within the frame of a larger Sr-Nd-Hf isotopic mapping project (Seltmann et al., 2008), which led us to conduct additional investigations that resulted in the recognition of a relic primitive arc complex with adakite geochemical affinity. The obtained results confirm Cambrian age of the Songkultau intrusion and characterize the geochemistry of the Songkultau granitoids and associated volcanic and sedimentary formations. These data have important implications for deciphering the early Paleozoic history of the Kyrgyz Northern Tien Shan where Cambro–Ordovician formations remain poorly studied due to lack of geochemical and geochronological data. In addition, conventional stratigraphic correlation of these early Paleozoic suites is difficult as they do not contain datable fossils and occur in relatively small, disconnected and often metamorphosed tectonic blocks. On a regional scale, a primitive Cambrian arc recognized in the Northern Tien Shan belongs to a system of the early Paleozoic continental arcs that were originally recognized within the frame of a larger Sr-Nd-Hf isotopic mapping project (Seltmann et al., 2008), which led us to conduct additional investigations that resulted in the recognition of a relic primitive arc complex with adakite geochemical affinity. The obtained results confirm Cambrian age of the Songkultau intrusion and characterize the geochemistry of the Songkultau granitoids and associated volcanic and sedimentary formations. These data have important implications for deciphering the early Paleozoic history of the Kyrgyz Northern Tien Shan where Cambro–Ordovician formations remain poorly studied due to lack of geochemical and geochronological data. In addition, conventional stratigraphic correlation of these early Paleozoic suites is difficult as they do not contain datable fossils and occur in relatively small, disconnected and often metamorphosed tectonic blocks. On a regional scale, a primitive Cambrian arc recognized in the Northern Tien Shan belongs to a system of the early Paleozoic continental arcs that were originally recognized within the frame of a larger Sr-Nd-Hf isotopic mapping project (Seltmann et al., 2008), which led us to conduct additional investigations that resulted in the recognition of a relic primitive arc complex with adakite geochemical affinity. The obtained results confirm Cambrian age of the Songkultau intrusion and characterize the geochemistry of the Songkultau granitoids and associated volcanic and sedimentary formations. These data have important implications for deciphering the overall tectonic architecture of the southwestern CAOB.

2. Geological setting of Songkultau intrusion, previous work and sampling

The Tien Shan orogen, located in the southwestern part of the CAOB, was formed in several stages of subduction–accretion with two major episodes comprising the early Paleozoic (Caledonian) and the late Paleozoic (Hercynian) collisional orogenic events and subsequent reactivation of the region during the Mesozoic and Cenozoic (Windley et al., 2007; Biske and Seltmann, 2010; Xiao et al., 2013; Kröner et al., 2014; Jepson et al., 2019). The Kyrgyz part of Tien Shan is traditionally divided into three major tectonic zones or domains: the Northern Tien Shan (NTS), the Middle Tien Shan (MTS) and the South Tien Shan (STS) (Zonenshain et al., 1990; Biske and Seltmann, 2010; Burtman, 2015). These E–W trending linear zones are cut by the NW trending Tulas-Fergana Fault with a total dextral offset of about 200 km (Fig. 1a). The NTS is represented by an early Paleozoic continental arc, built up on Precambrian basement as a result of northward subduction and subsequent closure of the Terskey Ocean, a branch of the Palaeo-Asian Ocean, during the middle Ordovician (Lomize et al., 1997; Ghes, 2008). The main component of the MTS is the Chatkal-Kurama volcano-plutonic belt that formed during the evolution and closure of the Turkestan Ocean to the south. The late Paleozoic Chatkal-Kurama continental arc formed on the MTS basement, which represents a Precambrian microcontinent and Ordovician continental arc terranes welded together in the late Ordovician (Alexeiev et al., 2016; Konopelko et al., 2017). The STS represents a pile of folded tectonic nappes, which are thrust southward upon the passive margin of the Karakum-Tarim continent during closure of the Turkestan Ocean in the late Carboniferous (Biske and Seltmann, 2010;
The NTS is built up on Precambrian basement consisting of Meso- proterozoic metasediments intruded by ca. 1.15–1.05 Ga granites, which were derived from Paleoproterozoic or older crust as evidenced by their Nd and Hf model ages (Bakirov and Maksumova, 2001; Kiselev and Maksumova, 2001; Krönner et al., 2013). Further evolution of the NTS was controlled by the development of the Terskey Ocean to the south and the transformation of the NTS in its Andean type northern active margin. The beginning of this process is marked by Cambrian continental arc magmatism and by Cambrian–early Ordovician ophiolites preserved in the Terskey Suture zone (Lomize et al., 1997; Mikolaichuk et al., 1997; Kiselev, 1999; Kiselev and Maksumova, 2001; Alexeiev et al., 2019). Progressive subduction to the north and subsequent accretion of the MTS to the NTS during closure of the Terskey Ocean in the middle Ordovician resulted in continuous Andean type magmatism, during which voluminous subduction-related and collisional Ordovician–early Silurian granitoids were emplaced (Fig. 1b) (Kiselev and Maksumova, 2001; Ghes, 2008; Konopelko et al., 2008). After the middle Ordovician collision the NTS and MTS developed as parts of the Paleo-Kazakhstan continent and were later affected by the early Devonian intraplate and the early Permian post-collisional magmatism (Konopelko et al., 2008; Seltmann et al., 2011).

The strip of ophiolitic fragments, defined as the Ordovician Terskey Suture (Lomize et al., 1997; Mikolaichuk et al., 1997; Ghes, 2008; Degtyarev et al., 2013), is bound to the southern margin of the NTS domain (Fig. 1b). In the Lake Songkul area the Terskey Suture zone is parallel to the Nikolaev Line, which was recognized in the 1930s as a regional tectonic lineament separating the NTS and MTS domains (Nikolaev, 1933; Popov, 1938) (Figs. 1–3). The Nikolaev Line represents a combination of late Carboniferous top-to-the north thrusts and Permian strike-slip faults separating the early Paleozoic (Caledonian) orogen of the Northern Tien Shan to the north and the late Paleozoic (Hercynian) formations of the Middle Tien Shan to the south (Alexeiev et al., 2017 and references therein).

Paleontological ages of sedimentary sequences in the Terskey Suture zone ophiolites range from early Cambrian to early Ordovician (Mikolaichuk et al., 1997) with only few published complementary zircon U–Pb ages in the range of 518–516 Ma (Qian et al., 2009; Degtyarev et al., 2013). Around and east of Lake Songkul, the Terskey Suture ophiolites are represented by pillow basalts and associated rocks of the Karakatty, Bel’tepshi and Sultansary Fms. (Fig. 2) (Osmonbetov, 1982; Tursungaziev and Petrov, 2008). The rocks of these formations do not contain datable fossils and their early Cambrian age was assumed based on their stratigraphic position below other fossiliferous strata (Maksumova et al., 1988; Mikolaichuk et al., 1997). A supra-subduction origin of the volcanic rocks in the Bel’tepshi and Sultansary Fms. was first
suggested by Mikolaichuk et al. (1997) and later confirmed by Alexeiev et al. (2019) based on geochemical data (low La/Yb ratios, negative Nb-Ta anomalies and positive εNd(t) values). Similar supra-subduction setting was suggested for younger ophiolites with late Cambrian–early Ordovician ages (Demina et al., 1995; Ghes, 2008; Alexeiev et al., 2019), which were virtually coeval with the initiation of continental subduction-related granitoid magmatism (Konopelko et al., 2008, 2014; Alexeiev et al., 2019) but formed in a deeper marine setting, based on occurrences of pillow lava and deep-marine turbidite and chert interlayers in volcanic rocks (Alexeiev et al., 2019). The evolution of the Terskey Ocean is further constrained by ages of UHP eclogite-facies metamorphic rocks, representing marginal parts of the NTS microcontinent involved in the subduction. The ages of the HP-UHP metamorphic events in the Makbal complex, located in the western part of the Terskey suture zone (Fig. 1b), are constrained within 510–475 Ma (Tagiri et al., 1995; Konopelko and Klemd, 2016) with the oldest ages indicating ongoing subduction in the early–middle Cambrian.

The study area is located in the Songkultau Mountains on the west shore of Lake Songkul. The main geological features of the area include the Songkultau massif of diorites and quartz diorites which crosscut pillow basalts of the Karakatty Fm., and are tectonically juxtaposed with the Muztor Fm. consisting of coarse clastic sediments with thick conglomerate layers (Turungaziev and Petrov, 2008) (Fig. 2). These Cambrian–Ordovician formations constitute one of the ophiolite slivers immediately north of the Nikolaev Line that strikes along the northern shore of Lake Songkul and separates the NTS domain from the MTS located to the south (Figs. 1 and 2). In this area the Nikolaev Line corresponds to the front of the top-to-the north low angle overthrusts, which thrust open marine Carboniferous limestones of the MTS on the Serpukhovian to Bashkirian red beds of the NTS (Fig. 2). The Karakatty Fm., as well as the similar Bel’tepshi and Sultansary Fms., consisting of pillow basalts intercalated with deep-marine sediments, are shown on regional geological maps as early Cambrian (Osmoibetov, 1982; Turungaziev and Petrov, 2008). The Songkultau massif of diorites and quartz diores is shown on maps as early Ordovician (Osmoibetov, 1982; Turungaziev and Petrov, 2008), however recent zircon U–Pb dating revealed ages in the range of 503–498 Ma corresponding to the middle–late Cambrian (De Grave et al., 2011).

Despite the progress with zircon dating, the geochemical affinity of the Songkultau granitoids and surrounding basalts remained poorly studied and, therefore, additional sampling and analysis of previously geochronologically investigated granitoid samples (De Grave et al., 2011) was undertaken. Surrounding basalts of the Karakatty Fm. were sampled along the southern contact of the intrusion and on the northern shore of Lake Songkul. The obtained results on these samples are discussed below in combination with published geochemical data on similar volcanic formations of the area. Lower Paleozoic clastic sediments in the vicinity of the Songkultau intrusion are represented by the Muztor Fm. shown on maps as middle Ordovician (Turungaziev and Petrov, 2008). The contact between the Muztor sediments and the Songkultau rocks is shown on geological maps as tectonic (Fig. 2). However basal conglomerates in the bottom of the Muztor Fm., unconformably overlying the basalts of the Karakatty Fm., were described in adjacent areas (Dzhenchuraeva et al., 2015). The Muztor Fm. was investigated in the southwestern part of the study area (Fig. 2) where it consists of thick boulder conglomerates with cobbles mainly represented by mafic volcanics and minor granitoids similar to those of the Songkultau intrusion (Fig. 3d). The conglomerates are intercalated with more sandy layers, from which a gravellite sample was collected for detrital zircon study.

3. Results

We provide a geochemical dataset (including whole rock Nd and Hf-in-zircon data) from the Songkultau intrusion and surrounding basaltic formations, as well as additional SHRIMP zircon age data for the Songkultau quartz diorite and ages of detrital zircons from gravellite of the

Fig. 3. Outcrop and sample photographs of rocks from Lake Songkul area: (a) pillow basalts of the Karakatty Fm. from the north shore of Lake Songkul (sample 17-14), (b) typical coarse-grained quartz diorite, (c) quartz diorite porphyry from endocontact zone, (d) conglomerate of the Muztor Fm.
Muztor Fm. Sampling sites of geochronologically investigated samples are shown in Fig. 2 and their coordinates together with a summary of the results are listed in Table 1. Description and coordinates of the samples retained for geochemical analysis are given in Supplementary Table S1. Outcrop photographs of representative rock-types from the Songkultau area are shown in Fig. 3. Detailed descriptions of the applied methods and analytical procedures are given in the Supplementary Material S2.

3.1. Petrography and geochemistry

The Songkultau intrusion makes up an elongate body (50 km long and 0.5–6 km wide) that was emplaced into basalts and deep-marine sediments of the Karakatty Fm. (Fig. 2). The intrusion is composed of relatively homogeneous coarse-grained gneissose quartz diorites and tonalites consisting of plagioclase (oligoclase-andesine 55%–60%), amphibole (15%–25%), quartz (5%–20%) and minor K-feldspar (0.5%–3%) (Figs. 3b and 4c–e). Accessory minerals are represented by apatite, titanite, zircon and allanite. In the QAPF diagram, the modal mineral compositions of the rocks plot in the fields of quartz-diorite and tonalite (not shown). The Songkultau granitoids crosscut surrounding basalts of the Karakatty Fm. with pronounced marginal endocontact zones of porphyritic varieties, indicating a shallow emplacement level (Figs. 3c and 4f). The majority of samples are strongly altered with replacement of amphibole by chlorite and plagioclase by saussurite (Fig. 4c), which is

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Rock-type and Fm./suite</th>
<th>Coordinates WGS-84</th>
<th>Summary of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-20</td>
<td>Gravellite of Muztor Fm.</td>
<td>N 41'52'26" E 75'59'21"</td>
<td>U-Pb age (Ma) 475 (max dep. age) εNd(t) εHf(t)ca</td>
</tr>
<tr>
<td>TS-070</td>
<td>Diorite of Songkultau intr.</td>
<td>N 41'55'32" E 75'05'14"</td>
<td>505.7 ± 5.3 εNd(t) εHf(t)ca</td>
</tr>
<tr>
<td>TS-068</td>
<td>Diorite of Songkultau intr.</td>
<td>N 41'55'39" E 75'06'45"</td>
<td>n.a. εHf(t)ca</td>
</tr>
<tr>
<td>AI-98</td>
<td>Diorite of Songkultau intr.</td>
<td>N 41'53'06" E 75'01'05"</td>
<td>498.3 ± 5.8 εNd(t) εHf(t)ca</td>
</tr>
<tr>
<td>AI-101</td>
<td>Diorite of Songkultau intr.</td>
<td>N 41'55'08" E 75'02'21"</td>
<td>n.a. εHf(t)ca</td>
</tr>
<tr>
<td>AI-102</td>
<td>Diorite of Songkultau intr.</td>
<td>N 41'54'36" E 75'02'48"</td>
<td>n.a. εHf(t)ca</td>
</tr>
<tr>
<td>AI-97</td>
<td>Diorite of Songkultau intr.</td>
<td>N 41'50'37" E 74'54'04"</td>
<td>502.7 ± 9.2 εNd(t) εHf(t)ca</td>
</tr>
<tr>
<td>AI-99</td>
<td>Diorite of Songkultau intr.</td>
<td>N 41'55'56" E 75'01'44"</td>
<td>n.a. εHf(t)ca</td>
</tr>
<tr>
<td>AI-104</td>
<td>Diorite of Songkultau intr.</td>
<td>N 41'55'08" E 75'02'21"</td>
<td>n.a. εHf(t)ca</td>
</tr>
<tr>
<td>AI437b<sup>c</sup></td>
<td>Andesite of Sultantrasy Fm.</td>
<td>N 41'46'06" E 76'15'56"</td>
<td>525 (?) εHf(t)ca</td>
</tr>
<tr>
<td>AI439e<sup>c</sup></td>
<td>Basalt of Bel'tepshi Fm.</td>
<td>N 41'46'36" E 76'18'06"</td>
<td>-530 (?) εHf(t)ca</td>
</tr>
</tbody>
</table>

n.a. – not analyzed or not calculated.
^a Mean values.
^b After De Grave et al. (2011).
^c After Alexeev et al. (2019); Nd model ages were not calculated for samples AI439a and AI437b due to their high 147Sm/144Nd ratio (<0.14).

Muztor Fm. Sampling sites of geochronologically investigated samples are shown in Fig. 2 and their coordinates together with a summary of the results are listed in Table 1. Description and coordinates of the samples retained for geochemical analysis are given in Supplementary Table S1. Outcrop photographs of representative rock-types from the Songkultau area are shown in Fig. 3. Detailed descriptions of the applied methods and analytical procedures are given in the Supplementary Material S2.

Fig. 4. Photomicrographs of thin sections from rocks of Lake Songkul area: (a) basalt from the north shore of Lake Songkul (sample 17-14), (b) basalt from the west shore of Lake Songkul (sample 17-18), (c) typical quartz diorite, (d) amphibole rich cluster in quartz diorite, (e) kinked plagioclase crystals in deformed quartz diorite, (f) diorite porphyry from endocontact zone. Cross polarized light. Abbreviations: Amph – amphibole, Pl – plagioclase, and Qtz – quartz.
also reflected in high LOI values in the range of 1–3.5 wt.% (Table 2). Rarely preserved fresh amphibole forms large clusters rich in accessory minerals (Fig. 4d). Major and trace elements were analyzed in 10 samples of Songkultau granitoids. The analyzed samples have SiO₂ contents in the range of 59–65 wt.% (Table 2). On the TAS classification diagram, compositions of the granitoids plot in the fields of diorite, granodiorite, and biotite-granite (Fig. 3a). They are characterized by metaluminous to slightly peraluminous compositions with ASI = 1.1 (ASI = molar Al₂O₃/(Na₂O + K₂O + CaO)). They generally plot in the field of granitic veins in the FeO(Fe²⁺/Fe³+) vs. SiO₂ diagram and in the field of Low-K series in the K₂O vs. SiO₂ diagram (Fig. 5b, d). In the (Na₂O + K₂O – CaO) vs. SiO₂ diagram (Fig. 5c) compositions of the Songkultau granitoids form a subvertical trend and plot in the fields of calcic and alkali-calcic series. The RREE spectra for the Songkultau granitoids are characterized by moderate LREE-enrichments and strong depletion in HREE without Eu anomalies (Fig. 6a). The primitive mantle-normalized multielement diagram patterns show moderate enrichments in LILE, strong positive anomalies for Sr and distinct depletions in HFSE with negative anomalies for Nb and Ta (Fig. 6b).

In their chemical compositions, the Songkultau granitoids show close similarities with adakites—a group of acid volcanic rocks, described from Adak Island in the Aleutian arc, in which major and trace element chemistry suggested an origin by melting of subducted basaltic crust (Defant and Drummond, 1990). The Songkultau granitoids fit well the main chemical characteristics of adakites (high Sr/Y and La/Yb ratios, high Na₂O, elevated Mg# and relatively high Ni and Cr contents) (Table 2, Fig. 7). Their compositions can vary significantly (Castillo, 2012), we cautiously define Songkultau granitoids as adakite-like series and discuss their genesis below in Section 4.

The Karakatty Fm. in the immediate vicinity of the Songkultau intrusion is represented by homogeneous massive and pillow basalts (Fig. 3a) with sub-ophitic texture formed by plagioclase and clinopyroxene and matrix mainly consisting of secondary and opaque minerals (Fig. 3a) with sub-ophitic texture formed by plagioclase and clinopyroxene and oxene and matrix mainly consisting of secondary and opaque minerals (Table 2, Fig. 7) as defined by Defant and Drummond (1990), Drummond and Defant (1990), Richards and Kerrich (2007), Castillo (2012).

In their chemical compositions, the Songkultau granitoids show close similarities with adakites—a group of acid volcanic rocks, described from Adak Island in the Aleutian arc, in which major and trace element chemistry suggested an origin by melting of subducted basaltic crust (Defant and Drummond, 1990). The Songkultau granitoids fit well the main chemical characteristics of adakites (high Sr/Y and La/Yb ratios, high Na₂O, elevated Mg# and relatively high Ni and Cr contents) (Table 2, Fig. 7) as defined by Defant and Drummond (1990), Drummond and Defant (1990), Richards and Kerrich (2007), Castillo (2012). Although it has been shown that adakite rocks may form in various tectonic settings and their compositions can vary significantly (Castillo, 2012), we cautiously define Songkultau granitoids as adakite-like series and discuss their genesis below in Section 4.

The Karakatty Fm. in the immediate vicinity of the Songkultau intrusion is represented by homogeneous massive and pillow basalts (Fig. 3a) with sub-ophitic texture formed by plagioclase and clinopyroxene and matrix mainly consisting of secondary and opaque minerals (Fig. 4a and b). For comparison, chemical compositions of the Karakatty basalts are shown on classification and discrimination diagrams (Fig. 5).
in combination with geochemical data on similar volcanics from the adjacent Bel’tepshi and Sultansary Fms. reported by Alexeiev et al. (2019). On the TAS classification diagram the Karakatty volcanics plot in the fields of basalt and basaltic andesite (Fig. 5a). On the FeOt/MgO vs. TiO2 diagram two less altered basalt samples (samples 17-14 and 17-18) are classified as oceanic tholeiites, while one strongly altered basalt sample plots in the field of arc tholeiites and is similar to basalts of the Bel’tepshi and Sultansary Fms. plotting along the trend of island arc volcanics (Fig. 5e). Concentrations of incompatible elements in the Karakatty basalts are generally within the range characteristic for the E-MORB rocks. However, they have elevated LREE contents in the range transitional between E-MORB and OIB type basalts. Compared to the Karakatty basalts, volcanics of the Bel’tepshi and Sultansary Fms. have lower concentrations of REE and LILE and show distinct negative Nb

Fig. 5. Geochemical data for Songkultau granitoids and volcanics of the Karakatty, Bel’tepshi and Sultansary Fms. on classification and discrimination diagrams: (a) Na2O + K2O vs. SiO2 (TAS) diagram, fields after Middlemost (1994); (b) FeOt/(FeOt + MgO) vs. SiO2 diagram, fields after Frost and Frost (2008); (c) (Na2O + K2O-CaO) vs. SiO2 diagram, fields after Frost and Frost (2008); (d) K2O vs. SiO2 diagram, fields after Le Maitre et al. (1989); (e) TiO2 vs. FeOt/MgO diagram, fields for abyssal tholeiite (AT), tholeiite (T) and calc-alkaline volcanic rocks (CA) are after Miyashiro (1973); (f) Nb/Yb vs. Th/Yb diagram from Pearce and Peate (1995), stippled lines show magma compositions comprising 0 to 3 wt.% of a subduction component (Pearce, 2008). Data for the Bel’tepshi and Sultansary Fms. from Alexeiev et al. (2019).
anomaly on the primitive mantle-normalized multicationic diagram (Fig. 6). The suprasubduction origin of the Bel’tepshi and Sultansary volcanics is also illustrated by the Nb/Yb vs. Th/Yb diagram (Fig. 5f), where volcanics of the Bel’tepshi and Sultansary Fms. plot above the MORB-OIB array indicating a distinct sedimentary subduction component in these rocks, while the Karakatty basalts plot in the MORB-OIB array, which is characteristic for ocean floor basalts.

3.2. Zircon dating

Quartz diorite sample T5-070, chosen for SHRIMP U–Pb zircon chronology, supplied a homogeneous population of prismatic zircon grains with well-developed facets demonstrating simple oscillatory zoning and Th/U ratios in the range of 0.23–0.39, characteristic for magmatic zircon (Supplementary Table S3, Fig. 8). Ten spots were analyzed in seven grains. The U–Pb analytical data are presented in Supplementary Table S3 and on concordia diagram in Fig. 8. All ten analysis yielded concordant 206Pb/238U ages in the range of 526–494 Ma, for which a concordia age of 505.7 ± 5.3 Ma (MSWD = 0.11) was calculated. This age, interpreted as the crystallization age of the quartz diorite sample T5-070, coincides within error limits with the 502.7 ± 9.2 Ma and 498.3 ± 5.8 Ma LA-ICP-MS zircon ages, reported for the Songkultau granitoids by De Grave et al. (2011). Collectively, these ages define the emplacement age of the Songkultau intrusion to the middle–late Cambrian.

Gravellite of the Muztor Fm. (sample 17-20) produced a distinct population of detrital zircon grains, from which 21 grains were analyzed by LA-ICP-MS in the Hong Kong University (see Supplementary Material S2 for details). The analyzed zircon grains yielded concordant 206Pb/238U ages in the range of 518–471 Ma (Supplementary Table S4). Four youngest grains with ages 478–471 Ma suggest a lower Ordovician maximum depositional age of the Muztor gravellite. On the probability
plot and histogram (Fig. 9), the ages form two peaks at ca. 485 Ma and 500 Ma. The smaller peak at ca. 500 Ma matches well with the age of the Songkultau intrusion while the major peak at ca. 485 Ma corresponds to the main phase of continental arc magmatism in the NTS (Konopelko et al., 2008; Alexeiev et al., 2019).

3.3. Nd isotopes and Hf-in-zircon analysis

We present the first Sm–Nd isotopic data for seven whole-rock samples of the Songkultau granitoids. Details of analytical procedures are given in Supplementary Material S2. Sm–Nd isotope data are listed in Supplementary Table S5 and shown in an isotope evolution diagram in Fig. 10. The initial isotopic ratios are calculated using the crystallization ages obtained in this study (Table 1) and the trace element concentrations reported in Table 2. All analyzed samples have positive εNd(t) values of +3.8 to +6.4 and Neoproterozoic Nd model ages TDM* (0.89–0.71 Ga), indicating a major contribution from depleted sources, such as the mantle or juvenile crust. Quartz diorite sample T5-070 was additionally analyzed for its whole-rock Pb isotopic compositions and yielded initial Pb isotopic composition 18.1 for 206Pb/204Pb, 15.7 for 207Pb/204Pb and 38.2 for 208Pb/204Pb (Supplementary Table S6).

Zircon domains from sample T5-070, dated by SHRIMP, and from sample AI-98, previously dated by De Grave et al. (2011), were also analyzed for their Lu–Hf isotopic compositions. The results, including εHf(t) and crustal model ages (τHf), are presented in Supplementary Table S7 and Fig. 11. Ten Lu–Hf isotopic spot analyses were performed on the same zircon domains that were analyzed for their Th–U–Pb isotopic compositions from sample T5-070 and all yielded similar initial 176Hf/177Hf ratios of 0.282819–0.282862, with corresponding εHf(t) values between +12.6 and +14.4 (mean +13.5) and crustal model ages (τHf) of 0.66–0.55 Ga (mean 0.62 Ga). Eleven Lu–Hf isotopic spot analyses were performed on the same zircon domains that were analyzed for their Th–U–Pb isotopic compositions from sample AI-98 (Supplementary Table S8). All eleven analyses yielded initial 176Hf/177Hf ratios between 0.282765 and 0.282850 corresponding to εHf(t) values between...
4. Discussion

4.1. Petrogenesis and magma sources of the Songkultau adakites

The Songkultau granitoids show close similarities with chemical characteristics of adakites (SiO$_2$ > 56 wt.%), Al$_2$O$_3$ > 15 wt.%, Na$_2$O > 3.5 wt.%, Na$_2$O > K$_2$O, elevated Mg# ~ 50 at 60 wt.% SiO$_2$, high Sr/Y > 40 and La/Yb > 20, relatively high Ni and Cr contents and Eu/Eu* ~ 1) as defined by Defant and Drummond (1990), Drummond and Defant (1990), Richards and Kerrich (2007), Castillo (2012). Previous studies have shown that magmatic rocks with adakitic geochemical signatures could originate from various tectono-magmatic processes, such as (i) melting of young and hot subducted oceanic slab, as it was originally proposed by Defant and Drummond (1990) and Martin et al. (2005); (ii) assimilation and fractional crystallization (AFC) or fractional crystallization (FC) processes (Macpherson et al., 2006); and (iii) melting of thickened lower crust or subducted continental crust (Chung et al., 2003).

The adakitic granitoids derived from partial melting of the mafic lower crust are usually potassium-rich (K$_2$O > Na$_2$O), and exhibit relatively fertile isotopic compositions with predominantly negative ε_{Nd} values and high Th/U, Th/Ba, and Rb/Ba ratios (Zheng et al., 2020 and references therein). These features are contrastingly different from the composition of slab-derived adakites, in general, and from the composition of the Songkultau granitoids, in particular. Therefore, the Songkultau adakites cannot have originated from partial melting of the mafic lower crust.

The origin of adakitic arc lavas by fractional crystallization of garnet and/or amphibole from basaltic magma within the garnet stability field was advocated by Macpherson et al. (2006). Adakites generated by this process usually exhibit variable and high Dy/Yb ratios (1.7–3.2) in addition to high La/Yb and Sr/Y ratios, and are often characterized by relatively fertile isotopic compositions (Macpherson et al., 2006; Richards and Kerrich, 2007). In contrast, the Songkultau adakites have distinctly juvenile Nd–Hf isotopic compositions and exhibit consistently low Dy/Yb ratios in the range of 1.4–1.9. In addition, arc volcanic series produced by fractional crystallization are expected to have almost identical Th/Zr ratios (Schiano et al., 2010). This is not the case for the Songkultau granitoids, where Th/Zr ratios vary significantly in the range of 0.01–0.12, which is more characteristic of a partial melting trend (Schiano et al., 2010). Finally, AFC and FC processes usually result in continuous compositional trends, which are also not the case for the Songkultau intrusion where mafic contemporaneous rocks are not known (Osmonbetov, 1982). On the other hand, although the compositional variations of the Songkultau adakites are relatively minor with SiO$_2$ concentrations in the range of 59–65 wt.% (Table 2), these variations can be explained by fractional crystallization as illustrated in the (Na$_2$O + K$_2$O-CaO) vs. SiO$_2$ diagram (Fig. 5c) where compositions of the Songkultau granitoids form a steep subvertical trend from calcic to alkali-calcic series, which is typical for magmatic suites formed by fractional crystallization of high-Ga mafic silicates, such as augite (Frost and Frost, 2008; Konopelko et al., 2011). Thus, it can be concluded that fractional crystallization, albeit responsible for minor compositional variations of the Songkultau adakites, probably was not the main process that controlled the genesis of this rock series.

Geological and geochemical features of the Songkultau granitoids are in good agreement with their origin by melting of subducted oceanic slab. The Songkultau intrusion is located within the Terskey Suture zone in association with ophiolites and volcanics with mixed ocean floor and island arc affinities indicating a primitive arc tectonic setting. As shown above, the compositions of the Songkultau granitoids match well the main chemical characteristics of the slab-derived adakites. The Songkultau rocks have concentrations of MgO in the range of 0.6–4.1 wt.% at silica contents of 58.9–64.9 wt.% (Table 2) and generally correspond to high-SiO$_2$ adakites indicating their affinity with adakites in the sense of Defant and Drummond (1990) who suggested an origin by melting of young subducted basaltic crust for these high-SiO$_2$ adakite types. The La/Yb ratios in the Songkultau granitoids are below 20 and do not fit the latest adakite definition of Richards and Kerrich (2007) (Fig. 7), however, they are in the range La/Yb > 5 proposed for adakites in the original work of Defant and Drummond (1990). Experimental studies in combination with geochemical evidence show that high-SiO$_2$ adakites can be derived by partial melting of depleted mafic to ultramafic sources. This is most likely to occur between the garnet-in and amphibole-out phase boundary, where the garnet is present as a residual phase between 0.7 GPa and 2.6 GPa at temperatures of 650–1050 °C for hydrous basaltic compositions (e.g. Defant and Drummond, 1990; Martin et al., 2005; Thorkelson and Breitsprecher, 2005; Castillo, 2012 and references therein). These melting conditions occur at convergent margins where young and, thus, still hot oceanic slabs are being subducted (Castillo, 2012). The geochemical characteristics of the Songkultau granitoids closely correspond to experimental melts compositions produced by 10–20% partial melting of garnet amphibolite containing 10%–25% of garnet (Fig. 7). Experimental melts, produced by melting of eclogite and amphibolite, show Mg# around 44, while higher Mg#, characteristic for many adakites, can be explained by assimilation of peridotite from the overlying mantle wedge. Rapp et al. (1999) have shown that assimilating 10–16% peridotite tends to increase Mg# of the resulting melt from 44 to 56. Because several analyzed samples of the Songkultau granitoids, including those with lowest silica concentrations, have Mg# as high as 49–54, it can be suggested that limited interaction with peridotite of the mantle wedge took place during their formation. On the other hand, as noted above, the observed variation in Mg# can be explained by fractional crystallization, which is supported by general trend of decreasing Mg# with increasing silica contents (Table 2).

Consistently juvenile Nd–Hf isotopic compositions of the Songkultau granitoids (Table 1) are also in agreement with their origin by melting of subducted oceanic crust. The analyzed samples are characterized by positive $\varepsilon_{Nd}(t)$ (+3.8 to +6.4) and $\varepsilon_{Hf}(t)$ (+12.3 to +13.5) values, and by Neoproterozoic model ages (0.96–0.71 Ga) in combination with low initial 206Pb/204Pb (18.1), indicating a major contribution from long-term lithophile element depleted sources such as the mantle or juvenile crustal rocks with only a short residence time before magma genesis. In addition, all $\varepsilon_{Nd}(t)$ values from sample T5-070 are virtually identical and those from sample AI-98 fall within a narrow range, suggesting a very homogeneous protolith (Fig. 11). However, although the Songkultau granitoids are characterized by positive $\varepsilon_{Nd}(t)$ and $\varepsilon_{Hf}(t)$ values, indicating derivation from MORB-like sources, their Nd–Hf isotopic compositions are slightly enriched, compared to compositions derived by melting of normal MORB with $\varepsilon_{Nd}(t) > +10$ and $\varepsilon_{Hf}(t) > +15$. This deviation is characteristic for many Phanerozoic adakites and is usually explained by interaction with enriched material of a “continental” mantle wedge and/or at the base of the crust, and by contamination with melts produced from subducted sediments (Castillo, 2012 and references therein). The latter scenario is in agreement with slightly elevated K$_2$O contents (up to 1.6 wt.%) in the Songkultau adakites, because partial melting of subducted sediments associated with underlying oceanic crust may generate potassium-enriched melts, as shown in several experimental petrological studies (e.g. Hermann and Spandler, 2008). Input from subducted sediments is also registered in compositions of volcanic rocks spatially associated with the Songkultau intrusion in the Terskey Suture zone. This is illustrated by the Nb/Yb vs. Th/Yb diagram of Pearce et al. (1984) and Pearce and Peate (1995), utilizing Th as a proxy to estimate a sedimentary subduction component in basalts. On this diagram (Fig. 5f), volcanics of the Bel’tepshi and Sultansary Fms., which have juvenile isotopic compositions similar to Songkultau granitoids,
plot above the MORB-OIB array indicating a distinct minor sedimentary
subduction component in these rocks. Thus, geological and geochemical
characteristics of the Songkultau adakites convincingly support their
origin by melting of young and hot subducted oceanic crust with possible
minor input from subducted sediments and interaction with the over-
lying mantle wedge.

4.2. Implications for the early Paleozoic tectonic evolution of northern Tien Shan

The main phase of the voluminous Andean type magmatism in the
NTS is relatively well constrained by ca. 490–475 Ma ages of supra-
subduction granitoids, indicating that in the late Cambrian–early Ordov-
ician a single continental magmatic arc occupying the whole NTS
domain has been formed (Alexeiev et al., 2019). However, the early–
middle Cambrian tectonic evolution of the NTS remains poorly studied
due to scarcity of geochronological and geochemical data. In their latest
review, Alexeiev et al. (2019) suggested that initiation of the continental
arc magmatism in the NTS took place at ca. 510 Ma and was preceded by
an older Neoproterozoic episode of intraplate magmatism and by forma-
tion of the early Cambrian intra-oceanic arc in the Terskey Ocean
south of the NTS microcontinent. This hypothetical Sutansary
intra-oceanic arc, which was defined by Mikolaichuk et al. (1997) based
on their studies of Cambrian volcanic formations to the east of Lake
Shongkul, was, according to Alexeiev et al. (2019), accreted to the NTS in
the late Cambrian at ca. 510–500 Ma.

In order to better understand the geotectonic setting of Cambrian
volcanic formations from the Terskey Suture zone, chemical composi-
tions of the Karakatty basalts, presented in this study, are discussed
below in combination with published geochemical data on similar vol-
canics from adjacent Bel’tepshi and Sutansary Fms. Concentrations of
incompatible elements in the Karakatty basalts are generally within the
range characteristic for E-MORB rocks. However, they have elevated
REE and Nb contents that suggest a more transitional nature between E-
MORB and OIB type basalts. Sample 17-16 contains 11 ppm Nb (Table 2)
and can be defined as a high-Nb basalt (Nb ≥ 7 ppm) according to CASTILLO
(2012). Elevated LREE and Nb contents distinguish the Karakatty basalts
from volcanics of the Bel’tepshi and Sutansary Fms., which have lower
concentrations of REE and LILE and show distinct negative Nb anomaly
on the primitive mantle-normalized multielement diagram (Fig. 6),
indicating their similarity with subduction-related volcanic series. This is
in accordance with the Nb/Yb vs. Th/Yb diagram of PEARCE and PEATE
(1995), utilizing Th as a proxy to estimate a sedimentary subduction component in basalts (Fig. 5f), where two less altered samples of the Karakatty basalts (samples 17-14 and 17-18) plot in the MORB-OIB data array, while volcanics of the Bel’tepshi and Sutansary Fms. and one altered sample of the Karakatty basalt plot above the MORB-OIB array, indicating a distinct minor sedimentary subduction component in these rocks. Similar differences between the two groups of volcanics can be illustrated utilizing the FeO/MgO vs. TiO2 diagram of MIYASHIRO (1973), where two less altered samples of the Karakatty basalts are classified as oceanic tholeiites while the Bel’tepshi and Sutansary volcanics plot along the trend of island arc series (Fig. 5e). Thus, chemical compositions of the Cambrian volcanics from the Terskey Suture zone vary from ocean floor tholeiites with transitional E-MORB – OIB affinities to typical suprasubduction volcanic series. This compositional variation can be interpreted as a result of tectonic juxtaposition of various arc and sub-
ducting plate sections during accretion.

Despite variations in chemical composition, all analyzed rocks from the
Terskey Suture zone have consistently juvenile isotopic compositions. A transition from a primitive to mature continental arc development can be traced utilizing published isotopic data from adjacent areas of the
Kyzgyn Northern Tien Shan and Central Tien Shan domains. This is
illustrated in Figs. 10 and 12, where formations of a juvenile arc are
characterized by strongly positive εHf(t) and εNd(t) values while younger
continental arc granitoids have mixed and negative εHf(t) and εNd(t)
values. This trend may rather reflect a spatial than temporal distribution of
juvenile and crustal magmatic rocks because in the NTS there exist several magmatic series with U–Pb zircon ages in the range of 525–500
Ma, where isotopic compositions were not analyzed (Konopelko et al.,
2012, 2014; Alexeiev et al., 2019). However, available Nd–Hf isotopic
data, presented in Figs. 10 and 12, show that juvenile magmatic series,
associated with the Terskey Suture zone bound to the southern margin of
the NTS, are slightly older (generally > 495 Ma) than granitoids with
crustal and mixed signatures, which were emplaced inside the NTS
domain during the main phase of the Andean-type continental arc
magmatism (generally < 495 Ma). Alexeiev et al. (2019) suggested that early Cambrian formations of the Terskey Suture zone formed in the Terskey Ocean south of the NTS microcontinent and in the Sutansary intra-oceanic arc that was accreted to the NTS in the middle Cambrian at ca. 510 Ma. We collectively define these primitive island arc and ocean floor rock assemblages as the juve-
nile Cambrian arc of the NTS, emphasizing that, combined with the
large Songkultau intrusion (ca. 70 km²), they constitute a significant in
size juvenile block located in predominantly crustal terranes of Kyrgyz
Tien Shan. Adakitic affinity and juvenile isotopic compositions of the ca.
500 Ma old Songkultau granitoids may indicate that hot subduction in
this arc continued until middle-late Cambrian. Obduction of the juvenile
arc complexes onto the NTS prior to the main phase of the continental arc
magmatism could be explained by transition from slab retreat to slab
advancing environment (e.g. Cawood et al., 2009). This accretionary
episode is also documented by HP-UHP metamorphism, followed by the
rapid uplift of the NTS and the formation of coarse clastic sediments in
the intermontane basins. A lower Ordovician depositional age of ca.
478–471 Ma, obtained for the gravellite of the Muztor Fm., is in agree-
ment with ages of lower-middle Ordovician coarse clastic sediments
elsewhere in the Northern Tien Shan (Mikolaichuk et al., 1997). In
particular, similar depositional age of ca. 470–465 Ma was reported for
conglomerates about 50 km east of Songkultau by Konopelko et al.
(2008) based on single grain U–Pb zircon dating of granite pebbles.
The distribution of ages of detrital zircon grains from the Muztor gravellite

![Fig. 12. Hf-in-zircon isotope evolution diagram for Cambrian ophiolite and primitive arc-related magmatic rocks and for Ordovician continental arc granitoids from the Kyzgyn Northern Tien Shan and Chinese Central Tien Shan. Symbols represent mean εHf(t) values for each sample. Data from Huang et al. (2013), Ma et al. (2013), Kroner et al. (2014), Rojas-Agramonte et al. (2014), Alexeiev et al. (2019) and this study.](image-url)
shows a smaller peak at ca. 500 Ma, which matches well the age of the Songkultau intrusion and suggests derivation of the Muztor conglomerates from a proximal source (Fig. 9). The major peak at ca. 485 Ma corresponds to the main phase of the Andean-type subduction-related magmatism in the NTS that was associated with rapid uplift and erosion.

Thus, the here investigated magmatic suites of the Terskey Suture zone are interpreted as a relic of a primitive Cambrian arc comprising substantial in size juvenile block that has been identified so far in the predominantly crustal domains of the Tien Shan orogenic belt. On a regional scale, this primitive arc can be compared with juvenile Cambrian arcs of Chinese Tien Shan (Gao et al., 2009; Ma et al., 2013; Wang et al., 2015), Kazakhstan (Ryazantsev et al., 2009; Degtyarev, 2012; Liu et al., 2016), Gorny Altai (Buslov et al., 2002) and the Lake Zone of Mongolia (Janoušek et al., 2015) that formed as a result of the onset of convergence between the Palaeano-Asian oceanic plate and the surrounding continents after break-up of the Rodinia supercontinent (Domeier and Torsvik, 2014).

5. Conclusions

The Songkultau intrusion is spatially associated with the Terskey Suture zone bound to the southern margin of the Northern Tien Shan domain. The intrusion is composed of coarse-grained gneissose quartz diorites and tonalities, which fit the main chemical characteristics of the high-SiO₂ adakites (SiO₂ > 56 wt.%, Al₂O₃ > 15 wt.%, Na₂O > 3.5 wt.% and high Sr/Y and La/Yb ratios) and are classified as granitoids with adakite geochemical affinities. The Songkultau granitoids have positive initial εNd (t = 3.8 to +6.4) and εHf (t = +12.3 to +13.5) values indicating that they were derived from sources with MORB-like isotopic signature. The granitoids are spatially associated with pillow basalts with mixed ocean floor and island arc geochemistry. This rock assemblage is interpreted as a relic of an early-middle Cambrian juvenile arc where the adakite-like granitoids were produced by partial melting of young and, thus, still hot subducted oceanic crust. An age of ca. 505 Ma, obtained for the Songkultau intrusion, shows that hot subduction under the NTS continued until middle Cambrian. The primitive arc formations were obducted onto the NTS domain, where the Andean type continental magmatic arc developed in Cambrian and Ordovician. Formation of the Andean type arc was accompanied by rapid uplift and erosion. This process was documented by deposition of coarse clastic sediments represented in the Lake Songkul area by the conglomerates of the Muztor Fm. A lower Ordovician depositional age of ca. 478–471 Ma, obtained for the gravellite of the Muztor Fm., is in agreement with ages of conglomerates elsewhere in the Northern Tien Shan. The presence of ca. 500 Ma detrital zircons in the Muztor gravellite, which are similar in age to the Songkultau granitoids, suggests that the sediments were derived from proximal sources. Collectively, the Songkultau adakites and associated ocean floor and island arc formations of the Terskey Suture zone constitute a relic of a juvenile Cambrian arc and represent a juvenile domain of substantial size identified so far within the predominantly crustal terranes of the Tien Shan orogenic belt.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We are grateful to Anatoly Ilyukhin, Gilby Jepson, Jack Gillespie and Alina Perfilfov who were involved in field work and sample preparation. Insightful comments of Tao Wang, Dmitry Alexseev and an anonymous reviewer helped to improve the manuscript significantly. Dmitry Alexseev is also acknowledged for his generous support during the first field campaign at Songkultau. The study was supported by the Ministry of Education and Science of the Russian Federation (Project No 14.Y26.31.0018–I.S., D.K.). D. Konopelko acknowledges COLLAB travel grant from SPbGU and support through the Natural History Museum, London where part of the study was carried out in the frame of Research Fellowships at the Centre for Russian and Central EurAsian Mineral Studies (CERCAMS). RS acknowledges funding under Natural Environment Research Council Grant Council Grant NE/P017452/1 “From arc magmas to ores (FAMOS): A mineral systems approach”. This is a contribution to the State Assignment of the Sobolev Institute of Geology and Mineralogy SB RAS (I.S.) and IGGP 662 Project “Orogenic Architecture and Crustal Growth from Accretion to Collision” under the patronage of UNESCIOUGS.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.iosf.2020.08.006.

References

Gao, J., Yang, E.Q., 2009. Tectonic evolution of the South Tianshan orogen and adjacent

