
Beurling numbers whose number of prime factors lies in a specified residue class
- Author
- Gregory Debruyne (UGent)
- Organization
- Abstract
- We find asymptotics for SK,c(x), the number of positive integers below x whose number of prime factors is c mod K. We study this question in the context of Beurling integers.
- Keywords
- Beurling numbers, generalized primes, Halasz theorem, residue class, number of prime factors, HALASZS THEOREM
Downloads
-
Beurling numbers whose number of prime factors lies in a specified residue class 29-5-20 .pdf
- full text (Accepted manuscript)
- |
- open access
- |
- |
- 257.81 KB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8687953
- MLA
- Debruyne, Gregory. “Beurling Numbers Whose Number of Prime Factors Lies in a Specified Residue Class.” ACTA ARITHMETICA, vol. 196, no. 4, 2020, pp. 433–38, doi:10.4064/aa200130-15-6.
- APA
- Debruyne, G. (2020). Beurling numbers whose number of prime factors lies in a specified residue class. ACTA ARITHMETICA, 196(4), 433–438. https://doi.org/10.4064/aa200130-15-6
- Chicago author-date
- Debruyne, Gregory. 2020. “Beurling Numbers Whose Number of Prime Factors Lies in a Specified Residue Class.” ACTA ARITHMETICA 196 (4): 433–38. https://doi.org/10.4064/aa200130-15-6.
- Chicago author-date (all authors)
- Debruyne, Gregory. 2020. “Beurling Numbers Whose Number of Prime Factors Lies in a Specified Residue Class.” ACTA ARITHMETICA 196 (4): 433–438. doi:10.4064/aa200130-15-6.
- Vancouver
- 1.Debruyne G. Beurling numbers whose number of prime factors lies in a specified residue class. ACTA ARITHMETICA. 2020;196(4):433–8.
- IEEE
- [1]G. Debruyne, “Beurling numbers whose number of prime factors lies in a specified residue class,” ACTA ARITHMETICA, vol. 196, no. 4, pp. 433–438, 2020.
@article{8687953, abstract = {{We find asymptotics for SK,c(x), the number of positive integers below x whose number of prime factors is c mod K. We study this question in the context of Beurling integers.}}, author = {{Debruyne, Gregory}}, issn = {{0065-1036}}, journal = {{ACTA ARITHMETICA}}, keywords = {{Beurling numbers,generalized primes,Halasz theorem,residue class,number of prime factors,HALASZS THEOREM}}, language = {{eng}}, number = {{4}}, pages = {{433--438}}, title = {{Beurling numbers whose number of prime factors lies in a specified residue class}}, url = {{http://doi.org/10.4064/aa200130-15-6}}, volume = {{196}}, year = {{2020}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: