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FACTORIZATION IN DENJOY-CARLEMAN CLASSES

ASSOCIATED TO REPRESENTATIONS OF (Rd,+)

ANDREAS DEBROUWERE, BOJAN PRANGOSKI, AND JASSON VINDAS

Abstract. For two types of moderate growth representations of (Rd,+) on sequen-
tially complete locally convex Hausdorff spaces (including F-representations [14]), we
introduce Denjoy-Carleman classes of ultradifferentiable vectors and show a strong
factorization theorem of Dixmier-Malliavin type for them. In particular, our fac-
torization theorem solves [14, Conjecture 6.4] for analytic vectors of representations
of G = (Rd,+). As an application, we show that various convolution algebras and
modules of ultradifferentiable functions satisfy the strong factorization property.

1. Introduction

Let (π, E) be a continuous representation of a real Lie group G on a Fréchet space
E and denote by E∞ the corresponding space of smooth vectors. The representation
(π, E) induces an action Π of the convolution algebra D(G) of compactly supported
smooth functions on E via

Π(f)e =

∫

G

f(g)π(g)e dg, f ∈ D(G), e ∈ E,

which restricts to an action on E∞. Hence, E∞ becomes a module over (D(G), ∗). A
celebrated result of Dixmier and Malliavin [11] states that E∞ has the weak factoriza-
tion property, i.e., E∞ = span(Π(D(G))E∞).

In general, a moduleM over a non-unital algebra A is said to have the strong (weak)
factorization property ifM = A ·M := {a ·m | a ∈ A, m ∈ M} (M = span(A ·M)).
An algebra A is said to have the strong or weak factorization property if it has the
corresponding property when considered as a module over itself.

Gimperlein et al. [14] showed a variant of the result of Dixmier and Malliavin for
analytic vectors: Let (π, E) be an F -representation of a real Lie group G on a Fréchet
space E. The corresponding space Eω of analytic vectors naturally carries the struc-
ture of an A(G)-module, where A(G) is a suitable convolution algebra of analytic func-
tions having superexponential decay. They proved that Eω has the weak factorization
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2 A. DEBROUWERE, B. PRANGOSKI, AND J. VINDAS

property [14, Theorem 1.1] and conjectured that it might be possible to substantially
strengthen this result by showing that Eω has the strong factorization property for any
F -representation [14, Conjecture 6.4]. If (π, E) is a Banach representation of (Rd,+),
they showed that Eω indeed has the strong factorization property [14, p. 679]; see also
[24] for the case of bounded Banach representations of (R,+).

The main goal of this article is to prove this conjecture for G = (Rd,+) and further
extend it in two directions. On the one hand, we consider two types of moderate growth
representations (π, E) of (Rd,+) on sequentially complete locally convex Hausdorff
spaces E (including proto-Banach representations [15] and thus F -representations).
This setting is indispensable for the applications we have in mind. On the other
hand, and more importantly, we consider general Denjoy-Carleman classes defined via
a weight sequenceM = (Mp)p∈N [22] and associated to such representations. In Section
3 we introduce the spaces E(M) and E{M} of ultradifferentiable vectors of Beurling and
Roumieu type, respectively, as the space of vectors in E whose orbit mapping is a
(bornological) ultradifferentiable function of Beurling and Roumieu type, respectively.
These naturally carry the structure of a module over appropriately chosen convolu-
tion algebras of ultradifferentiable functions having superexponential decay. Our main
result, Theorem 3.2, asserts that E(M) and E{M} satisfy the strong factorization prop-
erty. In this framework, the analytic case corresponds to the Roumieu variant of
M = (p!)p∈N. However, in general, the sequence M is allowed to grow much slower
than p! and we therefore go beyond analyticity, e.g., we are able to treat all Gevrey
sequences p!σ, σ > 0. For Banach representations (π, E), the spaces E{p!σ}, σ ≥ 1,
were considered by Goodman and Wallach [16, 17, 18].

The proof of the factorization theorem consists of two main parts. In Section 5 we
study Fourier multipliers associated to a class of symbols of entire functions on Cd

satisfying certain growth conditions on tube domains with compact base (with respect
to the associated function of M). Most importantly, we show how these operators
can be properly defined on certain weighed spaces of vector-valued ultradifferentiable
functions; the latter spaces naturally arise in a characterization of bounded sets of
ultradifferentiable vectors we provide in Section 4. Next, in Section 6, we construct
elements P of this entire function symbol class that also satisfy suitable lower bounds,
which will allow us to conclude that the Fourier transform of 1/P belongs to the algebra
involved in the factorization problem. The theory developed in Section 5 enables us
to turn the key identity (1/P ) · P = 1 into a parametrix type identity of convolutor
operators that may be applied to the orbits of ultradifferentiable vectors, from which the
factorization theorem readily follows. The essential difference with the approach from
[14] (and [11]), which allows us to prove the strong instead of the weak factorization
property, is to consider general Fourier multipliers rather than infinite order differential
operators.

Closely related to the result of Dixmier and Malliavin is the problem of factorization
of convolution algebras of smooth functions, which emerged from Ehrenpreis’ work [12]
on fundamental solutions of convolution operators. The original question of Ehrenpreis
was whether D(Rd) has the strong factorization property. Rubel et al. [30] showed
that this is not the case for d ≥ 3. On the other hand, they proved that D(Rd) always



FACTORIZATION IN DENJOY-CARLEMAN CLASSES 3

satisfies the weak factorization property. Dixmier and Malliavin [11] gave a negative
answer to this question for d = 2. Finally, the problem was completely settled by
Yulmukhametov [34] who showed that for d = 1 the space D(R) does satisfy the strong
factorization property. Similarly, Miyazaki [26], Petzeltová and Vrbová [28] and Voigt
[33] independently showed that the Schwartz space S(Rd) of rapidly decreasing smooth
functions has the strong factorization property.

As an application of our main result, we show in Section 7 that various convolu-
tion algebras and modules of ultradifferentiable functions satisfy the strong factoriza-

tion property. Most notably, we prove that the Gelfand-Shilov spaces S(M)
(A) (R

d) and

S{M}
{A} (R

d) [29] have the strong factorization property and that the family of translation

invariant spaces D(M)
E and D{M}

E from [9, 10] factor as D(M)
E = S(M)

(A) (R
d) ∗ D(M)

E and

D{M}
E = S{M}

{A} (R
d) ∗ D{M}

E . Particular instances of the latter spaces are the analogues

of the Schwartz spaces DLp, 1 ≤ p <∞, and Ḃ [31] in the setting of ultradifferentiable
functions.

2. Preliminaries

Given a lcHs (= locally convex Hausdorff space) E, we write csn(E) for the family
of continuous seminorms on E and B(E) for the collection of non-empty absolutely
convex closed bounded subsets of E. For B ∈ B(E) we denote by EB the subspace of E
spanned by B and endowed with the topology generated by the Minkowski functional
of B. Since E is Hausdorff, the space EB is normed, while it is complete if B is
sequentially complete [25, Corollary 23.14]. In particular, if E is sequentially complete,
EB is a Banach space for every B ∈ B(E).

All vector-valued integrals in this article will be meant in the weak sense. We
will often tacitly use the following fact: Let E be a sequentially complete lcHs. Let
f ∈ C(Rd;E) be such that for all p ∈ csn(E) it holds that

∫
Rd p(f(x))dx < ∞. Then,

the E-valued weak integral
∫
Rd f(x)dx exists.

Next, we introduce weight sequences in order to discuss ultradifferentiability. A
sequenceM = (Mp)p∈N of positive numbers is called a weight sequence ifM0 =M1 = 1,

limp→∞M
1/p
p = ∞, and M is log-convex, i.e., M2

p ≤ Mp−1Mp+1 for all p ∈ Z+. We

write Mα = M|α| for α ∈ Zd. Furthermore, we set mp = Mp/Mp−1 for p ∈ Z+. We
shall make use of the following two conditions on weight sequences M :

(M.2) Mp+q ≤ C0H
p+qMpMq, p, q ∈ N, for some C0, H ≥ 1;

(M.2)∗ 2mp ≤ mNp, p ≥ p0, for some p0, N ∈ Z+.

Condition (M.2) is also known as ‘stability under ultradifferential operators’ and was
introduced by Komatsu [22]. Condition (M.2)∗ was introduced by Bonet et al. [3]
without a name; we use here the same notation as in [8]. We refer to [20] for more
information and various equivalent formulations of these conditions; in particular, one
might verify that (M.2)∗ is equivalent to the condition (M.5) employed in [29]. The
most important examples of weight sequences that satisfy the conditions (M.2) and
(M.2)∗ are the Gevrey sequences p!σ, σ > 0.
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The associated function of M is defined as

νM(t) = sup
p∈N

log
tp

Mp
, t ≥ 0.

We have that νp!σ(t) ≍ t1/σ, σ > 0. We extend νM to Rd as the radial function
νM(x) = νM(|x|), x ∈ Rd. The weight sequence M satisfies (M.2) if and only if [22,
Proposition 3.6]

2νM(t) ≤ νM(Ht) + logC0, t ≥ 0,

where C0 and H are the constants occurring in (M.2). If M satisfies (M.2)∗, then [3,
Lemma 12]

νM(2t) ≤ LνM (t) + logC, t ≥ 0,

for some C,L > 0. IfM satisfies (M.2), then the converse also holds true [3, Proposition
13].

The relation M ⊂ N between two weight sequences means that there are C,L ≥ 1
such that Mp ≤ CLpNp for all p ∈ N. By [22, Lemma 3.8], we have that M ⊂ N if
and only if

νN (t) ≤ νM(Lt) + logC, t ≥ 0.

for some C,L > 0.
We writeR for the set of all non-decreasing sequences r = (rj)j∈N of positive numbers

such that r0 = r1 = 1 and rj → ∞ as j → ∞. It is partially ordered and directed by
the relation r � s which means that rj ≤ sj for all j ∈ N. This set of sequences plays a
fundamental role in Komatsu’s approach to spaces of vector-valued ultradifferentiable
functions of Roumieu type [23]. The following lemma is a simple but very useful tool
and hints the way in which R often appears involved in some arguments.

Lemma 2.1 ([23, Lemma 3.4]). Let (ap)p∈N be a sequence of positive numbers.

(i) sup
p∈N

ap
hp

<∞ for some h > 0 if and only if sup
p∈N

ap∏p
j=0 rj

<∞ for all r ∈ R.

(ii) sup
p∈N

hpap <∞ for all h > 0 if and only if sup
p∈N

ap

p∏

j=0

rj <∞ for some r ∈ R.

We now introduce two basic spaces of vector-valued ultradifferentiable functions. Let
M be a weight sequence and let E be a lcHs. Following Komatsu [23], we define the
space E (M)(Rd;E) of E-valued ultradifferentiable functions of class (M) (of Beurling
type) as the space consisting of all ϕ ∈ C∞(Rd;E) such that for all K ⋐ Rd, h > 0,
and p ∈ csn(E) it holds that

ph,K(ϕ) := sup
α∈Nd

sup
x∈K

h|α|p(∂αϕ(x))

Mα
<∞.

We endow E (M)(Rd;E) with the locally convex topology generated by the system
of seminorms {ph,K | h > 0, K ⋐ Rd, p ∈ csn(E)}. Similarly, we define the space
E{M}(Rd;E) of E-valued ultradifferentiable functions of class {M} (of Roumieu type)
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as the space consisting of all ϕ ∈ C∞(Rd;E) such that for all K ⋐ Rd, r ∈ R, and
p ∈ csn(E) it holds that

pr,K(ϕ) := sup
α∈Nd

sup
x∈K

p(∂αϕ(x))

Mα

∏|α|
j=0 rj

<∞.

The space E{M}(Rd;E) is endowed with the locally convex topology generated by the
system of seminorms {pr,K | r ∈ R, K ⋐ Rd, p ∈ csn(E)}. We shall employ [M ] as a
common notation for (M) and {M}. In addition, we shall often first state assertions
for the Beurling case followed in parenthesis by the corresponding statements for the
Roumieu case.

Remark 2.2. The space of complex-valued ultradifferentiable functions of Roumieu type
on Rd is usually defined as

E{M}(Rd) = lim←−
K⋐Rd

lim−→
h→0+

EMp,h(K),

where K runs over all regular compact subsets of Rd and EMp,h(K) denotes the Banach
space consisting of all ϕ ∈ C∞(K) such that

sup
α∈Nd

sup
x∈K

h|α||∂αϕ(x)|
Mα

<∞.

Lemma 2.1 implies that the spaces E{M}(Rd;C) and E{M}(Rd) agree as sets. If M
satisfies Komatsu’s condition (M.2)′ [22] (which is a weaker version of (M.2)), these
spaces also coincide topologically [6, Corollary 1].

3. Ultradifferentiable vectors and the factorization theorem

Given a lcHs E, we denote by GL(E) its group of isomorphisms. By a representation
of (Rd,+) on E we mean a group homomorphism π : (Rd,+)→ GL(E) such that the
mapping

R
d × E → E, (x, e) 7→ π(x)e

is separately continuous. We denote by E∞ the space of smooth vectors in E, i.e., the
space consisting of all e ∈ E whose orbit mapping

γe : R
d → E, γe(x) = π(x)e,

belongs to C∞(Rd;E). We will employ the following short-hand notation

eα = ∂αγe(0), e ∈ E∞, α ∈ N
d.

Note that ∂αγe = γeα.
If E is a Banach space, (π, E) is called a Banach representation. In such a case,

there are κ, C > 0 such that

‖π(x)e‖E ≤ Ceκ|x|‖e‖E , x ∈ R
d, e ∈ E.
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Motivated by the above inequality, we now introduce two new classes of representations
on general lcHs E. A representation (π, E) is said to be a projective generalized proto-
Banach representation if

(3.1)
∀p ∈ csn(E) ∃qp ∈ csn(E) ∃κp > 0 ∀x ∈ R

d ∀e ∈ E :

p(π(x)e) ≤ eκp|x|qp(e)

and an inductive generalized proto-Banach representation if

(3.2)
∀B ∈ B(E) ∃AB ∈ B(E) ∃κB > 0 ∀x ∈ R

d ∀e ∈ EB :

‖π(x)e‖EAB
≤ eκB |x|‖e‖EB

.

Every Banach representation is both a projective and an inductive generalized proto-
Banach representation. Furthermore, every proto-Banach representation [15] (and thus
particularly every F -representation [14]) is a projective generalized proto-Banach rep-
resentation.

Let (π, E) be a representation. Let M be a weight sequence. A vector e ∈ E
is called an ultradifferentiable vector of class [M ] in E if the orbit mapping γe is
bornologically ultradifferentiable of class [M ] [23], i.e., if there is B ∈ B(E) such
that γe ∈ E [M ](Rd;EB). The space consisting of all ultradifferentiable vectors of class
[M ] in E is denoted by E[M ]. We endow E[M ] with a convex vector bornology in the

following way: A set B̃ ⊂ E[M ] is defined to be bounded if there is B ∈ B(E) such

that {γe | e ∈ B̃} is contained and bounded in E [M ](Rd;EB).

Remark 3.1. If (π, E) is an F -representation, the space Eω of analytic vectors consid-
ered in [14] coincides with E{p!}, as follows from [2, Proposition 12] and the remark
added at the end of that article.

Let us introduce the necessary concepts to state our strong factorization theorem
for ultradifferentiable vectors. Assume that E is sequentially complete. We define the
Fréchet space

Cexp(R
d) = {f ∈ C(Rd) | sup

x∈Rd

|f(x)|en|x| <∞, ∀n ∈ N}.

Note that (Cexp(R
d), ∗) is a Fréchet algebra. If (π, E) is a projective or an inductive

generalized proto-Banach representation, we set

Π(f)e =

∫

Rd

f(x)π(x)e dx =

∫

Rd

f(x)γe(x)dx ∈ E, f ∈ Cexp(R
d), e ∈ E.

When (π, E) is a projective generalized proto-Banach representation, the mapping

Cexp(R
d)× E → E : (f, e) 7→ Π(f)e

is continuous. If (π, E) is an inductive generalized proto-Banach representation, then
Π(f)e ∈ EAB

for all f ∈ Cexp(R
d) and e ∈ EB, and the mapping

Cexp(R
d)× EB → EAB

: (f, e) 7→ Π(f)e

is continuous. In particular, for each f ∈ Cexp(R
d) and each bounded subset B of E,

Π(f)B is bounded in E.
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For h > 0 we define the Fréchet space

KM,h(Rd) = {ϕ ∈ C∞(Rd) | sup
α∈Nd

sup
x∈Rd

h|α||∂αϕ(x)|en|x|
Mα

<∞, ∀n ∈ N}.

We set

K(M)(Rd) = lim←−
h→∞
KM,h(Rd) and K{M}(Rd) = lim−→

h→0+

KM,h(Rd).

We remark that K[M ](Rd) is the space of ultradifferentiable vectors of class [M ] in
Cexp(R

d) under the regular representation (cf. Subsection 7.2).
The next theorem is the main result of this article.

Theorem 3.2. Let (π, E) be either a projective or an inductive generalized proto-
Banach representation of (Rd,+) on a sequentially complete lcHs E. Let M be a
weight sequence satisfying (M.2) and (M.2)∗. Then,

Π(K[M ](Rd))E = Π(K[M ](Rd))E[M ] = E[M ].

Moreover, for every bounded set B̃ ⊂ E[M ] there is ψ ∈ K[M ](Rd) and a bounded set

Ã ⊆ E[M ] such that Π(ψ)Ã = B̃.

The proof of Theorem 3.2 is postponed to Section 6. In preparation for it, we need
to establish a number of results in the next two sections.

4. Bounded subsets of ultradifferentiable vectors

We provide in this section a characterization of the bounded subsets of E[M ] for
projective and inductive generalized proto-Banach representations of (Rd,+) (for which
we use the same notation as in (3.1) and (3.2)). The following spaces of E-valued
ultradifferentiable functions are involved in such a characterization.

Let (π, E) be a representation on the lcHs E and fix a weight sequence M . Let
κ = (κp)p∈csn(E) be a net of positive numbers (the set csn(E) is directed by p ≤ q,
which means p(e) ≤ q(e), ∀e ∈ E). For h > 0 we define QM,h

κ
(Rd;E) as the space

consisting of all f ∈ C∞(Rd;E) such that for all p ∈ csn(E) it holds that

pκ,h(f) = sup
α∈Nd

sup
x∈Rd

h|α|p(∂αf(x))e−κp|x|

Mα
<∞.

We endow QM,h
κ

(Rd;E) with the locally convex topology generated by the system of
seminorms {pκ,h | p ∈ csn(E)}. Similarly, for r ∈ R we define QM,r

κ
(Rd;E) as the space

consisting of all f ∈ C∞(Rd;E) such that for all p ∈ csn(E) it holds that

pκ,r(f) = sup
α∈Nd

sup
x∈Rd

∏|α|
j=0 rjp(∂

αf(x))e−κp|x|

Mα
<∞,

and we endow it with the locally convex topology generated by the system of seminorms
{pκ,r | p ∈ csn(E)}.
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Proposition 4.1. Let (π, E) be either a projective or an inductive generalized proto-

Banach representation of (Rd,+) on a lcHs E. Let B̃ ⊆ E∞. The following statements
are equivalent:

(i) B̃ is a bounded subset of E[M ].
(ii) There are B ∈ B(E) and r ∈ R (h > 0) such that eα ∈ EB for all α ∈ Nd and

e ∈ B̃ and

sup
e∈B̃

sup
α∈Nd

∏|α|
j=0 rj‖eα‖EB

Mα
<∞

(
sup
e∈B̃

sup
α∈Nd

h|α|‖eα‖EB

Mα
<∞

)
.

(iii) There is r ∈ R (h > 0) such that for all p ∈ csn(E) it holds that

sup
e∈B̃

sup
α∈Nd

∏|α|
j=0 rjp(eα)

Mα
<∞

(
sup
e∈B̃

sup
α∈Nd

h|α|p(eα)

Mα
<∞

)
.

(iv) ((π, E) projective generalized proto-Banach representation) There is r ∈ R

(h > 0) such that B = {γe | e ∈ B̃} is a bounded subset of QM,r
κ

(Rd;E)
(QM,h

κ
(Rd;E)).

((π, E) inductive generalized proto-Banach representation) There are B ∈ B(E)

and r ∈ R (h > 0) such that B = {γe | e ∈ B̃} is a bounded subset of
QM,r
κB

(Rd;EAB
) (QM,h

κB
(Rd;EAB

)).

The ensuing lemma will be employed in the proof of Proposition 4.1.

Lemma 4.2. Let f ∈ C∞(Rd;E) and suppose that there is B ∈ B(E) such that for
every K ⋐ Rd and N ∈ N there is R > 0 such that

{∂αf(x) | x ∈ K, |α| ≤ N} ⊆ RB.

Then, f ∈ C∞(Rd;EB).

Proof. For e′ ∈ E ′ we write fe′ = 〈e′, f〉 ∈ C∞(Rd). Let x0 ∈ R
d and α ∈ N

d be
arbitrary. By applying the second-order Taylor theorem to ∂αfe′, we obtain that

1

|x− x0|

∣∣∣∣∣∂
αfe′(x)− ∂αfe′(x0)−

d∑

j=1

(xj − x0,j)∂α+ejfe′(x0)
∣∣∣∣∣

≤ d2|x− x0| max
|β|=|α|+2

sup
|y−x0|≤1

|∂βfe′(y)|

for all 0 < |x− x0| ≤ 1 and e′ ∈ E ′. Choose R > 0 such that
{
∂βf(y) | |x0 − y| ≤ 1, |β| = |α|+ 2

}
⊆ RB.

Since ∂αfe′ = 〈e′, ∂αf〉, we infer that
∣∣∣∣∣

〈
e′,

1

|x− x0|

(
∂αf(x)− ∂αf(x0)−

d∑

j=1

(xj − x0,j)∂α+ej f(x0)
)〉∣∣∣∣∣ ≤ d2R|x− x0|
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for all e′ ∈ B◦. The bipolar theorem implies that

1

|x− x0|

∥∥∥∥∥∂
αf(x)− ∂αf(x0)−

d∑

j=1

(xj − x0,j)∂α+ej f(x0)
∥∥∥∥∥
EB

≤ d2R|x− x0|,

whence f ∈ C∞(Rd;EB). �

Proof of Proposition 4.1. (i)⇒ (ii) This follows from Lemma 2.1.
(ii)⇔ (iii) Obvious.
For the remaining equivalences we distinguish two cases. Suppose first that (π, E)

is a projective generalized proto-Banach representation.
(iii)⇒ (iv) Obvious.
(iv)⇒ (i) We only show the Beurling case as the Roumieu case is similar. The set

B′ =

{∏|α|
j=0 rj∂

αγe(x)e
−|x|2

Mα
| x ∈ R

d, α ∈ N
d, e ∈ B̃

}

is bounded in E. Let B be the closed absolutely convex hull of B′. Lemma 4.2 yields
that B ⊂ C∞(Rd;EB). It is then clear from the definition of B′ that {γe | e ∈ B̃} is
contained and bounded in E (M)(Rd;EB).

Next, assume that (π, E) is an inductive generalized proto-Banach representation.
(ii)⇒ (iv) This follows from Lemma 4.2.
(iv)⇒ (i) Obvious. �

We end this section with two remarks.

Remark 4.3. Let E be a Fréchet space. In the Beurling case, the conditions from
Proposition 4.1 are also equivalent to: For all h > 0 and p ∈ csn(E) it holds that

sup
e∈B̃

sup
α∈Nd

h|α|p(eα)

Mα
<∞.

The above condition is equivalent to condition (iii) from Proposition 4.1 because of
Lemma 2.1 and the following result.

Lemma 4.4. Let r(n) ∈ R for all n ∈ N. There is r ∈ R such that for every n ∈ N

there is k ∈ Z+ such that rj ≤ r
(n)
j for all j ≥ k.

Proof. We inductively define a sequence (jk)k∈Z+ of natural numbers with j1 = 1 sat-

isfying jk+1 > jk, r
(k+1)
jk+1

≥ r
(k)
jk
, and min0≤l≤k+1 r

(l)
jk+1
≥ k + 1, for all k ∈ Z+. We set

rj = 1 for j = 0, . . . , j2 − 1, and rj = min0≤l≤k r
(l)
jk
, if jk ≤ j < jk+1 for some k ≥ 2.

Then, r belongs to R and satisfies the conclusion of the lemma. �

Remark 4.5. If (π, E) is a Banach representation, the space E[M ] may be naturally
endowed with a locally convex topology in the following way (cf. Proposition 4.1 and
Remark 4.3):

E(M) = lim←−
h→∞

EM,h and E{M} = lim−→
h→0+

EM,h,
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where EM,h denotes the Banach space consisting of all e ∈ E∞ such that

sup
α∈Nd

h|α|‖eα‖E
Mα

<∞.

We denote this topology by τ . By using a similar technique as in the proof of [9,
Proposition 5.1], it can be shown that the (LB)-space (E{M}, τ) is boundedly retractive,

i.e., for every bounded set B̃ ⊂ (E{M}, τ) there is h > 0 such that B̃ is a bounded

subset of EM,h and the topology induced on B̃ by EM,h coincides with the one induced
by τ . In particular, the bornology induced by τ on E{M} coincides with the original

bornology defined on E{M}. Similarly, for every bounded set B̃ ⊂ E(M) there is r ∈ R

such that, for N = (Mp/
∏p

j=0 rj)p∈N, B̃ is a bounded subset of EN,1 and the topology

induced on B̃ by EN,1 coincides with the one induced by τ . In particular, the bornology
induced by τ on E(M) coincides with the original bornology defined on E(M).

5. On a class of Fourier multipliers

In this section we discuss the space of Fourier multipliers associated to K(M)(Rd) and
show how these operators may be defined on the spaces QM,h

κ
(Rd;E) from the previous

section by suitably interpreting them as convolution operators.
Throughout this section, we fix a sequentially complete lcHs E, a net κ = (κp)p∈csn(E)

of positive numbers and a weight sequence M satisfying (M.2). We denote by C0, H
the constants occurring in the latter condition. In addition, we always assume in this
section that K(M)(Rd) is non-trivial1. Given L > 0, we consider the tube domain
VL = Rd + iB(0, L).

For h > 0 we define the Fréchet space

UM,h(Cd) = {ϕ ∈ O(Cd) | sup
z∈Vn
|ϕ(z)|eνM (hRe z) <∞, ∀n ∈ N}.

We set

U (M)(Cd) = lim←−
h→∞
UM,h(Cd) and U{M}(Cd) = lim−→

h→0+

UM,h(Cd).

The Fourier transform is a topological isomorphism from K[M ](Rd) onto U [M ](Cd),
where we fix the constants in the Fourier transform as follows

F(ϕ)(ξ) = ϕ̂(ξ) =

∫

Rd

ϕ(x)e−2πix·ξdx.

We now introduce spaces of multipliers and convolutors associated to U (M)(Cd) and
K(M)(Rd), respectively. For h > 0 we define the Fréchet space

PM,h(Cd) = {ϕ ∈ O(Cd) | sup
z∈Vn
|ϕ(z)|e−νM (hRe z) <∞, ∀n ∈ N}.

1The non-triviality of K(M)(Rd) can be characterized in terms of the behavior of the weight sequence
in a precise fashion. Indeed [7, Proposition 2.7, Proposition 4.4, and Theorem 5.9], under condition
(M.2), we have K(M)(Rd) 6= {0} if and only if limp→∞ mp/ log p = ∞. The latter certainly holds if
the sequence satisfies (M.2)∗ because it implies the stronger relation pσ = O(mp) for some σ > 0.
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For P ∈ PM,h(Cd) fixed, the multiplication operator U (M)(Cd)→ U (M)(Cd) : ϕ 7→ P ·ϕ
is continuous. Next, for h > 0 we define the (LB)-space

OM,h
C (Rd) = lim−→

n∈N
OM,h,n
C (Rd),

where OM,h,n
C (Rd) stands for the Banach space consisting of all ϕ ∈ C∞(Rd) such that

sup
α∈Nd

sup
x∈Rd

h|α||∂αϕ(x)|e−n|x|
Mα

<∞.

We denote by O′M,h
C (Rd) the strong dual of OM,h

C (Rd). For g ∈ O′M,h
C (Rd) fixed, the

convolution operator

K(M)(Rd)→ K(M)(Rd) : ϕ 7→ g ∗ ϕ, (g ∗ ϕ)(x) = 〈g(t), ϕ(x− t)〉
is continuous, where the duality on the right is in the sense of 〈O′M,h

C (Rd),OM,h
C (Rd)〉.

For each h > 0, K{M}(Rd) can be viewed as a subspace of O′M,h
C (Rd) via the linear

injection

K{M}(Rd)→ O′M,h
C (Rd) : ϕ 7→

(
ψ 7→

∫

Rd

ϕ(x)ψ(x)dx

)
.(5.1)

We also need spaces of E-valued ultradistributions. Set

K′(M)(Rd;E) = L(K(M)(Rd), E) and U ′(M)(Cd;E) = L(U (M)(Cd), E).

We define the Fourier transform from U ′(M)(Cd;E) onto K′(M)(Rd;E) via duality. Let
h > 0. For P ∈ PM,h(Cd) fixed, we define

〈P · f , ϕ〉 = 〈f , P · ϕ〉, ϕ ∈ U (M)(Cd),

for f ∈ U ′(M)(Cd;E). Similarly, for g ∈ O′M,h
C (Rd) fixed, we define

〈g ∗ f , ϕ〉 = 〈f , (g ∗ ϕ̌)ˇ〉, ϕ ∈ K(M)(Rd),

for f ∈ K′(M)(Rd;E).

Proposition 5.1. For each h > 0 there exists a continuous linear mapping F̃h :

PM,h(Cd)→ O′M,2
√
dHh/π

C (Rd) such that

F(P · f) = F̃h(P ) ∗ F(f), P ∈ PM,h(Cd), f ∈ U ′(M)(Cd;E).

Moreover, for all 0 < k < h,

U{M}(Cd) PM,k(Cd) PM,h(Cd)

O′M,2
√
dHk/π

C (Rd)

K{M}(Rd) O′M,2
√
dHh/π(Rd)

can. inclusion can. inclusion

F̃k

F̃hF
inc. (5.1)

inc. (5.1)

transpose of
can. incl.
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is a commutative diagram of continuous maps.

The proof of Proposition 5.1 is based on the mapping properties of the short-time
Fourier transform [19]. The translation and modulation operators are denoted by
Txf(t) = f(t−x) andMξf(t) = e2πiξ·tf(t), x, ξ ∈ Rd. The short-time Fourier transform
(STFT) of a function f ∈ L2(Rd) with respect to a window function ψ ∈ L2(Rd) is
defined as

(5.2) Vψf(x, ξ) = (f,MξTxψ)L2 =

∫

Rd

f(t)ψ(t− x)e−2πiξ·tdt, (x, ξ) ∈ R
2d.

It holds that ‖Vψf‖L2 = ‖ψ‖L2‖f‖L2 . Plancherel’s theorem implies that

(5.3) Vψf(x, ξ) = e−2πix·ξVψ̂f̂(ξ,−x).

The adjoint of Vψ is given by the weak integral

V ∗
ψF =

∫∫

R2d

F (x, ξ)MξTxψ dxdξ, F ∈ L2(R2d).

If γ ∈ L2(Rd) is such that (γ, ψ)L2 6= 0, then the reconstruction formula

(5.4)
1

(γ, ψ)L2

V ∗
γ ◦ Vψ = idL2(Rd)

holds. We define the STFT of a function f with respect to a window ψ via the integral
at the right-hand side of (5.2) whenever this integral makes sense.

Let h > 0. We define the Fréchet space

CM,h;exp(R
2d) = {f ∈ C(R2d) | sup

(x,ξ)∈R2d

|f(x, ξ)|e−νM(hx)+n|ξ| <∞, ∀n ∈ N}

and the (LB)-space

C◦
exp;M,h(R

2d) = lim−→
n∈N

C◦
exp,n;M,h(R

2d),

where C◦
exp,n;M,h(R

2d) denotes the Banach space consisting of all f ∈ C(R2d) such that

sup
(x,ξ)∈R2d

|f(x, ξ)|e−n|x|+νM(hξ) <∞.

Lemma 5.2.

(i) Let ψ ∈ U (M)(Cd). For each h > 0 the mapping

Vψ : PM,h(Cd)→ CM,2h;exp(R
2d)

is continuous.
(ii) Let ψ ∈ K(M)(Rd). For each h > 0 the mapping

Vψ : OM,h
C (Rd)→ C◦

exp;M,πh/
√
d
(R2d)

is continuous.
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Proof. In the notation from [8] (see also Subsection 7.2) we have that

PM,h(Cd) =
⋂

n∈N
Bp!,n
e−νM (h · )(R

d), OM,h
C (Rd) =

⋃

n∈N
BMp,h

e−n| · |(R
d).

Hence, both statements follow from [8, Lemma 4.4]. �

Lemma 5.3. Let ψ, γ ∈ U (M)(Cd) be such that (γ, ψ)L2 6= 0. Then,
∫

Rd

P (t)ϕ(t)dt =
1

(γ, ψ)L2

∫∫

R2d

VψP (x, ξ)Vγϕ(x,−ξ)dxdξ, ϕ ∈ U (M)(Cd).

Proof. Let ϕ ∈ U (M)(Cd) be arbitrary. In the notation from [8] we have that

U (M)(Cd) =
⋂

n∈N
Bp!,n
eνM (n · )(R

d).

Hence, [8, Lemma 4.4] implies that

(5.5) sup
(x,ξ)∈R2d

|Vγϕ(x, ξ)|eνM(nx)+n|ξ| <∞, ∀n ∈ N.

By (5.4) we have that

ϕ(t) =
1

(γ, ψ)L2

∫∫

R2d

Vγϕ(x, ξ)MξTxψ(t)dxdξ.

Hence,
∫

Rd

P (t)ϕ(t)dt =
1

(γ, ψ)L2

∫

Rd

P (t)

(∫∫

R2d

Vγϕ(x, ξ)MξTxψ(t)dxdξ

)
dt

=
1

(γ, ψ)L2

∫∫

R2d

(∫

Rd

P (t)MξTxψ(t)dt

)
Vγϕ(x, ξ)dxdξ

=
1

(γ, ψ)L2

∫∫

R2d

VψP (x, ξ)Vγϕ(x,−ξ)dxdξ,

where the switching of the integral is permitted because of Lemma 5.2 and (5.5). �

Proof of Proposition 5.1. Fix ψ, γ ∈ U (M)(Cd) such that (γ, ψ)L2 = 1. For P ∈
PM,h(Cd) we define

〈F̃h(P ), ϕ〉 =
∫∫

R2d

VψP (x, ξ)VF−1(γ)ϕ(ξ, x)e
2πix·ξdxdξ, ϕ ∈ OM,2

√
dHh/π

C (Rd).

The mapping F̃h : PM,h(Cd) → O′M,2
√
dHh/π

C (Rd) is continuous by Lemma 5.2. The
commutativity of the upper left part of the diagram follows from (5.3) and (5.4); the
rest is straightforward to verify. Consequently, (5.1) is continuous.

We now show that F(P ·f) = F̃h(P )∗F(f) for all P ∈ PM,h(Cd) and f ∈ U ′(M)(Cd;E).



14 A. DEBROUWERE, B. PRANGOSKI, AND J. VINDAS

Let ϕ ∈ K(M)(Rd) be arbitrary. The equation (5.3) and Lemma 5.3 yield that

(F̃h(P ) ∗ ϕ̌)ˇ(t) =
∫∫

R2d

VψP (x, ξ)VF−1(γ)(T−tϕ)(ξ, x)e
2πix·ξdxdξ

=

∫∫

R2d

VψP (x, ξ)Vγ(F(T−tϕ))(x,−ξ)dxdξ

=

∫

Rd

P (u)F(T−tϕ)(u)du =

∫

Rd

P (u)ϕ̂(u)e2πit·udu = F−1(P · ϕ̂)(t).

Hence,

〈F̃h(P ) ∗ F(f), ϕ〉 = 〈F(f), (F̃h(P ) ∗ ϕ̌)ˇ〉 = 〈F(f),F−1(P · ϕ̂)〉 = 〈F(P · f), ϕ〉.
�

Remark 5.4. Because of Proposition 5.1, from now on we will not distinguish the maps

F̃h for different h and simply denote them by F̃ .
Let h > 0. We may view QM,h

κ
(Rd;E) as a subspace of K′(M)(Rd;E) by identifying

an element f ∈ QM,h
κ

(Rd;E) with the operator

〈f , ϕ〉 =
∫

Rd

f(x)ϕ(x)dx, ϕ ∈ K(M)(Rd).

We now discuss the action of convolution operators on QM,h
κ

(Rd;E). We need the
following structural result.

Lemma 5.5. Let h > 0. For each g ∈ O′M,h
C (Rd) there is a family {gα ∈ Cexp(R

d) |α ∈
N
d} such that

∑

α∈Nd

Mα‖gαen| · |‖L∞

(2Hh)|α|
<∞, ∀n ∈ N,

and

g =
∑

α∈Nd

∂αgα on K(M)(Rd).

Proof. It is enough to show that for each g ∈ O′M,h
C (Rd) there is a family {gα |α ∈ Nd}

of measurable functions such that

∑

α∈Nd

Mα‖gαen| · |‖L1

(2h)|α|
<∞, ∀n ∈ N,

and g =
∑

α∈Nd ∂αgα on K(M)(Rd). Indeed, let L ∈ C(Rd) ∩ C∞(Rd\{0}) be a funda-
mental solution of ∆d, where ∆ = ∂21 + . . .+ ∂2d is the Laplacian. Pick ψ ∈ D(Rd) such
that ψ = 1 on a neighborhood of 0. Then δ−∆d(Lψ) = χ ∈ D(Rd). Let {gα |α ∈ Nd}
be as above and ∆d =

∑
β cβ∂

β ; only finitely many cβ are nonzero. We define

g̃α = χ ∗ gα +
∑

β≤α
cβ(Lψ) ∗ gα−β, α ∈ N

d.
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Then, the family {g̃α |α ∈ Nd} satisfies all requirements.
We now show the above statement. We define the (LB)-space

OM,h+
C (Rd) = lim−→

k>h

OM,k
C (Rd).

It is straightforward to check that for h2 > h1 and n1 > n2, the inclusion mapping
OM,h2,n2

C (Rd) → OM,h1,n1

C (Rd) is compact; consequently, OM,h+
C (Rd) is a (DFS)-space.

Note that K(M)(Rd) ⊂ OM,h+
C (Rd) ⊂ OM,h

C (Rd) with continuous inclusions. We define
X as the Fréchet space consisting of all multi-indexed sequences (gα)α∈Nd of (equivalence
classes) of measurable functions on Rd such that

∑

α∈Nd

Mα‖gαen| · |‖L1

k|α|
<∞, ∀n ∈ N, ∀k > h.

For each (gα)α∈Nd and α ∈ Nd, the linear functional

Iα((gα)α∈Nd) : OM,h+
C (Rd)→ C, 〈Iα((gα)α∈Nd), ϕ〉 = (−1)|α|

∫

Rd

gα(x)∂
αϕ(x)dx

is continuous. Furthermore, the linear mapping

S : X → O′M,h+
C (Rd) : (gα)α∈Nd 7→

∑

α∈Nd

Iα((gα)α∈Nd)

is well defined and continuous as well since the right hand side is absolutely summable
in O′M,h+

C (Rd). Notice that for each (gα)α∈Nd , the restriction of S((gα)α∈Nd) to K(M)(Rd)
is
∑

α∈Nd ∂αgα (the latter is absolutely summable in K′(M)(Rd)). Thus, it is enough
to prove S is surjective. By [32, Theorem 37.2], this is equivalent to proving that the
transpose of S is injective and has weak-∗ closed range. The dual of X coincides with
the space Y consisting of all multi-indexed sequences (fα)α∈Nd of (equivalence classes)
of measurable functions on Rd such that for some n ∈ N and k > h

sup
α∈Nd

k|α|‖fαe−n| · |‖L∞

Mα
<∞,

under the dual pairing

〈(fα)α∈Nd , (gα)α∈Nd〉 =
∑

α∈Nd

∫

Rd

fα(x)gα(x)dx, (fα)α∈Nd ∈ Y, (gα)α∈Nd ∈ X.

As OM,h+
C (Rd) is reflexive, the transpose of S is given by

OM,h+
C (Rd)→ Y : ϕ 7→ ((−1)|α|∂αϕ)α∈Nd .

It is clear that this mapping is injective and has weak-∗ closed range. �

Proposition 5.6. Let h > 0 and let g ∈ O′M,h/(2H2)
C (Rd). The mapping

QM,h
κ

(Rd;E)→ QM,h/H
κ

(Rd;E) : f 7→ g ∗ f
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is continuous. Moreover, if {gα ∈ Cexp(R
d) |α ∈ Nd} leads to a representation of g as

in Lemma 5.5 (with h/(2H2) instead of h), then

(g ∗ f)(x) =
∑

α∈Nd

∫

Rd

gα(t)∂
αf(x− t)dt, f ∈ QM,h

κ
(Rd;E).(5.6)

Proof. We start by showing that the mapping

S : QM,h
κ

(Rd;E)→ QM,h/H
κ

(Rd;E) : f 7→
∑

α∈Nd

∫

Rd

gα(t)Tt(∂
αf)dt

is continuous. Let f ∈ QM,h
κ

(Rd;E) be arbitrary. For all p ∈ csn(E) we have that

∑

α∈Nd

p
κ,h/H

(∫

Rd

gα(t)Tt(∂
αf)dt

)
≤
∑

α∈Nd

∫

Rd

|gα(t)|pκ,h/H(Tt(∂αf))dt

≤ C0

(
∑

α∈Nd

Mα‖gαeκp| · |‖L1

(h/H)|α|

)
pκ,h(f).

This shows that the series
∑

α∈Nd

∫
Rd gα(t)Tt(∂

αf)dt is absolutely summable inQM,h/H
κ (Rd;E).

Since QM,h/H
κ (Rd;E) is sequentially complete (as E is so), we obtain that

∑

α∈Nd

∫

Rd

gα(t)Tt(∂
αf)dt ∈ QM,h/H

κ
(Rd;E).

Moreover, the above estimate implies that the mapping S is continuous. Hence, the
result follows by observing that g∗f =

∑
α∈Nd

∫
Rd gα(t)Tt(∂

αf)dt for all f ∈ QM,h
κ

(Rd;E)

because obviously the equality holds as elements of K′(M)(Rd;E). �

6. Proof of the factorization theorem

This section is devoted to the proof of Theorem 3.2. We start with the construction
of elements in PM,1(Cd) that satisfy suitable lower bounds. We need the following
lemma.

Lemma 6.1. Let M be a weight sequence satisfying (M.2)∗. There is a non-decreasing
continuous function ν : [0,∞)→ [0,∞) such that

(i) νM ≍ ν, i.e., ν(t) = O(νM(t)) and νM (t) = O(ν(t)).
(ii) There is a continuous function η : [0,∞) → [0,∞) with η(t) = o(ν(t)) and

N ∈ N such that

|ν(t1)− ν(t2)| ≤ η(t2)(1 + |t1 − t2|)N , t1, t2 ≥ 0.

Proof. Condition (M.2)∗ implies that νM (2t) = O(νM(t)). Hence, [20, Theorem 2.11
and Corollary 2.14] imply that there are N ∈ Z+ and C,L > 0 such that

∫ ∞

1

νM(ts)

s1+N
ds ≤ LνM (t) + logC, t ≥ 0.
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Set

ν(t) =

∫ ∞

1

νM(ts)

s1+N
ds = tN

∫ ∞

t

νM(s)

s1+N
ds, t ≥ 0.

It is clear that ν is continuous and non-decreasing, and that νM ≍ ν. Let us show that
ν satisfies property (ii). Set

η(t) =

(
N−1∑

j=0

(
N

j

)
tj

)∫ ∞

t

νM(s)

s1+N
ds, t ≥ 0.

It holds that η is continuous and that η(t) = o(ν(t)). Let t1, t2 ≥ 0 be arbitrary. If
t1 ≥ t2, then

|ν(t1)− ν(t2)| = t1
N

∫ ∞

t1

νM(s)

s1+N
ds− t2N

∫ ∞

t2

νM(s)

s1+N
ds

≤
(
N−1∑

j=0

(
N

j

)
(t1 − t2)N−jtj2

)∫ ∞

t2

νM(s)

s1+N
ds ≤ η(t2)(1 + |t1 − t2|)N .

If t2 ≥ t1, then

|ν(t1)− ν(t2)| = t2
N

∫ ∞

t2

νM(s)

s1+N
ds− t1N

∫ ∞

t1

νM(s)

s1+N
ds

≤
(
N−1∑

j=0

(
N

j

)
(t2 − t1)N−jtj1

)∫ ∞

t2

νM(s)

s1+N
ds ≤ η(t2)(1 + |t1 − t2|)N .

�

Proposition 6.2. Let M be a weight sequence satisfying (M.2) and (M.2)∗. There
exist P ∈ O(Cd) and δ > 0 such that for every n ∈ N there is Cn > 0 such that

C−1
n eνM (δRe z) ≤ |P (z)| ≤ Cne

νM (Re z), z ∈ Vn.
Proof. Choose ν, η and N as in Lemma 6.1. We extend ν to Rd as the radial function
ν(x) = ν(|x|), x ∈ Rd. We set

ν̃(z) =
1

πd/2

∫

Rd

ν(x)e−(z−x)·(z−x)dx, z ∈ C
d.

Then, ν̃ ∈ O(Cd). For all z ∈ Cd it holds that

(6.1) |ν̃(z)−ν(Re z)| = 1

πd/2

∣∣∣∣
∫

Rd

(ν(x)− ν(Re z))e−(z−x)·(z−x)dx

∣∣∣∣ ≤ Ae| Im z|2η(|Re z|),

where A = π−d/2 ∫
Rd(1 + |x|)Ne−|x|2dx. Set P̃ (z) = eν̃(z), z ∈ Cd. Then, P̃ ∈ O(Cd).

Let n ∈ N be arbitrary. Choose Bn > 0 such that

Aen
2

η(t) ≤ 1

2
ν(t) + logBn, t ≥ 0.

Using (6.1), we have that

|P̃ (z)| ≤ eν(Re z)+Aen
2
η(|Re z|) ≤ Bne

2ν(Re z), z ∈ Vn,
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and

|P̃ (z)| ≥ eν(Re z)−Aen2
η(|Re z|) ≥ B−1

n eν(Re z)/2, z ∈ Vn.
Let L > 1 be such that

L−1νM(t)− logL ≤ ν(t) ≤ LνM (t) + logL, t ≥ 0,

and let K > 1 be such that

2LνM(t) ≤ νM(Kt) + logK, t ≥ 0.

Set P (z) = P̃ (z/K), z ∈ C
d. Then, P ∈ O(Cd) satisfies the required bounds (with

δ = 1/K2). �

We now combine the theory developed in Section 5 with the function constructed
in Proposition 6.2 to obtain a parametrix type identity that shall be used to show
Theorem 3.2.

Lemma 6.3. Let E be a sequentially complete lcHs and let κ = (κp)p∈csn(E) be a net
of positive numbers. Let M be a weight sequence satisfying (M.2) and (M.2)∗, and let

h > 0. Let B be a bounded subset of QM,h
κ

(Rd;E). There exist g ∈ O′M,h/(2H2)
C (Rd) and

ψ ∈ K{M}(Rd) such that g ∗B is a bounded subset of QM,h/H
κ (Rd;E) and

ψ ∗ (g ∗ f) = f , f ∈ B.

Proof. Let P be the function from Proposition 6.2. Set Ph(z) = P (πhz/(4
√
dH3)),

z ∈ Cd. Then, Ph ∈ PM,πh/(4
√
dH3)(Cd) and 1/Ph ∈ U{M}(Cd). We define g = F̃(Ph) ∈

O′M,h/(2H2)
C (Rd) (Proposition 5.1) and ψ = F(1/Ph) ∈ K{M}(Rd). By Proposition 5.1,

we have that for all f ∈ K′(M)(Rd;E)

ψ ∗ (g ∗ f) = F(1/Ph) ∗ (F̃(Ph) ∗ F(F−1(f)))

= F(1/Ph) ∗ F(Ph · F−1(f)) = F((1/Ph) · (Ph · F−1(f))) = f .

The result now follows from Proposition 5.6. �

Finally, we shall need the ensuing lemma that allows us to reduce the Beurling case
to the Roumieu one.

Lemma 6.4. Let M be a weight sequence satisfying (M.2) and (M.2)∗. For every
r ∈ R there is r′ ∈ R with r′ � r such that N = (Mp/

∏p
j=0 r

′
j)p∈N is a weight sequence

satisfying (M.2) and (M.2)∗.

Proof. Define r′′0 = r′′1 = 1 and recursively r′′j = min{rj, r′′j−1mj/mj−1} for j ≥ 2. Since
r is non-decreasing and M is log-convex, we have that

r′′j+1 = min{rj+1, r
′′
jmj+1/mj} ≥ min{rj, r′′j } = r′′j , j ∈ Z+,

which means that r′′ is non-decreasing. Next, assume that there is C ≥ 1 such that
r′′j ≤ C for all j ∈ Z+. Since rj →∞, there is j0 ≥ 2 such that r′′j = r′′j−1mj/mj−1 for
all j ≥ j0. But then

r′′j =
mj

mj−1
· r′′j−1 =

mj

mj−1
· mj−1

mj−2
· r′′j−2 = · · · =

mj

mj0−1
· r′′j0−1 →∞, as j →∞,
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a contradiction. Hence, r′′ ∈ R. Moreover, it is clear that r′′ � r and that m/r′′

is non-decreasing. Define r′j =
√
r′′j , j ∈ N. We now show that the sequence r′

satisfies all requirements. Note first that r′ ∈ R and r′ � r′′ � r. As m/r′′ and
r′′ are non-decreasing, m/r′ is also non-decreasing. This means that the sequence
N = (Mp/

∏p
j=0 r

′
j)p∈N is log-convex. It is obvious that N satisfies (M.2). Let us verify

that N also satisfies (M.2)∗. Choose p0, N ∈ Z+ such that 4mp ≤ mNp for all p ≥ p0.
Since m/r′′ is non-decreasing, we have that

nNp =
mNp

r′Np
=
√
mNp

√
mNp

r′′Np
≥ 2
√
mp

√
mp

r′′p
= 2np, p ≥ p0.

As N is log-convex, (M.2) and (M.2)∗ imply that limp→∞N
1/p
p =∞. �

Proof of Theorem 3.2. A standard argument together with Proposition 4.1 shows that
Π(K[M ](Rd))E ⊆ E[M ] (in the Beurling case, one also needs a two dimensional variant
of Lemma 2.1; see for example [4, Lemma 2.2.1, p. 18]).

For the proof of E[M ] ⊆ Π(K[M ](Rd))E[M ] and the rest of the theorem it suffices
to consider the Roumieu case as, by Lemma 6.4 and Proposition 4.1, the Beurling
case follows from it. Suppose that (π, E) is a projective (inductive) generalized proto-

Banach representation. Let B̃ be an arbitrary bounded subset of E{M} and set B =

{γe | e ∈ B̃}. By Proposition 4.1, there is h > 0 (h > 0 and B ∈ B(E)) such that B
is a bounded subset of QM,h

κ
(Rd;E) (QM,h

κB
(Rd;EAB

)). Lemma 6.3 yields the existence

of g ∈ O′M,h/(2H2)
C (Rd) and ψ ∈ K{M}(Rd) such that g ∗ B is a bounded subset of

QM,h/H
κ (Rd;E) (QM,h/H

κB (Rd;EAB
)) and

ψ ∗ (g ∗ γe) = γe, e ∈ B̃.

Let {gα ∈ Cexp(R
d) |α ∈ Nd} be as in Lemma 5.5 (with h/2H2 instead of h). Set

g ∗ e =
∑

α∈Nd

∫

Rd

gα(t)γeα(−t)dt, e ∈ B̃.

Then, g ∗ e ∈ E (g ∗ e ∈ EAAB
, where AAB

∈ B(E) is the set that corresponds to

AB ∈ B(E) in (3.2)). By using (5.6), we find that g ∗ γe(x) = γg∗e(x), e ∈ B̃. Hence,
Proposition 4.1 yields that Ã = {g ∗ e | e ∈ B̃} is a bounded subset of E{M} and

γe(x) = (ψ ∗ γg∗e)(x) =
∫

Rd

ψ̌(t)γg∗e(x+ t)dt, e ∈ B̃.

Evaluating at x = 0, we obtain that e = Π(ψ̌)(g ∗ e) for all e ∈ B̃. �

Remark 6.5. Let (π, E) be a Banach representation. Let M be a weight sequence
satisfying (M.2) and (M.2)∗. In view of Remark 4.5, a similar argument as in the

proof of Theorem 3.2 yields that for every compact set B̃ ⊂ E[M ] there is ψ ∈ K[M ](Rd)

and a compact set Ã ⊆ E[M ] such that Π(ψ)Ã = B̃.
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7. The strong factorization property for convolution algebras and

modules of ultradifferentiable functions

In this section we employ Theorem 3.2 to establish factorization theorems for con-
crete instances of convolution algebras and modules of ultradifferentiable functions. We
use the symbol →֒ to denote a dense and continuous inclusion. We start by introducing
Gelfand-Shilov spaces; we refer to [29] for more information on these spaces. Let M

and A be two weight sequences. For h, k > 0 we write SM,h
A,k (R

d) for the Banach space

consisting of all ϕ ∈ C∞(Rd) such that

‖ϕ‖SM,h
A,k

:= sup
α∈Nd

sup
x∈Rd

h|α||∂αϕ(x)|eνA(kx)

Mα

<∞.

We define

S(M)
(A) (R

d) = lim←−
h→∞
SM,h
A,h (R

d) and S{M}
{A} (R

d) = lim−→
h→0+

SM,h
A,h (R

d).

We denote by S ′[M ]
[A] (Rd) the strong dual of S [M ]

[A] (R
d). The spaces S{p!σ}

{p!τ} (R
d), σ, τ > 0,

were introduced by Gelfand and Shilov [13], while the spaces S{p!}
{p!} (R

d) and S(p!)
(p!) (R

d)

are the test function spaces for the Fourier hyperfunctions [21] and the Fourier ultra-

hyperfunctions [27], respectively. Note that K(M)(Rd) = S(M)
(p!) (R

d) and K{M}(Rd) =⋃

h>0

⋂

k>0

SM,h
p!,k (R

d).

7.1. Translation-invariant Banach spaces. Fix a weight sequence M satisfying
(M.2) and (M.2)∗, and a weight sequence A satisfying (M.2) and p! ⊂ A. Consequently,

K[M ](Rd) ⊆ S [M ]
[A] (R

d).

Following [9, 10], we call a Banach space E a translation-invariant Banach space
(TIB) of class [M ]− [A] if the following three properties are satisfied:

(i) S [M ]
[A] (R

d) →֒ E →֒ S ′[M ]
[A] (Rd);

(ii) Tx(E) ⊆ E for all x ∈ Rd;
(iii) There are κ, C > 0 (for every κ > 0 there is C > 0) such that2

ω(x) := ‖Tx‖Lb(E,E) ≤ CeνA(κx), x ∈ R
d.

Example 7.1. Let w be a positive measurable function on Rd such that

w(x+ y) ≤ Cw(x)eνA(κy), x, y ∈ R
d,

for some κ, C > 0 (for every κ > 0 and some C = Cκ > 0). For p ∈ [1,∞], we denote
by Lpw(R

d) the space of (equivalence classes) of measurable functions f on Rd such
that ‖f‖Lp

w
:= ‖fw‖Lp < ∞. Furthermore, Cw,0(R

d) stands for the Banach space of
continuous functions f on Rd such that lim|x|→∞ f(x)w(x) = 0 endowed with the norm
‖ ‖L∞

w
. The spaces Lpw(R

d), 1 ≤ p <∞, and Cw,0(R
d) are TIB of class [M ] − [A].

2The continuity of the mappings Tx : E → E, x ∈ Rd, follows from the closed graph theorem.
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Fix a TIB E of class [M ]− [A]. We have that

T : Rd × E → E : (x, e) 7→ Tx(e)

is continuous. This means that (T,E) is a Banach representation. One shows [10,

Proposition 3.10] that the convolution mapping ∗ : S [M ]
[A] (R

d) × S [M ]
[A] (R

d) → S [M ]
[A] (R

d)

uniquely extends to a continuous bilinear mapping ∗ : L1
ω(R

d) × E → E. By [10,
Lemma 3.7] and the fact that K[M ](Rd) is dense in both Cexp(R

d) and E, we have that

Π(f)e = f ∗ e, f ∈ Cexp(R
d), e ∈ E.

For h > 0 we write DM,h
E for the Banach space consisting of all ϕ ∈ E such that3

∂αϕ ∈ E for all α ∈ Nd and

sup
α∈Nd

h|α|‖∂αϕ‖E
Mα

<∞.

We then define

D(M)
E = lim←−

h→∞
DM,h
E and D{M}

E = lim−→
h→0+

DM,h
E .

It holds that

S [M ]
[A] (R

d) →֒ D[M ]
E →֒ E →֒ S ′[M ]

[A] (Rd).

Moreover, one can show that the elements ϕ of D[M ]
E are in fact smooth functions and

that they satisfy

sup
α∈Nd

sup
x∈Rd

h|α||∂αϕ(x)|
Mαω(−x)

<∞

for all h > 0 (for some h > 0) [10, Proposition 4.7].
We write DE for the space consisting of all those ϕ ∈ E such that ∂αϕ ∈ E for all

α ∈ Nd. Reasoning as in [5, Lemma 5.7], it can be shown that E∞ = DE and ϕα = ∂αϕ

for all α ∈ Nd and ϕ ∈ E∞. Hence, E[M ] = D[M ]
E as locally convex spaces.

Theorem 3.2 and Remark 6.5 yield the following result.

Theorem 7.2. We have that

K[M ](Rd) ∗ E = K[M ](Rd) ∗ D[M ]
E = D[M ]

E .

Furthermore, for every bounded (compact) set B ⊂ D[M ]
E there are ψ ∈ K[M ](Rd) and a

bounded (compact) set A ⊂ D[M ]
E such that ψ ∗ A = B.

Corollary 7.3. We have that

S [M ]
[A] (R

d) ∗ E = S [M ]
[A] (R

d) ∗ D[M ]
E = D[M ]

E .

Moreover, for every bounded (compact) set B ⊂ D[M ]
E there are ψ ∈ S [M ]

[A] (R
d) and a

bounded (compact) set A ⊂ D[M ]
E such that ψ ∗ A = B.

3∂αϕ stands here for the α-th S ′[M ]
[A] (Rd)-derivative of ϕ.
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We shall now apply Corollary 7.3 to improve a useful convolution average character-

ization of the dual of D[M ]
E obtained in [9, 10]. We start with a brief discussion of the

strong dual E ′ of E. The convolution on E ′ is defined via transposition:

〈f ∗ e′, e〉 := 〈e′, f̌ ∗ e〉, e ∈ E,
for f ∈ L1

ω(R
d) and e′ ∈ E ′. We set E ′

∗ := L1
ω(R

d) ∗ E ′. Since the Beurling algebra
(L1

ω(R
d), ∗) admits bounded approximation units, the Cohen-Hewitt factorization the-

orem implies that E ′
∗ is a closed linear subspace of E ′. Moreover, we have the following

explicit description of E ′
∗ [10, Proposition 3.18],

E ′
∗ = {e′ ∈ E ′ | lim

x→0
‖Txe′ − e′‖E′ = 0}.

In general, E ′ is not a TIB of class [M ] − [A]: The embedding S [M ]
[A] (R

d) → E ′ needs

not be dense and the mappings Rd → E ′, x 7→ Txe
′, e′ ∈ E ′ fixed, may fail to be

continuous; consider, e.g., E = L1(Rd). This causes various difficulties and is one of
the reason why the space E ′

∗ was introduced in [10]. If E is reflexive, E ′ is a TIB of
class [M ]− [A] and E ′ = E ′

∗ [10, Theorem 3.17].

We denote by D′[M ]
E′

∗
the strong dual of D[M ]

E . We have the following continuous
inclusions

S [M ]
[A] (R

d)→ E ′ → D′[M ]
E′

∗
→ S ′[M ]

[A] (Rd).

Moreover, the following characterization of D′[M ]
E′

∗
in terms of convolution averages holds

[10, Theorem 4.9]

D′[M ]
E′

∗
= {f ∈ S ′[M ]

[A] (Rd) | f ∗ ϕ ∈ E ′
∗ for all ϕ ∈ S [M ]

[A] (R
d)}.

The above equality suggests to embed the space D′[M ]
E′

∗
into the space of E ′

∗-valued

ultradistributions S ′[M ]
[A] (Rd;E ′

∗) = Lb(S
[M ]
[A] (R

d), E ′
∗) by regarding the elements of D′[M ]

E′
∗

as kernels of convolution operators:

ι : D′[M ]
E′

∗
→ S ′[M ]

[A] (Rd;E ′
∗), 〈ι(f), ϕ〉 = f ∗ ϕ, ϕ ∈ S [M ]

[A] (R
d).

The mapping ι is a well-defined continuous inclusion with closed range [10, p. 168-169].
We now show that ι is actually a topological embedding.

Proposition 7.4. The mapping ι is a topological embedding.

Proof. By the above remarks, we only need to show that ι is open, i.e., that for every

neighborhood U of zero in D′[M ]
E′

∗
there is a neighborhood V of zero in S ′[M ]

[A] (Rd;E ′
∗)

such that V ∩ ι(D′[M ]
E′

∗
) ⊆ ι(U). We may assume that U is the polar set of a bounded

set B of D[M ]
E , that is,

U = {f ∈ D′[M ]
E′

∗
| sup
ϕ∈B
|〈f, ϕ〉| ≤ 1}.

By Corollary 7.3, there exist ψ ∈ S [M ]
[A] (R

d) and a bounded set A ⊂ D[M ]
E such that

ψ ∗ A = B. Let R > 0 be such that ‖ϕ‖E ≤ R for all ϕ ∈ A. Consider the following
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neighborhood of zero in S ′[M ]
[A] (Rd;E ′

∗)

V = {f ∈ S ′[M ]
[A] (Rd;E ′

∗) | ‖〈f , ψ̌〉‖E′ ≤ 1/R}.

For f ∈ D′[M ]
E′

∗
with ι(f) ∈ V we have that

sup
ϕ∈B
|〈f, ϕ〉| = sup

χ∈A
|〈f, ψ ∗ χ〉| = sup

χ∈A
|〈f ∗ ψ̌, χ〉| = sup

χ∈A
|〈ι(f)(ψ̌), χ〉| ≤ 1,

which means that f ∈ U . �

Remark 7.5. The proof of Proposition 7.4 in fact shows that

ι : D′[M ]
E′

∗
→ Lσ(S [M ]

[A] (R
d), E ′

∗)

is a topological embedding.

7.2. Weighted spaces of ultradifferentiable functions. Fix a weight sequence M
satisfying (M.2) and (M.2)∗.

A pointwise increasing sequence W = (wn)n∈N of positive continuous functions on
Rd is called an increasing weight system if the following two properties are satisfied:

(7.1) ∀n ∈ N ∃m ≥ n : lim
|x|→∞

wn(x)

wm(x)
= 0

and

(7.2) ∀n ∈ N ∃m ≥ n ∃κ > 0 ∃C > 0 ∀x, y ∈ R
d : wn(x+ y) ≤ Cwm(x)e

κ|y|.

Similarly, a pointwise decreasing sequence V = (vn)n∈N of positive continuous functions
on R

d is called a decreasing weight system if the following two properties are satisfied:

(7.3) ∀n ∈ N ∃m ≥ n : lim
|x|→∞

vm(x)

vn(x)
= 0,

(7.4) ∀n ∈ N ∃m ≥ n ∃κ > 0 ∃C > 0 ∀x, y ∈ R
d : vm(x+ y) ≤ Cvn(x)e

κ|y|.

We remark that (7.3) is condition (S) from [1].

Example 7.6. Let A be a weight sequence satisfying p! ⊂ A. Then,W(A) = (eνA(n · ))n∈N
is an increasing weight systems. Likewise, V{A} = (eνA( · /n))n∈Z+ is a decreasing weight
system. Indeed, for all h > k > 0 it holds that νA(ht) − νA(kt) → ∞ as t → ∞; this
follows from [22, Equation (3.11)]. Hence, the conditions (7.1) and (7.3) are satisfied.
The conditions (7.2) and (7.4) follow from the assumption p! ⊂ A.

Let w be a positive continuous function on R
d. For h > 0 we write BM,h

w (Rd) for the
Banach space consisting of all ϕ ∈ C∞(Rd) such that

‖ϕ‖BM,h
w

:= sup
α∈Nd

sup
x∈Rd

h|α||∂αϕ(x)|w(x)
Mα

<∞.

Given an increasing weight system W = (wn)n∈N, we define

B(M)
W (Rd) = lim←−

n∈N
BM,n
wn

(Rd) and B{M}
W (Rd) = lim−→

h→0+

lim←−
n∈N
BM,h
wn

(Rd).
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Similarly, given a decreasing weight system V = (vn)n∈N, we define

B(M)
V (Rd) = lim−→

n∈N
lim←−
h→∞
BM,h
vn (Rd) and B{M}

V (Rd) = lim−→
n∈N
BM,1/n
vn (Rd).

Furthermore, we set

BM,h
W (Rd) = lim←−

n∈N
BM,h
wn

(Rd) and B(M)
vn (Rd) = lim←−

h→∞
BM,h
vn (Rd).

We refer to [8] for more information on these spaces.

Example 7.7. Let A be a weight sequence satisfying p! ⊂ A. Then,

S(M)
(A) (R

d) = B(M)
W(A)

(Rd) and S{M}
{A} (R

d) = B{M}
V{A}

(Rd).

Notice that we have K{M}(Rd) = B{M}
W(p!)

(Rd).

We fix an increasing weight system W = (wn)n∈N and a decreasing weight system
V = (vn)n∈N. Given a positive continuous function w on R

d, we denote by Cw(R
d) the

Banach space consisting of all f ∈ C(Rd) such that ‖f‖L∞
w
<∞. We define the Fréchet

space
WC(Rd) = lim←−

n∈N
Cwn

(Rd)

and the (LB)-space
VC(Rd) = lim−→

n∈N
Cvn(R

d).

Since V satisfies (7.3), the space VC(Rd) is boundedly retractive and thus complete [1,
p. 100]. Then, (T,WC(Rd)) is a projective generalized proto-Banach representation
and (T,VC(Rd)) is an inductive generalized proto-Banach representation. Moreover,
we have that

Π(f)g = f ∗ g, f ∈ Cexp(R
d), g ∈ E,

where E denotes either WC(Rd) or VC(Rd).

Lemma 7.8.

(i) WC(Rd)[M ] = B[M ]
W (Rd) as sets. Moreover, B ⊂ WC(Rd)(M) (B ⊂ WC(Rd){M})

is bounded if and only if B is bounded in B(M)
W (Rd) (B is bounded in BM,h

W (Rd)
for some h > 0).

(ii) VC(Rd)[M ] = B[M ]
V (Rd) as sets. Moreover, B ⊂ VC(Rd)(M) (B ⊂ VC(Rd){M})

is bounded if and only if B is bounded in B(M)
vn (Rd) for some n ∈ N (B is

bounded in B{M}
W (Rd)).

Proof. Let E denote either WC(Rd) or VC(Rd). We write DE for the space consisting
of all ϕ ∈ C∞(Rd) such that ∂αϕ ∈ E for all α ∈ Nd. Then, E∞ = DE and ϕα =
(−1)|α|∂αϕ for all α ∈ Nd and ϕ ∈ E∞. Hence, the result follows from Proposition 4.1
(and Remark 4.3). �

Theorem 3.2 and Lemma 7.8 imply the ensuing factorization result.

Theorem 7.9.
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(i) Let W = (wn)n∈N be an increasing weight system. We have that

K[M ](Rd) ∗ B[M ]
W (Rd) = B[M ]

W (Rd).

Moreover, in the Beurling case, for every bounded set B ⊂ B(M)
W (Rd) there are

ψ ∈ K(M)(Rd) and a bounded set A ⊂ B(M)
W (Rd) such that ψ ∗ A = B. In the

Roumieu case, for every h > 0 and every bounded set B ⊂ BM,h
W (Rd) there are

ψ ∈ K{M}(Rd) and a bounded set A ⊂ BM,k
W (Rd), for some k > 0, such that

ψ ∗ A = B.
(ii) Let V = (vn)n∈N be a decreasing weight system. We have that

K[M ](Rd) ∗ B[M ]
V (Rd) = B[M ]

V (Rd).

Moreover, in the Beurling case, for every n ∈ N and every bounded set B ⊂
B(M)
vn (Rd) there are ψ ∈ K(M)(Rd) and a bounded set A ⊂ B(M)

vm (Rd), for some
m ∈ N, such that ψ ∗A = B. In the Roumieu case, for every every bounded set

B ⊂ B{M}
V (Rd) there are ψ ∈ K{M}(Rd) and a bounded set A ⊂ B{M}

V (Rd) such
that ψ ∗ A = B.

Corollary 7.10. Let A be a weight sequence satisfying p! ⊂ A. We have that

K[M ](Rd) ∗ S [M ]
[A] (R

d) = S [M ]
[A] (R

d) ∗ S [M ]
[A] (R

d) = S [M ]
[A] (R

d).

Moreover, for every bounded set B ⊂ S [M ]
[A] (R

d) there are ψ ∈ K[M ](Rd) and a bounded

set A ⊂ S [M ]
[A] (R

d) such that ψ ∗ A = B.

Remark 7.11. Theorem 7.9 implies that we can factorize bounded sets in B{M}
W (Rd) and

B(M)
V (Rd) provided that these (LF )-spaces are regular. The space B{M}

W (Rd) is regular
if W satisfies

(7.5) ∃n ∈ N ∀m ≥ n ∃k ≥ m ∃C > 0 ∀x ∈ R
d : w2

m(x) ≤ Cwn(x)wk(x).

If M additionally satisfies Komatsu’s condition (M.3) (strong non-quasianalyticity)

[22], condition (7.5) is also necessary for B(M)
V (Rd) to be regular [8, Theorem 3.6].

Likewise, the space B(M)
V (Rd) is regular if V satisfies

(7.6) ∀n ∈ N ∃m ≥ n ∀k ≥ m ∃θ ∈ (0, 1) ∃C > 0 ∀x ∈ R
d : vm(x) ≤ Cv1−θn (x)vθk(x).

If in addition M satisfies (M.3), condition (7.6) is also necessary for B(M)
V (Rd) to be

regular [8, Theorem 3.7]. The conditions (7.5) and (7.6) are closely connected and
inspired by the linear topological invariants (DN) and (Ω) for Fréchet spaces [25].

Theorem 3.2 and Remark 7.11 then yield the following result.

Corollary 7.12. We have that K[M ](Rd) ∗ K[M ](Rd) = K[M ](Rd). Moreover, for every
bounded set B ⊂ K[M ](Rd) there are ψ ∈ K[M ](Rd) and a bounded set A ⊂ K[M ](Rd)
such that ψ ∗ A = B.
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