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Abstract 

Studies exploring the relationship between Facebook use and well-being have yielded 

inconsistent findings. Investigating the intermediate mechanisms seems to be of crucial 

importance to gain insight into the positive and negative consequences of Facebook 

use. A recent study illustrated the importance of taking into account social comparison 

and self- esteem, since these constructs are central to theories about the link between 

Facebook use and risk for affective disorders. Extending these findings will be key to 

increase our knowledge on possible risk and/or protective intermediate mechanisms. 

Therefore, we conducted a cross-sectional study (n = 459) to investigate the position 

of attention control and social capital in this previously reported network. Our results 

provide a conceptual replication of Faelens et al. (2019). In addition, our findings 

suggest that attentional control does not play a central role in the relationship between 

Facebook use and well-being. However, (bridging) social capital uniquely connected 

the variables related to Facebook use with our indicators of vulnerability for affective 

disorders via social comparison and contingent self-esteem. Possible explanations are 

discussed. 
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Introduction 

In modern society, social network sites (SNS) such as Facebook are highly 

popular. This has generated a lively debate regarding the positive and negative effects 

of SNS use on general well-being. More specifically, systematic reviews and meta-

analyses found conflicting results regarding the direction and strength of the 

relationship. For example, while some meta-analyses and reviews reported a small, but 

negative relationship between SNS use and well-being (e.g., Huang, 2017; McCrae et 

al., 2017; Yoon et al., 2019), other reviews also pointed towards positive associations 

(e.g., Frost & Rickwood, 2017; Verduyn et al. 2017). Verduyn and colleagues (2017) 

argued that two factors may be important to explain these inconsistent findings, 

namely (1) type of SNS use and (2) psychological processes that may be involved in the 

relationship between SNS use and well-being.  

Type of Use 

Previous research findings suggest that it may be important to examine the 

effects of different kinds of SNS utilization (e.g., Verduyn et al., 2017). For example, 

Frison and Eggermont (2015) made a distinction between three types of Facebook 

usage: active public Facebook use, active private Facebook use and passive Facebook 

use. First, active public Facebook use can be defined as activities that enhance direct 

interactions between users in a public setting (e.g., posting status updates/pictures). 

Second, active private Facebook use refers to activities that facilitate private 

interactions between users (e.g., instant messaging). Third, passive Facebook use is 

characterized by the passive consumption of content of other users, without direct 

exchanges between users (Frison & Eggermont, 2015). Prior research findings 
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illustrated that passive Facebook use seems to be linked with decreased well-being 

(e.g., Verduyn et al., 2015). In contrast, active private Facebook use seems to have more 

beneficial effects (e.g. Frison & Eggermont, 2016; Verduyn et al., 2017). The effects of 

active public Facebook use on well-being are inconsistent (Frison & Eggermont, 2016).  

A possible explanation for these findings is that different usage patterns activate 

different underlying mechanisms (e.g., Verduyn et al., 2017), which in turn may lead to 

increases/decreases in well-being and the other way around. In the next paragraphs, 

we will discuss different psychological processes that may be important factors in the 

relationship between SNS use and well-being and therefore make an attempt to explain 

these inconsistent results.  

Psychological Processes  

Social Comparison and Self-Esteem 

Previous research findings suggest that constructs such as social comparison and 

self-esteem may be involved in the relationship between SNS use and well-being (e.g., 

Faelens et al., 2019). In that study, network analysis was used to examine the association 

between Facebook use, well-being and a variety of psychological constructs. The results 

of this study are depicted in Figure 1. This study found associations between Facebook 

use and psychological constructs such as self-esteem and social comparison which seems 

plausible. In particular, it has been suggested that on Facebook strategically presented 

content could trigger social comparison and induce negative self-evaluations in the 

viewer (Vogel et al., 2014; Vogel & Rose, 2016). Repeated exposure to such content could 

over time decrease global self-esteem and eventually foster more detrimental 

psychopathological processes (Sowislo & Orth, 2013; Wouters et al., 2013). However, 
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due to the undirected nature of the network of Faelens et al. (2019), the opposite pattern 

is also possible. For example, participants with higher depression, anxiety, or stress levels 

generally report lower self-esteem and higher social comparison tendencies (e.g., 

Gibbons & Buunk, 1999), which may affect their Facebook use (e.g., Aalbers et al., 2018; 

Scherr et al., 2019).  

Although these initial findings offer interesting insights into the relation between 

Facebook use and well-being, extending this network model with cognitive and social 

parameters will be key to further improve our understanding of this complex 

relationship. Therefore, the goal of the current study was to investigate the role of 

attentional control and social capital in relation to Facebook use, social comparison, 

(contingent) self-esteem, and risk for affective disorders (rumination, stress, depressive- 

and anxiety symptoms). In particular, we modeled the impact of these variables on the 

network structure that was previously obtained by Faelens et al. (2019; Figure 1). The 

choice for these constructs was based on the following arguments. 
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Figure 1 

Regularized Partial Correlation Network Faelens et al. (2019) 

 

Note: FBI = Facebook intensity; MSFU_Private = active private Facebook use; MSFU_Public = 

active public Facebook use; MSFU_Passive = passive Facebook use; COMF = social comparison; 

CSS = contingent self-esteem; RSES = global self-esteem; RRS = ruminative tendency; Stress = 

stress; Anxiety= anxiety; Depression = depression. The strength of the association between 

constructs is represented by the thickness of the edges. While blue lines represent positive 

associations, red lines represent negative associations. 

 

 Attentional Control 

As human information processing capacity is limited, attentional control is very 

important. Within the current paper attentional control is defined as the top-down 

cognitive process that allows to focus on a relevant task set and suppress irrelevant 

distractions (Broadbent, 1971; Shiffrin & Schneider, 1977). There are multiple ways in 

which attentional control could be linked to SNS use and well-being. For example, 

previous studies suggest that highly frequent use of social media, and the extent to 
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which this relies on multitasking, could also be connected to the ability to control our 

attention. Specifically, it has been suggested that people who often engage in social 

media multitasking may be more susceptible to interference of irrelevant information 

due to the continuous stream of social information (Bermúdez, 2017). In particular, 

Ophir et al. (2009) showed that heavy social media multitaskers performed worse on a 

switching task than low social media multitaskers. These results suggest that heavy 

social media multitaskers are more likely to experience difficulties to block out 

distractions and focus their attention on a single task. This is in accordance with the 

counterintuitive notion that people who are not capable of multitasking efficiently are 

in fact the people who are most likely to engage in multiple tasks simultaneously 

(Sanbonmatsu et al., 2013). Hence, people who have lower attentional control 

capacities are more likely to become heavy social media multitaskers as they are easily 

distracted by social media cues (Ophir et al., 2009).  

In addition to the influence of attentional control as a more stable trait, it is also 

important to consider the direct impact of social media multitasking on academic 

performance given that attentional control plays a crucial role in learning. Indeed, 

previous studies suggest that people who spent more time using social media while 

attending classes, studying and doing homework, had lower comprehension of the 

lecture material and lower grades (Junco & Cotton, 2011; Junco & Cotton, 2012; 

Kirschner & Karpinski, 2010; Gupta & Irwin, 2016; Rosen et al., 2013). The 

disadvantageous impact of chronic social media use on academic performance and 

attentional control is likely mediated by multitasking (Chen & Yan, 2016; Junco, 2015). 

However, note that the negative influence of social media multitasking on attentional 

control also seems to depend on task difficulty. The negative influence of social media 
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multitasking on attentional control mainly seems to hold for complex tasks (Min, 2017). 

Although using social media while doing schoolwork, might harm academic 

performance, this does not necessarily mean that social media use is detrimental to 

attentional control. It could just mean that social media is distracting students in-the-

moment. 

Furthermore, ample studies suggest that attentional control deficits may put one 

at risk for developing depressive symptomatology (for reviews, see De Raedt & Koster, 

2010; Joormann et al., 2007; Joormann & Gotlib, 2010). In particular, depressed 

individuals seem to have difficulties focusing their attention towards positive 

information and relocating their attention away from negative towards positive 

information (Armstrong & Olatunji, 2012). Moreover, these deficits in attentional control 

have been linked to emotion regulation difficulties, which are known to impact the onset 

and maintenance of depressive symptoms (Joormann & Stanton, 2016). Together, these 

findings point towards the importance of extending previous network models with 

attentional control in an attempt to further unravel relationships between social media 

use and self-reported psychopathology (e.g., depressive, anxiety, and stress symptoms). 

A second variable that would be worthwhile investigating in this context, is social capital. 

Social Capital 

The desire to form and maintain interpersonal relationships is a fundamental 

human motivation (Baumeister & Leary, 1995). Not surprisingly, research has shown 

that having positive relationships increases our well-being and vice versa (Lyubomirsky 

et al., 2005). For example, Saherman et al. (2006) illustrated that participants who had 

harmonious relationships with their family and friends (warm relationships with little 
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conflict) reported lower loneliness and higher self-esteem scores. Furthermore, Sousa-

Poza and Sousa- Poza (2000) suggested that having a good relationship with your 

colleagues and managers is an important determinant of job satisfaction. Indeed, social 

networks are important for people, since users derive numerous benefits from their 

social relations or connections, which are often described as ‘social capital’. Putnam 

(2000) makes a distinction between ‘bonding social capital’ and ‘bridging social capital’. 

Bonding social capital is typically provided by emotionally close relationships, such as 

family members and good friends. These individuals tend to share similar backgrounds 

and usually provide emotional/social support, trust and companionship to each other. 

Alternatively, having a large amount of ‘weak ties’ or acquaintances, which are casual 

connections between individuals who travel in different circles, provides bridging social 

capital. These connections give individuals access to novel information and a broader 

worldview, since they are more likely to add non-redundant information and new 

perspectives, not possessed by the individual’s family or friends. Consequently, such 

relations do not necessarily provide emotional support. 

SNS such as Facebook have the potential to foster communication with our close 

and weak connections. Indeed, SNS are particularly well-suited to maintain existing 

relationships, and to keep up to date with Facebook friends and therefore provide social 

capital benefits (Ellison et al., 2007). For example, Phua & Jin (2011) highlighted that 

intensity of Facebook use contributed to bonding social capital, which could in turn lead 

to improved well-being (Burke & Kraut, 2013; Verduyn et al., 2017). Next, it is also 

plausible that individuals’ mental health influences the amount of social support they 

receive (e.g., Billedo et al., 2019), which could in turn affect how they use Facebook. 

However, this warrants further (longitudinal) investigation. Based on these findings, we 
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wanted to investigate if bonding social capital could possibly serve as intermediate 

mechanism in the relationship between Facebook use and well-being. 

In addition, SNS provide users the opportunity to activate latent ties into weak 

or bridging ties. This gives users the chance to maintain connections that would 

otherwise disappear, allowing (intensive) users to maintain larger and more 

heterogeneous networks (Brandtzaeg, 2012; Ellison et al., 2007). More specifically, 

these networks provide access to novel information and diverse viewpoints (e.g., novel 

information via status updates/photo updates … ; Burke et al., 2010). Furthermore, 

individuals who use Facebook at least partly for information seeking, reported higher 

scores on bridging social capital. Information seekers were also more likely to agree 

with the fact that they use this channel to ‘check out’ someone they met in a social 

environment, to learn more about them. In this way, Facebook can facilitate (offline) 

social interactions and potentially lead to positive consequences (Burke et al., 2011). 

However, at the same time these individuals will be exposed to strategically presented 

information of individuals they don’t know (well), which may induce upward 

comparison and negative self-evaluations (Vogel, et. al. 2014; Vogel & Rose, 2016). 

Therefore, we wanted to explore whether bridging social capital would operate as 

intermediate mechanism in the relationship between Facebook and well-being. 

Current study 

The current study aims to investigate the impact of attentional control and social 

capital (bonding, bridging) on the network structure obtained by Faelens et al. (2019). 

This network showed complex associations between social media use, social 

comparison, self-esteem and indicators of risk for affective disorders. In particular, to 
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improve our understanding of the complex relationship between Facebook use and risk 

for internalizing psychopathology, we added two additional constructs: social capital 

and attentional control. As such, our goal was threefold: 

1. to replicate the network structure obtained by Faelens et al. (2019) 

2. to investigate the role of attentional control within this network 

3. to investigate the possible protective role of bonding social capital (3A) and 

bridging social capital within this network (3B) 
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Methods 

Recruitment  

We recruited our participants via Prolific, a recently developed crowdsourcing platform 

designed for research purposes (https://www.prolific.co). This platform has been 

extensively used in several research domains (e.g., Effron & Raj, 2019; Frimer & Skitka, 

2018; Simmonds et al., 2018) and has several advantages over other crowdsourcing 

platforms such as (1) a customer support team with scientific expertise (2) anonymous 

communication with participants (if needed) (3) ethical rewards: defined minimum 

payments for participants (https://www.prolific.co/prolific-vs-mturk/). Nevertheless, 

crowdsourcing platforms such as prolific also have some drawbacks which include the 

use of a nonnaïve worker pool: participants who repeatedly complete (psychological) 

studies may become somewhat familiar with some questionnaires or tasks, which may 

reduce the effect sizes (for more information see: Chandler et al., 2015; Miller et al., 

2017). However, due to the fact that Prolific is a rather new platform, which is less 

known, this problem may be significantly smaller as compared to well-known platforms 

such as Mturk (Peer et al., 2017).  

Participants 

Participants needed to have a Facebook profile and had to be between 18-35 years old, 

since young adults are the most active Facebook users (Pew Research Center, 2019; Van 

den Driessche & De Marez, 2019). Based on the power-analysis of Faelens et al. (2019), 

we aimed to recruit around 500 participants. Five hundred and nine participants started 

the study. Fifty participants were excluded as they failed to answer one of the three 

https://www.prolific.co/
https://www.prolific.co/prolific-vs-mturk/
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reading check items correctly (e.g., “As a reading check could you please select the 

answer 'I disagree strongly’ '”), resulting in a final sample of 459 participants. Participants 

provided informed consent prior to completing the survey. This study was approved by 

the local institutional review board. 

Measures 

Facebook Related Constructs 

Facebook Use. The Multidimensional Scale of Facebook Use (MSFU; Frison & 

Eggermont, 2015) consists of 10 items, each rated on a 7-point Likert scale ranging from 

1 (“never”) to 7 (“several times per day”). This instrument measures three types of 

Facebook activities: passive Facebook use (MSFU.PA, e.g. “How often do you look at 

photos of a Facebook friend?), active private Facebook use (MSFU. PR; e.g., “How often 

do you send a private message?”), and active public Facebook use (MSFU.PU; e.g., “How 

often do you post a status update?”). However in line with previous research, we 

decided to exclude one item of the passive Facebook use subscale (“How often do you 

read your newsfeed?”) because this item loaded highly on another subscale (i.e., active 

private Facebook use; Faelens et al., 2019; Frison & Eggermont, 2015). The internal 

consistency of the three subscales in the current study was as follows: passive Facebook 

use (α = .90), active private Facebook use (α = .90), and active public Facebook use (α = 

.91). 

Facebook Intensity. The Facebook Intensity Scale (FBI; Ellison et al., 2007) 

assesses people’s emotional connection to Facebook and its integration in people’s 

daily lives. In this study, we only used the six attitudinal items, rated on a 5-point Likert 
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scale (e.g., “Facebook has become part of my daily routine”). The scale showed good 

internal reliability (Cronbach’s α = .88). 

Intermediate Psychological Constructs 

Facebook-specific Bridging and Bonding Social Capital. The Facebook-specific 

social capital measure (Su & Chan, 2017) was adapted from Ellison and colleagues 

(2014). The Facebook-specific bridging social capital subscale (BRSC) consists of seven 

items and measures the degree to which people perceive bridging benefits (e.g., 

information that triggers new interests) from interaction with their Facebook friends 

(e.g., “Interacting with Facebook friends makes me interested in things that happen 

outside of my city”, α = .89). In contrast, the Facebook-specific bonding social capital 

subscale (BOSC) assesses the extent to which individuals report to experience bonding 

social capital benefits as emotional support and mutual trust via their Facebook friends 

(e.g., “There are several Facebook friends I trust to help solve my problems”, α = .88). 

Both subscales are rated on a 5-point Likert scale ranging from 1 (“strongly disagree) to 

5 (“strongly agree). 

Social Comparison on Facebook. Social comparison on Facebook was measured 

with the Comparison Orientation Measure-Facebook (Steers et al., 2014). The COM-F 

consists of 11 items and is an adaptation of the well-established Iowa-Netherlands 

Comparison Orientation Measure (Gibbons & Buunk, 1999). All items were rated on a 

5-point Likert scale (e.g., “When I am on Facebook, I try to find out what others think 

who face similar problems as I face”, α = .88). 
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Contingent Self-esteem. The Contingent Self-Esteem Scale (CSS; Paradise & 

Kernis, 1999) is a measure of global self-esteem contingency. The 15-item instrument 

consists of 15 items each rated on a 5-point Likert scale ranging from 1 (“not at all like 

me”) to 5 (“very much like me”; e.g., “An important measure of my worth is how 

physically attractive I am.”) and has a good reliability (α = .83). 

Global Self-esteem. The Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965) is 

a widely used measure of global feelings of self-worth and shows good reliability (α = 

.90). The 10-item instrument instructs participants to rate how much they agree with 

each statement (e.g., “I take a positive attitude toward myself”, range 0-30), using a 4-

point Likert scale ranging from 1 (“strongly disagree”) to 4 (“strongly agree”). 

Attentional Control. We used the attentional control subscale of the Adult 

temperament questionnaire to assess attentional control as a stable trait (ATC; Evans 

& Rothbart, 2007). This questionnaire consists of 5 items measured on a 7-point Likert 

scale ranging from 1 (“extremely untrue of you”) to 7 (“extremely true of you”; e.g., 

“It’s often hard for me to alternate between two different tasks”, α = .68). Participants 

could also choose the option ‘Not applicable’ if the item was not applicable to them. 

Rumination. The Ruminative Responses Scale (RRS; Treynor et al., 2003) is a 22-

item instrument that measures trait rumination and indicates how often participants 

generally engage in repetitive negative thinking (α = .94). Responses are scored on a 

four-point Likert scale ranging from 1 (“almost never”) to 4 (“almost always”). 

Psychopathology Symptoms 

Negative Emotional States of Depression, Anxiety, and Stress. The Depression, 

Anxiety and Stress Scales (Lovibond & Lovibond, 1995) is a self-report questionnaire 
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designed to measure psychological distress on three 7-item dimensions. Participants 

are instructed to report the extent to which they experience depressive- (DEPR; e.g., “I 

found it difficult to work up the initiative to do things”, α = .92), anxiety- (ANX; e.g., “I 

was worried about situations in which I might panic and make a fool of myself”, α = 

.86), and stress symptoms (STRESS; e.g., “I felt that I was using a lot of nervous energy; 

α = .87) with response options ranging from 0 (“Did not apply to me at all”) to 3 

(“Applied to me very much, or most of the time”). 

Data Analyses 

Data analysis was conducted in R version 3.5.0 (see supplemental material for 

R-packages used and version information). After detecting skew in the data, we 

conducted a nonparanormal transformation using the huge package (Zhao et al., 2015) 

to improve normality. Subsequently, we estimated a Gaussian Graphical Model (GGM; 

Epskamp & Fried, 2018) using qgraph (Epskamp et al., 2012). Network models consist 

of edges and nodes, where nodes refer to the variables included in the model, while an 

edge represents the relationship between two given nodes. We relied on partial 

correlations to model the unique shared variance between the nodes, using 

regularization to remove spurious edges. In particular, we implemented regularization 

based on the Graphical Least Absolute Shrinkage and Selection Operator (gLASSO; 

Friedman et al., 2014) with Extended Bayesian Information Criterion model selection 

(EBIC). In line with Faelens et al. (2019), we set the EBIC hyperparameter γ at 0.5, erring 

on the side of parsimony (Epskamp & Fried, 2018). In particular, we used thresholded 

EBIC gLASSO (cf. Epskamp, 2018) to maximize model specificity (for a non-thresholded 

version of the network, see supplemental Figure 1), resulting in a model that is less 
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likely to contain false positive edges. We then estimated node predictability – the 

percentage of variance of each node that is explained by its neighboring nodes in the 

network – with mgm (Haslbeck & Waldorp, 2016), and proceeded with bootstrapping 

procedures to assess the reliability of the obtained network model. In particular, 

bootnet (Epskamp & Fried, 2017; Epskamp et al., 2018) was used to compute the 

accuracy of the edge weights, where we provided 95% confidence intervals for all edges 

in the model. In addition, we plotted significant differences between edges, and 

estimated the stability of strength centrality. Node strength centrality provides an 

estimate of the sum of absolute edge weights connected to each node. As such, node 

strength reflects strength of connectivity for a given node (Costantini et al., 2015). We 

standardized this centrality measure to facilitate interpretation. Stability of the order 

of node strength within subsets of the data was established using a case-dropping 

subset bootstrap. In order to be considered stable, the resulting correlation stability 

coefficient should not be below 0.25 and preferably exceed 0.50 (Epskamp et al., 2018). 

To visualize the network model, we relied on a modification of the Fruchterman-

Reingold’s algorithm (Fruchterman & Reingold, 1991), which aims to position nodes 

more central in the model based on their level of connectivity (but see Jones et al., 

2018). The unique associations between two given nodes are represented by edges, 

where (a) the thickness of the edge reflects the strength, and (b) the type of line used 

and color of the edge reflect the valence of this association (blue / full line = positive, 

red / dashed line = negative). Finally, node predictability was plotted as a pie chart in 

the outer ring of each node (Haslbeck & Fried, 2017). 
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Results 

Descriptive statistics of the variables of interest are reported in Table 1. Figure 

2 depicts the GGM, which is a regularized partial correlation network. Each edge depicts 

the unique associations between two nodes while controlling for all other nodes in the 

network. The obtained network depicts two conceptual clusters related to use of 

Facebook (Facebook intensity (FBI), active public, passive and active private Facebook 

use (MSFU-PU/MSFU-PA/MSFU- PR), bonding social capital (BOSC) and bridging social 

capital (BRSC) and emotional vulnerability (rumination (RRS), depression (DEPR), stress 

(STRESS), anxiety (ANX), attentional control (ATC)). These clusters are indirectly linked 

via indicators of social comparison (COMF) and (contingent) self-esteem (CSS). Within 

the cluster related to Facebook use, bridging social capital (BRSC) emerged as a bridging 

construct, being connected to most indicators of Facebook use and social comparison 

(COMF). Within the cluster of emotional vulnerability, attentional control (ATC) showed 

unique negative associations with stress and rumination. The latter emerged as the 

most strongly connected node in the model, closely followed by stress (STRESS), 

depression (DEPR), Facebook intensity (FBI) and bridging social capital (BRSC). Based on 

node strength, attentional control (ATC) was the least central node in the model (Figure 

2 and 3). This was also reflected in terms of node predictability, which is visualized as a 

pie chart around each node. For instance, only 22% percent of variability in attentional 

control was predicted by its surrounding nodes, whereas 64 - 71% of variance in the 

indicators of symptomatology was explained by neighboring nodes. For the 
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corresponding weight matrix and indicators of node predictability, see supplemental 

Tables 1 and 2.1 

The obtained model showed acceptable accuracy and stability, as indicated by 

the bootstrapped 95% confidence intervals around the edge weights (Supplemental 

Figure 2) and the obtained correlation stability coefficient for Strength centrality (.60). 

That is, with a 95% probability, a maximum of 60% of the original sample could be 

dropped while remaining a correlation ≥.70 for Strength centrality between the original 

sample and the obtained samples following the case-dropping subset bootstrapping 

procedure (Supplemental Figure 3). Significant differences between edge weights are 

plotted in Supplemental Figure 4. 

 
1 Note: The GGM was obtained via qgraph, which relies on inversion of the covariance matrix, whereas 

predictability was obtained via mgm, relying on a node-wise regression approach. Importantly, both 

methods yielded similar results, where we observed a correlation of r = .71   between the two obtained 

adjacency matrices. 
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Table 1 

Sample Characteristics 

 N = 459 

Female: Male 232:227 

Continent: 

North America: South America: Europe: Africa: Asia: 

Oceania: Antarctica  

 

52: 2: 392: 0: 8: 4: 1 

Age 26.20 (4.525) 

Facebook intensity (FBI) 18.46 (5.73) 

Social comparison (COMF) 33.63 (8.70), range 1-55 

Global self-esteem (RSES) 17.46 (5.54), range 0-30 

Ruminative tendency (RRS) 49.12 (14.02), range 22-88 

Contingent self-esteem (CSS) 51.40 (8.13), range 15-75 

Passive Facebook use (MSFU.PA) 13.69 (5.06), range 4-28 

Active private Facebook use (MSFU.PR) 9.07 (3.80), range 2-14 

Active public Facebook use (MSFU.PU) 7.09 (3.54), range 3-21 

Stress (STRESS) 7.37 (4.84), range 0-21 

Anxiety (ANX) 5.06 (4.65), range 0-21 

Depression (DEPR) 6.39 (5.58), range 0-21 

Attentional control (ATC) 3.99 (1.12), range 0-35 

Bridging social capital (BRSC) 21.17 (5.85), range 7-35 

Bonding social capital (BOSC) 17.54 (5.72), range 6-30 

Note: Standard deviations are given in parentheses.
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Figure 2  

Regularized Partial Correlation Network 

 

Note: Edges in the GGM represent the unique associations between each of the constructs of 

interest. Edge thickness reflects the strength of association, where strong associations are 

presented using thicker edges. Blue / Full edges represent positive associations, whereas red / 

dashed edges represent negative associations; The edge weights presented in the model can 

also be found in the edge weight matrix (Supplemental Table 1); FBI = Facebook intensity; 

MSFU.PR = active private Facebook use; MSFU.PU = active public Facebook use; MSFU.PA = 

passive Facebook use; BOSC = bonding social capital; BRSC = bridging social capital; COMF = 

social comparison; CSS = contingent self-esteem; RSES = global self-esteem; RRS = ruminative 

tendency; ATC = attentional control; STRESS = stress; ANX = anxiety; DEPR = depression. 

  



  

 108 

Figure 3  

Standardized Strength Centrality 

 

Note: This figure ranks nodes included in the network model based on the extent to which these 

take a more central position in the network. In particular, nodes are ranked based on strength 

centrality, reflecting the level of connectedness of each of the nodes (i.e., the sum of absolute 

edge weights connected to each node). FBI = Facebook intensity; MSFU.PR = active private 

Facebook use; MSFU.PU = active public Facebook use; MSFU.PA = passive Facebook use; BOSC 

= bonding social capital; BRSC = bridging social capital; COMF = social comparison; CSS = 

contingent self-esteem; RSES = global self-esteem; RRS = ruminative tendency; ATC = 

attentional control; STRESS = stress; ANX = anxiety; DEPR = depression. 
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Discussion 

The goal of the current study was to model the complex interrelations between 

Facebook use, social capital, social comparison, self-esteem, attentional control, and 

indicators of risk for affective disorders (level of rumination, stress-, anxiety-, and 

depressive symptomatology). In this context, we used network analysis to provide a 

comprehensive overview of the associations between these constructs, with a specific 

focus on attentional control and social capital in particular. 

First, the results provide a conceptual replication of Faelens et al. (2019). More 

specifically, our results provide support for the importance of social comparison and 

self- esteem, connecting (passive) Facebook use with indicators of psychopathology. In 

line with our expectations, the obtained network structure is highly similar to the model 

obtained by Faelens et al. (2019). That is, the Facebook cluster was linked to social 

comparison and social comparison linked Facebook use with self-esteem. In turn, self-

esteem connects the indicators of psychopathology with social comparison and 

indicators of Facebook use. 

Due to the undirected nature of our network, we cannot make claims about the 

direction of the effects. For example, previous research has shown that users with 

elevated depression- anxiety- or stress symptoms report difficulties at the level of self-

esteem and social comparison process (e.g., Appel et al., 2016). Consequently, they may 

use Facebook differently than healthy users (e.g., Aalbers et al., 2018; Scherr et al., 

2019). However, the explanation that Facebook usage may induce social comparison, 

which may in turn lead to negative self-evaluations, repetitive negative thinking, and 

higher depression/anxiety or stress symptoms is equally plausible (e.g. Feinstein et al., 
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2013; Vogel et al., 2014) and seems to be better supported in the current literature (e.g. 

Appel et al., 2016; Kross et al., 2013; Verduyn et al., 2015).  

Second, we found no direct link between Facebook use and attentional control 

as measured with the effortful control scale. Although attentional control was not 

involved in the relations between Facebook use and depression, it could still have an 

influence as indirect links emerged via rumination, self-esteem, and social comparison. 

That is, individuals showing poor attentional control may be more prone to ruminate, 

which increases the likelihood of experiencing depressive-, stress-, or anxiety 

symptoms (Koster et al., 2011).  

Related to this, ruminators may report lower self-esteem and be more likely to 

compare themselves on Facebook. Vice versa, Facebook use may trigger social 

comparison, which can have a detrimental impact on self-esteem and may induce 

rumination, resulting in poor attentional control. This pathway provides evidence for 

the impulsivity pathway proposed by Billieux (2012). This pathway states that people 

who score high on the impulsivity personality trait are more likely to start ruminating 

when they are confronted with negative feelings due to reduced self-control. As a 

consequence, social media use might serve as a short-term avoidance strategy to deal 

with unpleasant emotions to get rid of the ruminative thoughts. 

Furthermore, there are also several tentative explanations for the absence of 

direct links between attentional control and problematic effects of Facebook use. First, 

attentional control can fluctuate over time, but the ATQ only measures attention as a 

stable construct. Hence, important fluctuations in attention are not captured within the 

current approach. Second, individuals might not be able to give an accurate estimate of 

their attentional capacities in the face of distracting information. Therefore, in future 
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studies, it would be very relevant to investigate attentional control through 

performance tasks that capture minor attentional control fluctuations. The use of an 

ecological momentary assessment design would additionally facilitate the monitoring 

of both the amount of social media use and the short term and long term influences on 

attentional control. 

Third, in addition to extending the initial model with attentional control (cf. 

Faelens et al., 2019), we also examined the role of bonding and bridging social capital 

(Putnam, 2000). In line with previous research, both constructs are directly connected 

with Facebook intensity (Ellison et al., 2007), suggesting that people who feel strongly 

connected to this platform experience higher social capital outcomes. As expected by 

their different nature, both constructs show unique associations in the network. First, 

bonding social capital is uniquely associated with active private Facebook use, which is 

in line with previous research showing that one-on-one communication (e.g., via instant 

messaging) with friends is linked with social capital benefits as perceived social support 

(Frison & Eggermont, 2016). 

 Next, we hypothesized that bonding social capital could function as an 

important intermediate mechanism in the relationship between Facebook use and 

well-being. In contrast to the pattern of results reported in the review of Verduyn et al. 

(2017), we found no direct link between bonding social capital and indicators of well-

being. One possible explanation for this finding is that we mainly included negative 

outcome measures such as stress, anxiety and depressive symptoms. Previous research 

has shown that feelings of social support and relatedness are mainly linked to positive 

outcomes instead of negative outcomes (Reis et al., 2018). For example, Watson and 

Clark (1994) showed that positive affect is raised when people are socializing, whereas 
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negative affect is primarily a function of stressful or aversive events. Another possible 

explanation is that we focused on Facebook-specific social capital and did not include a 

measure of offline social capital. Previous research has shown that computer-mediated 

support especially helps people who are unable to connect with others in an offline 

environment. As an illustration, for socially anxious individuals, online social support via 

Facebook provided an additional source of contact above offline social support, 

increasing subjective well-being. However, this beneficial effect of additional online 

social contacts did not contribute to well-being in the low anxiety group (Indian & 

Grieve, 2014). This may explain the absence of a direct connection between Facebook-

specific bonding social capital and indicators of well-being in our healthy convenience 

sample. 

In contrast, bridging social capital emerged as a key construct. That is, bridging 

social capital seems to connect (a) intensity of Facebook use, active public Facebook 

use, and passive Facebook use, with (b) social comparison, which provides support for 

the role of bridging social capital as a potential risk factor in a social media context. The 

network shows that users, who (1) engage in active interaction with their Facebook 

friends (e.g., by posting photos, status updates) and (2) are passively consuming to 

profile content of their connections, tend to have a higher bridging social capital. 

However, looking at the strategically presented content of others may facilitate the 

process of social comparison with their acquaintances. Although these users have 

access to a lot of new information due to their heterogeneous network, bridging social 

capital can have some unexpected downsides. As users with a higher bridging social 

capital may perceive more desirable content of others, this can be accompanied by 

negative self-evaluations when users rely on this extensive network to compare 
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themselves to others, which may then induce psychopathology symptoms (Vogel & 

Rose, 2016). Vice versa, being in a negative state with low self-esteem may trigger more 

social comparison and bridging social capital. 

The current study set out to model the unique associations between central 

indicators of Facebook use and vulnerability for affective disorders. An important 

strength of this study is that it examines the role of both social capital and social 

comparison in the relationship between Facebook use and indicators of well-being. 

Previous studies suggested that these constructs could be important factors in the 

relationship between Facebook use and well-being. For example, they reported that 

browsing on Facebook could cause distress, by inducing social comparison and envy 

(e.g., Verduyn et al., 2015), which could in turn lead to decreased self-evaluations and 

positive affect (e.g., Vogel et al., 2014). Again, research indicates that the opposite 

pattern may also be plausible (e.g., Aalbers et al., 2018; Scherr et al., 2019), but needs 

further investigation since the literature predominantly focused on the effects of SNS 

use on well-being instead of the reverse direction. Next, active communication with 

Facebook friends could increase people’s social capital, which can result in a higher 

well-being and potentially also the other way around (Billedo, 2019; Frison & 

Eggermont, 2016). 

However, in the current study, only social comparison seems to be involved in 

the (negative) relationship between Facebook use and well-being. With regard to the 

positive relationship, we did not find a direct link between social capital and indicators 

of psychopathology. Second, we were one of the first to model the unique associations 

of attentional control in the context of Facebook use and psychopathology. This is of 

particular interest given the well-established role of attentional control in emotion 
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regulation processes (De Raedt & Koster, 2010; Joormann et al., 2007; Joormann & 

Gotlib, 2010; Joormann & Stanton, 2016) and previously reported inconsistencies 

pertaining the relation between social media use and attentional control (Chen & Yan, 

2016; Junco, 2015; Min, 2017; Ophir et al., 2009). 

The findings of the present study are limited in some respects. Due to the use of 

a convenience sample that we recruited via Prolific, the findings of this research should 

not be overgeneralized. Future research should extend this sample in order to map the 

relationships between Facebook use and indicators of psychopathology in a broader 

group of Facebook users in terms of age groups, ethnicity, etc. Second, the present 

study was limited by self-report measures. Previous research has shown that the 

correlation between retrospective self-report questionnaires and actual smartphone 

usage is weak (e.g. Ellis et al., 2019) Consequently, we should be cautious to make 

strong interpretations about the relationship between SNS use and well-being. 

Therefore, future research should use more objective measurements of Facebook 

intensity to extend the current insights about the impact of intensity of SNS use on well-

being. Notably, a recent prospective study using objective assessment of Facebook use 

did confirm most of the associations observed in the current work (Faelens et al., 2020). 

Third, it should be noted that the obtained network model stems from cross-sectional 

data and is undirected. As such, no inferences can be made regarding causality and the 

direction of the observed relationships. Based on the existing literature – these findings 

likely represent bidirectional pathways. The key strength of this exploratory data-driven 

approach is that it allows to identify and model potential mechanisms across a broad 

range of constructs. However, the direction and causality should be further tested using 

prospective or experimental designs (e.g., Aalbers et al., 2018). 
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Conclusion 

This study set-out to replicate and extend the network model obtained by 

Faelens et al. (2019) with two factors: (1) attentional control and (2) social capital. Our 

results provide a conceptual replication and extension of the original network model(s) 

obtained by Faelens et al. (2019). Interestingly, attentional control showed no direct 

associations with Facebook use, whereas bridging social capital emerged as a key 

variable in the network uniquely connecting indicators of (intensity of) Facebook use 

with indicators of risk for affective disorders via social comparison and self-esteem. 

These findings advance our understanding regarding the complex relation between 

Facebook use and psychological well-being. 
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