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Abstract

Project managers are often responsible for the management of multiple projects and

associated personnel budgeting decisions. In order to determine the workforce size and

mix accurately, we integrate the multi-project scheduling problem and personnel staffing

problem. We construct a baseline personnel roster that takes the personnel scheduling

constraints into account and model the workload stemming from the project activities

as an endogenous variable in the model. In order to decrease the overall staffing budget,

we consider the sharing of resources, i.e. personnel resources can be transferred between

projects. In the problem under study, we consider unproductive resource transfer times

and different restrictions related to the sharing of resources imposed on the schedule of

individual workers, which is often neglected in the literature. We propose a multi-stage

solution procedure that exploits the optimal linear programming solution, obtained via

column generation, to find a high-quality integer solution based on a diving heuristic.

In order to improve the computational performance, different speed-up mechanisms are

included relying on a state space reduction. Detailed computational experiments are

presented to evaluate and benchmark different alternative optimisation strategies. Man-

agerial insights are provided which give insight in the benefits of resource sharing.

Keywords: Multi-project scheduling; Personnel staffing; Column generation; Diving

heuristic; Resource sharing

1 Introduction

Personnel resources are one of the most prominent resources in project management to carry

out the different activities from a project plan. Larson and Gray (2011) indicated that 30 to

50% of the total project costs are related to personnel resources. Therefore, determining the

optimal personnel size and mix and the resulting staffing budget is an important decision for

the project manager. As the working duties of personnel members are restricted by different

calendar constraints, impacting the daily resource capacity, a baseline personnel roster is
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constructed to determine a staffing plan in a more accurate manner (Ernst et al., 2004).

The staffing plan can be further improved by integrating project scheduling and personnel

staffing, which creates extra scheduling flexibility to lower the staffing costs (Maenhout and

Vanhoucke, 2017). When the demand is modelled as an endogenous variable in the personnel

staffing problem, the activity start times and the corresponding workload can be guided by

the resource availabilities stemming from the baseline personnel roster and/or the resource

availability can be changed in function of the activity start times to improve the resource

utilisation.

In this paper, we study a multi-project staffing problem for which decisions should be made

related to the number of personnel resources and the associated budget allocated to the dif-

ferent projects. Project managers, who typically deal with multiple projects simultaneously

(Browning and Yassine, 2010), aim to minimise the personnel budget required to cover the

staffing requirements resulting from the scheduling of the activities related to the different

projects. To that purpose, we integrate the multi-project scheduling problem and the per-

sonnel staffing problem and introduce additional personnel scheduling flexibility by allowing

the sharing of resources between projects to decrease the required personnel budget. We con-

sider two resource types, i.e. regular workers, for which a personnel schedule is constructed,

and temporary workers, which can be hired on a daily basis and are indispensable to obtain

a cost-efficient budget (Wild and Schneewei, 1993; Maenhout and Vanhoucke, 2017). The

regular personnel resources can be transferred from one project to another project to handle

resource shortages. Since we compose an actual (baseline) personnel schedule to determine

the staffing plan, we are able to incorporate unproductive resource transfer times and dif-

ferent time-related restrictions related to the sharing of resources, which is often neglected

in the literature. The problem under study is relevant in multiple domains, e.g. accoun-

tants performing audits for different customers or consultants/software developers working

on different projects for multiple clients (Kuo et al., 2014).

We present a column generation-based diving heuristic to obtain high-quality solutions for the

problem under study. The solution methodology is composed out of multiple stages. In the

first stage, we calculate the optimal linear programming (LP) solution via column generation.

The formulation of the pricing problem, which is related to the scheduling of an individual

worker, demonstrates a large complexity containing both the calendar and resource sharing

constraints. To improve the computational performance, different speed-up techniques rely-

ing on a state space reduction are included. In the second stage, a depth-first diving heuristic

is applied to find an integer staffing plan based on the optimal LP solution. Different variable

fixing strategies are presented which iteratively fix a subset of the fractional activity start

time variables and two variants are proposed to perform a branch-and-bound based on a

restricted number of personnel schedules to find a high-quality integer staffing plan. In the

third stage, the resource transfers in the solution resulting from the diving heuristic are

fixed and the required personnel budget is determined for each project separately taking the

transferred resource capacity into account. In the computational experiments, we validate
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the design choices of our algorithm making the comparison between different variants. In

addition, we benchmark the procedure with other solution procedures commonly applied

in the literature. Managerial insights are provided into the benefits of resource sharing,

especially related to the unproductive transfer times, the timing of transfers and the number

of projects between which resources can be shared.

The remainder of this paper is organised as follows. Section 2 discusses the relevant literature

concerning personnel staffing and project scheduling with resource sharing. The problem

under study is explained in detail in Section 3. The solution methodology is presented in

Section 4. Section 5 analyses the algorithm performance and provides managerial insights

concerning the sharing of resources. Finally, conclusions are provided in Section 6.

2 Literature review

In this section, we review the literature related to the problem under study. In Section

2.1, we discuss personnel staffing and scheduling studies involving different departments or

working locations. In Section 2.2, we discuss the project scheduling literature that considers

the assignment of resources to multiple projects. The literature concerning integrated project

and personnel staffing is reviewed in Section 2.3.

2.1 Personnel scheduling with resource transfers

Personnel staffing and scheduling is a well-studied domain in the operations research lit-

erature (cf the literature reviews of Ernst et al. (2004) and Van den Bergh et al. (2013)).

Staffing problems involve long-term budgeting decisions related to the workforce size and

the personnel mix. Scheduling problems consider the construction of a duty roster for a

medium-term period given the strategic budgeting decisions by assigning specific workers to

working days or tasks. In the remainder of this section, we review the relevant studies that

consider the sharing of resources between different entities (e.g. departments, locations) and

employee cross-training.

Personnel scheduling across multiple departments/locations

Mabert and Raedels (1977) and Bechtold (1988) are amongst the first authors that considered

the sharing of resources for a multi-department personnel planning problem. In their problem

definition, no restrictions are imposed on these transfers. In later studies, different authors

incorporated resource transfers into their model via transfer costs (Dodin and Elimam, 1997;

Bard and Wan, 2006; Batta et al., 2007; Nearchou et al., 2018; Attia et al., 2019; Dahmen

et al., 2019). Dodin and Elimam (1997) recognise the relevance of travel times and costs

but assume that travel times occur during non-working hours and only incorporate travel

costs in their model formulation. Bard and Wan (2006) associate a resource transfer with

a drop in productivity due to travel time and reorientation, which is represented by a cost
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when moving between two work stations. In their study, they assume a fixed workforce

size and minimise the total cost of resource transfers. The trade-off between staffing costs

and transfer costs is studied in Batta et al. (2007). An important application of resource

transfers is the staffing and scheduling of nursing personnel in a hospital. Worthington and

Guy (1988) and Easton et al. (1992) observe that installing float nurses, which are shared

between different wards, leads to significant cost improvements. Other studies (e.g. Franz

et al. (1989)) study the resource transfers of nurses between individual care units in a hospital

in order to satisfy the staffing requirements while minimising the costs related to the resource

transfers. Nearchou et al. (2018) studied a personnel staffing problem considering a multi-

site context where a set of sites should be staffed for a certain number of periods in the

planning horizon. Each time workers are transferred to a site, the site is opened and both a

cost and time penalty are incurred. The objective is to minimise the staffing costs and the

transfer costs. Furthermore, the concept of transfer costs is also frequently used to model the

resource transfers in operational allocation problems where short-term decisions are made

in order to balance the resource capacity and the staff demand in response to operational

variability (Dahmen et al., 2019).

In the literature, different restrictions have been imposed on the sharing of resources. Gen-

dron (2005), Wright and Mahar (2013) and Nearchou et al. (2018) impose a limit on the

number of resource transfers between departments/locations in the planning horizon. Kuo

et al. (2014) investigate the impact of the allowed frequency of transfers between locations

for the assignment of workers to tasks given a predefined duty roster. Bard and Wan (2008)

restricted the resource transfer flexibility by prohibiting some resource transfers from one

base workstation to another workstation. Bard and Wan (2008) and Dahmen et al. (2019)

impose a minimum number of periods that an employee should be assigned to his home

department. Maenhout and Vanhoucke (2013), Nearchou et al. (2018) and Dahmen et al.

(2019) impose a minimum consecutive number of periods the workers can be assigned to a

specific entity. Maenhout and Vanhoucke (2013) show that when this parameter increases,

the staffing cost slightly increases.

Different methodologies have been proposed for the different types of multi-department or

multi-location personnel planning problems. Note that most papers in the literature do not

consider the demand as an endogenous variable in the model or do not construct an actual

personnel roster but rather concern assignment problems (Batta et al., 2007; Nearchou et al.,

2018). The relevant methodologies devised in the literature for multi-department staffing

and/or scheduling problems are typically multi-stage heuristic methodologies. In a first

stage, different studies relax some problem characteristics (e.g. idle times (Bard and Wan,

2006), resource transfer flexibility constraints (Bard and Wan, 2008)) or reduce the solution

space (e.g. by solving the problem for a single entity (Attia et al., 2019), a cluster of multiple

entities (Al-Yakoob and Sherali, 2007), a subset of employees (Al-Yakoob and Sherali, 2007)

and/or a subset of tasks (Belien and Demeulemeester, 2006)). In later stages, improvements

are accomplished by increasing the problem complexity and/or the solution space (Belien

4



and Demeulemeester, 2006; Al-Yakoob and Sherali, 2007; Attia et al., 2019). In some studies,

these stages are organised in a hierarchical manner in the sense that decisions taken in earlier

stages are imposed on later stages (Bard and Wan, 2008; Dahmen et al., 2019). Solution

methodologies are applied such as branch-and-bound methods with a restricted subset of

columns (Batta et al., 2007), variable-fixing heuristics (Batta et al., 2007; Al-Yakoob and

Sherali, 2008; Maenhout and Vanhoucke, 2013), branch-and-price (Maenhout and Vanhoucke,

2013) and meta-heuristics (Bard and Wan, 2006; Nearchou et al., 2018). Most of these

methods rely upon the decomposition of the problem and mathematical programming with

application of Dantzig-Wolfe decomposition to define personnel column variables representing

feasible lines-of-work for employees.

Cross-training

A large body of literature studied the concept of employee cross-training, which is defined

as the training of employees enabling workers to carry out different roles or skills. In this

domain, very similar concepts are encountered related to the multi-project staffing problem

under study. Cross-training has mostly been studied in the context of a multi-skilling prob-

lem. For an overview of multi-skilled workforce scheduling problems, we refer to De Bruecker

et al. (2015). Different studies analyse the benefits of cross-training by varying different fac-

tors such as the number of departments to which workers can be allocated, the level of

cross-training and the demand variability (e.g. Campbell (1999); Brusco (2008); Taskiran

and Zhang (2017)). These studies find that when including a small degree of cross-training,

most benefits of an entirely cross-trained workforce can be captured. Only some of these

studies (e.g. Kher and Malhotra (1994)) explicitly take transfer times or the loss of produc-

tive time into account as a result of the required orientation time at the new department.

In their analysis, they show that cross-training for at least two departments increases the

performance, even when large transfer times are imposed. Eitzen et al. (2004) assume that

each employee has a core skill and a supplementary skill and impose the constraint that

each employee should work at least one shift related to the supplementary skill each fort-

night in order to preserve their skill level. The authors compare different solution methods

exploiting the Dantzig-Wolfe decomposition that assign workers to a complete line-of-work,

i.e. a column expansion method, the reduced column subset method and a branch-and-price

method. Wirojanagud et al. (2007) and Fowler et al. (2008) decide on the amount of hiring,

firing and cross-training in order to minimise cost in a job-shop environment with several

machine groups. Wirojanagud et al. (2007) propose a decomposition approach with solution

space reduction by assigning employees to a subgroup of machines with the assumption that

cross-training workers for a subgroup of machines is likely to be almost as effective as cross-

training workers among all machines in a factory. Fowler et al. (2008) propose two heuristic

rounding mechanisms based on the optimal LP solution.
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2.2 Multi-project scheduling with resource transfers

Scheduling activities of a single project given a set of precedence and resource constraints

is known as the resource constrained project scheduling problem (RCPSP). Hartmann and

Briskorn (2010) review the different variants and extensions within this domain. The resource

constrained multi-project scheduling problem (RCMPSP) involves the scheduling of multiple

projects simultaneously. For an exhaustive overview of the characteristics studied for the

RCMPSP, we refer to Browning and Yassine (2010). In the following, we focus on the

different aspects related to resource sharing in a (multi-)project environment.

Bassett (2000) aims to minimise outsourcing costs by maximising the resource utilisation of

the employees by assigning them to different projects. Certa et al. (2009) study the allocation

of resources to multiple projects and impose a limit on the number of projects an employee

can be assigned to. Heimerl and Kolisch (2010) allocate multi-skilled internal and external

human resources to staff and schedule different IT-projects. They investigate the impact

of centralised planning with shared resources versus decentralised planning with dedicated

resources. Felberbauer et al. (2019) extend the deterministic model of Heimerl and Kolisch

(2010) by considering a stochastic demand and propose a matheuristic that decomposes the

problem into a project scheduling subproblem and a staffing subproblem with fixed resource

availabilities. Krüger and Scholl (2009) develop a heuristic procedure for considering re-

source transfers between activities and/or projects in single- and multi-project environments

and introduce the resource constrained multi-project scheduling problem with transfer times

(RCMPSPTT). The authors argue that transfers take time when resources are physically

moved between locations or when a resource needs reorientation with respect to a new

project content and make the linkage with set-up times in production and project scheduling

(see Mika et al. (2006) and Allahverdi (2015) for an exhaustive overview). In a follow-

up study, Krüger and Scholl (2010) include set-up costs leading to the RCMPSPTTC and

propose a framework that classify the resource transfers and the roles of resources. Different

MIP formulations are presented to model different resource transfer settings. Walter and

Zimmermann (2016) formulate an MIP model that minimises the average team size allocated

to different projects, assuming that the already scheduled projects have to be conducted on

top of their regular departmental work. Switching between their departmental work and

project work is time consuming since the workers should reacquaint themselves with the

project status. Pinha et al. (2016) study the combinatorial multi-mode resource constrained

multi-project scheduling problem (MMRCMPSP) and define multiple modes (e.g. hiring

of temporary personnel) via the formulation of a combinatorial optimisation problem in

order to better allocate resources between different projects. Besikci et al. (2015), on the

other hand, study the MMRCMPSP, minimising the total weighted tardiness to complete

the different projects with a dedicated resource policy prohibiting that resources are shared

due to project and/or resource characteristics. The latter references do not consider transfer

times. Transfer times are taken into account in the context of a single-project scheduling

problem where tasks of a single project are performed in different locations (Laurent et al.,
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2017; Kadri and Boctor, 2018).

2.3 Project staffing with calendar constraints

There are only a few studies that compose the project staffing plan accurately by simulta-

neously constructing a project schedule and a personnel roster taking calendar constraints

into account. In these studies, only a single project has been scheduled and hence, resources

are dedicated. All methods apply the Dantzig-Wolfe decomposition using personnel pat-

tern variables to assign regular workers to individual days-off schedules in the (restricted)

master problem. Alfares and Bailey (1997) and Alfares et al. (1999) study an integrated

project task and cyclic manpower scheduling problem respectively with a homogenous and

heterogeneous workforce. These authors propose a two-step procedure where the first phase

focuses on the scheduling of the project activities and the second phase embodies the project

staffing problem with fixed resource demand. Maenhout and Vanhoucke (2016) study the

project staffing problem for which duty lines are constructed according to an acyclic days-off

scheduling problem and additional personnel scheduling flexibility is introduced via over-

time and temporary personnel. The restricted master problem considers the activity start

time variables explicitly. A dedicated branch-and-price procedure is proposed that solves a

column generation procedure in each node of the search tree. A pricing problem is solved

once for the homogeneous set of workers. For the same problem, Maenhout and Vanhoucke

(2017) investigate the impact of different kinds of personnel flexibility, i.e. the type of re-

sources and time-related constraints included, on the staffing budget. Van Den Eeckhout

et al. (2019) study the project staffing problem with discrete time/resource trade-offs, i.e.

the activity duration depends on the number of assigned employees leading to multiple al-

ternative execution modes. A matheuristic is presented that applies different activity-based

and personnel-based types of decomposition in order to improve the project and personnel

schedule locally in an iterated local search framework. For the same problem, Van Den Eeck-

hout et al. (2020) present an exact procedure based on an alternative formulation modelling

the project scheduling constraints implicitly in the decision variables of the master problem

via the Dantzig-Wolfe decomposition. As a result, two types of column variables are defined,

i.e. personnel pattern variables and workload pattern variables, and the column generation

algorithm needs to iterate between the restricted master problem and two pricing problems.

Based upon the optimal LP solution, the procedure decomposes the search space by defining

multiple tactical subproblems with a stipulated workforce size. Afterwards, the procedure

searches for the optimal integer solution by solving the different tactical subproblems using

branch-and-price. In order to speed up the procedure, different cuts are developed and added

to the workload pricing problem.
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3 Problem definition and formulation

We study a strategic budgeting problem that integrates the multi-project scheduling problem

into the personnel staffing problem. In order to accurately determine the size and mix of the

required resources, a staffing plan is composed by solving a manpower days-off manpower

scheduling problem to construct a baseline personnel roster that is subject to calendar or

time-related scheduling constraints and the staff coverage requirements. The employees are

assigned to days on and days off and should carry out the scheduled activities of multiple

projects. By integrating multi-project planning in the staffing problem, the resource demand

is an endogenous variable and delivers flexibility related to the timing of the activities and the

corresponding workload. The multi-project scheduling problem specifies the start times of

the activities, each with their own duration and resource requirement, and, hence, determines

the number of personnel resources required per time unit. The goal of the personnel staffing

problem is to determine the minimum budget for regular and temporary workers based on

the demand for staff stemming from the multi-project scheduling problem. We introduce

additional resource flexibility as workers can be shared between projects. The flexibility

of transferring resource capacity between projects is defined according to different resource

sharing constraints. These constraints determine the number of projects between which

resources are shared, the timing of resource transfers and the unproductive transfer times.

The input characteristics of both scheduling problems are discussed in Section 3.1. Section

3.2 provides a mathematical problem formulation of the problem under study. Figure 1

illustrates the problem context and is explained in further sections below.
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Figure 1: Illustration of the multi-project staffing problem with resource sharing

3.1 Problem context and input characteristics

The (multi-)project and activity characteristics

The demand planning problem embodies a multi-project scheduling problem that considers

a set of projects P (index p). Each project p can be characterised by an activity-on-the-node

network Gp = (Np, Ap). The set of nodes Np encompasses the project activities and the arcs

Ap between certain pairs of nodes represent the direct finish-start precedence relationship

between a pair of activities with time lag 0. This implies that an activity can only start when

all its predecessors are finished. Each project consists of |Np| activities (index i), numbered

from 0 to n + 1. Each activity i ∈ Np (∀p ∈ P ) has a single execution mode characterised

by a particular duration dpi and resource demand rpi. The dummy start activity 0 and

dummy end activity n+1 have a zero duration and zero resource demand. For each project
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p, a deadline δp,n+1 is imposed on the completion of the dummy end activity, which defines

the planning period Tp (index t). Each activity should be executed without pre-emption.

The scheduling of the activities is guided by the resource availability stemming from the

personnel roster. Figure 1 displays the project and activity characteristics and a feasible

activity schedule for two projects together with the calculated resource requirements. Note

that the two projects have a different deadline.

The personnel staffing characteristics

A staffing plan is constructed for regular and temporary workers by composing a baseline

personnel roster to accurately determine the resource availability. A decision should be

made related to the required capacity and mix of regular and temporary workers to carry

out the workload stemming from the multiple projects on each day of the planning horizon.

The regular workers are assigned to a certain base project p′ ∈ P and individual personnel

schedules or lines-of-work with a planning horizon Tp′ . The length of the planning horizon is

equal to the deadline of the base project p′, i.e. |Tp′ | = δp′,n+1. These individual lines-of-work

embody a sequence of days on and days off. In addition, every workday embodies a working

duty, i.e. a regular worker staffs either an activity stemming from project p ∈ P or a transfer

duty when the worker is switching between projects. The assignment of regular employees

to working days is guided by a set of time-related or calendar constraints, i.e. counter and

sequence constraints. Therefore, the planning period of a project Tp′ is divided into different

unit time periods l ∈ Lp′ with length |Tl|. In each such unit time period, an employee should

work a minimum (wmin) and maximum (wmax) amount of days. Furthermore, restrictions

are imposed on the minimum (nmin) and maximum (nmax) consecutive workdays and on

the minimum (fmin) and maximum (fmax) consecutive days off. These constraints restrict

the availability of regular workers, which are hired for the entire planning period at a cost

cRG × |Tp′ | with cRG equal to the daily hiring cost of a regular worker. The temporary

workers can be hired for a single day at a cost cTP and are assigned to a particular project

p.

The personnel resources can be shared between different projects to cover the peak demand

in the schedule of a particular project or to handle the resource shortage in the staffing

plan of the project. We assume a homogeneous workforce, i.e. each worker can work on all

projects without productivity loss. Whenever a regular worker switches between projects,

a resource transfer takes place. Based on the literature, the following restrictions related

to the sharing of resources, limiting the resource transfer flexibility, are taken into account,

i.e.

- Each regular worker can work at most upon ω projects in the planning horizon.

- An employee should be at least αmin consecutive days allocated to a certain project before

he can be transferred to another project.

- An employee should perform at least one working duty at his base project in a consecutive

period of αmax days.

- A resource transfer time of β days is incurred when a resource transfer takes place between
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projects. These days represent the time workers need to familiarise with the new project

and are therefore counted as working duties. As a result of this resource transfer time,

workers cannot be assigned to project duties but are allocated to a transfer duty during

β consecutive days.

- A regular worker should be assigned on the first and last day of the planning horizon

to his base project. Similarly, the first day after a resource transfer, the workers should

effectively staff a particular activity of the newly assigned project. This ensures that an

employee works primarily duties related to his base project, unless there is a capacity

shortage to staff activities of another project.

Figure 1 displays a staffing plan for each project, i.e. a baseline personnel roster for regular

workers and the number of temporary workers in line with the project workload of the

associated project. For project 1, three regular workers and no temporary workers are hired.

For project 2, three regular workers and three temporary workers are hired. Note that some

personnel resources, originally assigned to project 1, are shared with project 2 and a resource

transfer takes place on day 5 and 6 and associated transfer duties are scheduled on day 4

and 7. In this way, a smaller number of budgeted resources is required to cover the resource

demand stemming from the multiple project schedules.

3.2 Problem formulation

Different authors that studied the project staffing problem with calendar constraints (Maen-

hout and Vanhoucke, 2016; Van Den Eeckhout et al., 2019) have proposed a formulation

based on the Dantzig-Wolfe decomposition embodying a master problem with a large num-

ber of column variables (Section 3.2.1) and a subproblem defining the feasibility of these

columns (Section 3.2.2) (Vanderbeck, 2000). In the following, we explain the decision vari-

ables of the models, provide a mathematical formulation and discuss the relationship between

both models.

3.2.1 The master problem

The master problem integrates the personnel staffing problem and the multi-project schedul-

ing problem by composing the staffing plan with minimum cost and selecting adequate sched-

ules for the different projects. In the formulation, we consider the start time variables for

each project activity explicitly and personnel staffing variables to schedule regular workers

and temporary workers over the planning horizon. The personnel staffing variables assign

regular workers to feasible individual lines-of-work, which consider the personnel schedul-

ing constraints implicitly, and are labelled as column variables. Note that the considered

resource-constrained project scheduling problem, which arises when considering fixed re-

source availabilities e.g. based on a known staffing plan, has been shown to be NP-hard

(Garey and Johnson, 1979; Blazewicz and Rinnooy Kan, 1983). When considering the re-
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source demand as fixed e.g. stemming from a known project schedule, the problem embodies

a non-cyclic personnel staffing problem. Findings by Garey and Johnson (1979) and Brucker

et al. (2011) indicated that the non-cyclic staffing problem to minimise the number of em-

ployees to perform only one task is already NP-hard. Brunner and Kohler (2013) proved

that the personnel staffing problem under study without resource sharing constraints and

constraints related to the minimum number of working days is NP-complete.

Decision variables

The start times of the project activities are guided by the project scheduling variables vpit

which take the value 1 if activity i of project p starts at time t, 0 otherwise. The variables

xjp′ determine the number of workers assigned to pattern j with base project p′, whereas the

variables opt determine the number of temporary workers hired to work on project p on day

t. A personnel line-of-work or pattern j, related to base project p′, consists of a sequence of

days-on and days-off assignments, allocating the worker on each day to a particular project

or to a transfer duty, represented by the parameters ajp′pt and bjp′t. The parameters ajp′pt

are equal to 1, if day t embodies a working day on project p, 0 otherwise. The parameters

bjp′t are equal to 1 if day t is a transfer duty, 0 otherwise. The set Jp′ denotes the set of

patterns that postulate project p′ as the base project. The total set of patterns J is equal

to ∪p′∈PJp′ . The cost of a personnel pattern j (cjp′) is equal to the length of this planning

period of project p′ (|Tp′ |) multiplied by the daily cost to hire regular workers (cRG), i.e.

cjp′ = |Tp′ | × cRG.

Mathematical problem formulation

Minimise
∑

p′∈P

∑

j∈Jp′

cjp′ xjp′ +
∑

p∈P

∑

t∈Tp

c
TP

opt (1)

subject to
∑

p′∈P

∑

j∈Jp

ajp′pt xjp′ + opt −
∑

i∈Np

t∑

t∗=max(1,t−dpi+1)

rpi vpit∗ ≥ 0 ∀p ∈ P, ∀t ∈ Tp (2)

∑

t∈Tp

vpit = 1 ∀p ∈ P, ∀i ∈ N (3)

∑

t∈Tp

t vpjt −
∑

t∈Tp

t vpit − dpi ≥ 0 ∀p ∈ P, ∀(i, j) ∈ Ap (4)

∑

t∈Tp

t vp,n+1,t ≤ δp,n+1 ∀p ∈ P (5)

xjp′ ≥ 0 and integer ∀p′ ∈ P, ∀j ∈ Jp′

opt ≥ 0 and integer ∀p ∈ P, ∀t ∈ Tp

vpit binary ∀p ∈ P, ∀i ∈ N, ∀t ∈ Tp (6)

The objective function (1) minimises the staffing budget for all projects consisting of the

cost of regular and temporary workers. Constraints (2) link the multi-project scheduling

problem and the personnel staffing problem, enforcing that for each project and each day a

sufficient number of personnel resources are available to cover the demand of the activities

in progress. Constraints (3) assign exactly one start time to each activity. Constraints (4)
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represent the precedence constraints, indicating that a successor activity cannot start before

its predecessors are finished. The project deadlines are enforced by constraints (5). The

domains of the different variables are stated in constraints (6).

3.2.2 The subproblem

The subproblem defines the feasibility of an individual line-of-work for a regular personnel

member, impacting the set of patterns J and the characteristics of the personnel patterns

considered in the master problem. The feasibility of a personnel pattern is related to (i)

the sequence of days on and days off assignments and (ii) the allocation of the employee

to the different projects and the timing of possible resource transfers. The subproblem is

further defined by the base project to which the regular personnel members are assigned

as the scheduling horizon is dependent on the deadline of the considered base project. The

feasibility of a personnel pattern j when project p′ is set as the base project is controlled by

the following decision variables and constraints:

Decision variables

The duty assignments composing such a line-of-work are determined by the decision variables

upt and ept. The variables upt (ept) are equal to 1 if day t is a working day (day off) assigned

to project p, 0 otherwise. The variable yp is equal to 1 if the worker has been assigned to

project p on some day in the planning horizon. The variables qt take the values 1 if day t is a

transfer duty, 0 otherwise. The variables kt are equal to 1 if a resource transfer starts at day

t, 0 otherwise. Note that the decision variables upt and qt define the values of the parameters

ajp′pt and bjp′t for personnel pattern j as considered in the master problem formulation (cf

Section 3.2.1).

Personnel scheduling constraints

Both time-related constraints and restrictions related to the sharing of resources are included

in this subproblem, i.e.

• Time-related constraints - Constraints (7) state that on each day, the employee

should be either assigned to a working day or a day off and a particular project, or

the worker is assigned to a transfer duty. Constraints (8) and (9) limit the minimum

and maximum working assignments in a unit time period. Note that the transfer

duty assignments are also considered as a working assignment. Constraint (10) and

(11) restrict the minimum and maximum number of consecutive working assignments.

More specifically, constraints (10) state that if day t is a working day and day t−1 is a

day off, then the next nmin days (including day t) should be working days. Constraints

(12)-(13) are the constraints related to the minimum and maximum consecutive number

of days off.
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∑

p∈P

(upt + ept) + qt = 1 ∀t ∈ Tp′ (7)

∑

t∈Tl

(
∑

p∈P

upt + qt) ≥ w
min ∀l ∈ Lp′ (8)

∑

t∈Tl

(
∑

p∈P

upt + qt) ≤ w
max ∀l ∈ Lp′ (9)

t+nmin−1∑

t

(
∑

p∈P

upt + qt)− n
min (

∑

p∈P

upt + qt) (1−
∑

p∈P

up,t−1 − qt−1) ≥ 0 ∀t ∈ {2, ..., |Tp′ | − (nmin − 1)}

(10)

t+nmax∑

t

(
∑

p∈P

upt + qt) ≤ n
max ∀t ∈ {1, ..., |Tp′ | − n

max}

(11)

∑

p∈P

t+fmin−1∑

t

ept − f
min

∑

p∈P

ep,t−1 (1−
∑

p∈P

ept) ≥ 0 ∀t ∈ {2, ..., |Tp′ | − (fmin − 1)}

(12)

t+fmax∑

t

∑

p∈P

ept ≤ f
max ∀t ∈ {1, ..., |Tp′ | − f

max}

(13)

• Resource sharing constraints - Constraints (14) enforce that the variables yp are

equal to 1 if the worker has been assigned to project p in the planning horizon. Con-

straint (15) states the employee can work at most upon ω projects during the planning

horizon. Constraints (16) stipulate the minimum number of consecutive days a worker

is assigned to a project before he can be transferred to another project. Constraints

(17) state that in a timespan of αmax days, the employee should work at least one day

on the base project p′. Constraints (18) and (19) model the resource transfers using

the variable qt and kt. Constraint (18) models that a resource transfer is initiated

(kt = 1) with the first transfer duty, i.e. an employee has no transfer duty at time t−1

(qt−1 = 0), but has a transfer duty on day t (qt = 1). Constraints (19) state that the

resource transfer requires β consecutive days. Note that the time-related constraints

(7)-(13) view transfer duties as working duties such that a resource transfer cannot be

interrupted by a day off. Constraints (20) and (21) state that the employee should

be assigned to the base project p′ on the first and last day of the planning period,

respectively.

The previous constraints are however not sufficient to correctly model the resource

transfers when the transfer time β > 0. For that purpose, we prohibit the consecutive

assignment of a worker to different projects via constraint (22). This constraint stip-

ulates that a worker cannot switch between projects on consecutive days. The worker

can only be assigned to project p on day t, if the worker has not been assigned to a

different project on day t− 1. Constraints (23) state that the first day after a resource

transfer should be a working day. An employee, allocated to a particular project, can
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only be given a day off on day t when day t− 1 was either a day off or a working duty

on that project. Note that constraints (18), (19), (22) and (23) are only included when

the transfer time β > 0.

∑

t∈Tp

upt ≤ M yp ∀p ∈ P (14)

∑

p∈P

yp ≤ ω (15)

t+αmin−1∑

t

(upt + ept)− α
min

upt (1− up,t−1) ≥ 0 ∀t ∈ {2, ..., |Tp′ | − (αmin − 1)}, ∀p ∈ P (16)

t+αmax∑

t

up′t ≥ 1 ∀t ∈ {1, ..., |Tp′ | − α
max} (17)

qt − qt−1 ≤ kt ∀t ∈ {2, ..., |Tp′ |} (18)

t+β−1∑

t

qt ≥ β kt ∀t ∈ {1, ..., |Tp′ | − (β − 1)} (19)

up′0 + ep′0 = 1 (20)

up′|Tp′ |
+ ep′|Tp′ |

= 1 (21)
∑

p∗∈P\{p}

up∗,t−1 +
∑

p∗∈P\{p}

ep∗,t−1 + upt + ept ≤ 1 ∀t ∈ {2, ..., |Tp′ |}, ∀p ∈ P (22)

ept ≤ ep,t−1 + up,t−1 ∀t ∈ {2, ..., |Tp′ |}, ∀p ∈ P (23)

• Domain constraints - Constraints (24) state the domains of the different decision
variables.

upt, ept binary ∀p ∈ P, ∀t ∈ Tp′

yp binary ∀p ∈ P

kt, qt binary ∀t ∈ Tp′ (24)

4 Solution procedure

In this section, we propose a Column Generation-based Diving Heuristic to solve the multi-

project staffing problem under study with resource sharing and calendar constraints. In the

literature, different methodologies have been proposed for related problems using column

generation. However, the definition of a singular pricing problem that considers all project

assignments during the construction of an individual line-of-work leads to a slow convergence

of the column generation algorithm and is computationally inefficient. In order to accelerate

the search for a high-quality solution, we propose a multi-stage solution methodology that

includes different types of state space reduction. The different steps of the procedure are

displayed in Algorithm 1 and are discussed in detail below.

In the first stage, the optimal LP solution in the root node of the search tree is obtained

using a column generation algorithm since it is inefficient to generate all possible personnel
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Algorithm 1 Column Generation-based Diving Heuristic

Find the optimal LP solution in the root node via column generation (Section 4.1 and 4.2)
1: Decompose multi-project staffing problem into multiple single-project staffing problems with dedicated resources
2: for each base project do
3: Determine optimal personnel budget
4: Retain generated personnel schedules

5: Calculate initial upper bound value by summing individual personnel budgets
6: Solve column generation algorithm in the root node of the search tree

Diving heuristic (Section 4.3)
7: if Optimal LP solution is fractional then
8: do
9: Fix activity start time variables with value 1
10: Fix (set of) fractional activity start time variable(s) to 1
11: Solve column generation algorithm
12: Increase depth of the search tree
13: while Fractional activity start time variables exist
14: Apply restricted branch-and-bound to construct an integer multi-project staffing plan

Improvement step (Section 4.4)
15: Fix resource transfers and determine incoming and outgoing resource capacity
16: Decompose multi-project staffing problem into multiple single-project staffing problems
17: for each base project do
18: Adapt staffing constraints (eq. (2))
19: Determine optimal personnel budget

20: Calculate final upper bound value by summing individual personnel budgets

schedules. In Section 4.1, we present the column generation algorithm and the associated

restricted master problem and pricing problem. Column generation relaxes the integrality

conditions and works only with a subset of all possible variables. Additional variables are in-

cluded via a pricing step based on the dual prices returned by the restricted master problem.

The proposed column generation is improved by using different dedicated speed-up tech-

niques, discussed in Section 4.2. In this way, we start the column generation procedure via

an initialisation procedure that considers the multi-project staffing problem with dedicated

resources, i.e. the project staffing problem is solved for the different projects independently.

This efficient initialisation procedure devises an upper bound for the procedure and finds a

set of columns to initialise the column generation procedure. In order to tackle the increased

complexity resulting from the multi-project staffing problem with resource sharing, different

speed-up mechanisms are implemented in the pricing procedure. The most prominent one is

the state space reduction mechanism that reduces the number of projects a personnel mem-

ber can be assigned to in a line-of-work in order to decrease the complexity of the pricing

problem. In this way, different strategies are devised to determine the order and charac-

teristics of the different pricing problems that are visited, to steer the convergence of the

column generation algorithm towards the optimal LP solution. If the optimal LP solution is

integer, we have found an optimal solution for the original integer problem. If not, we need

additional steps to find a high-quality integer solution.

In the second stage, a greedy diving heuristic is applied to convert the fractional solution into

a feasible integer solution, which is detailed in Section 4.3. The diving heuristic repetitively

fixes one or several fractional assignments in a depth-first search without backtracking. The

variable fixing is related to the project scheduling variables and we explore different diving

strategies, which determine the number of variables that are fixed in each node. Whenever
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variables are fixed, the depth of the branching tree is increased and a column generation

procedure is invoked in each newly visited node in the tree. Once all activity start time vari-

ables have been fixed, a restricted branch-and-bound is applied given the set of personnel

schedules that are generated in the process, to construct an integer multi-project staffing

plan.

In the third stage, the incumbent solution is improved by optimising the staffing plans of the

different projects separately given the resource transfers stemming from the solution found

by the diving heuristic in the second step (Section 4.4). These resource transfers lead to

additional or reduced resource capacity from regular workers who are assigned to a different

project than their base project. In other words, we determine the in- and outgoing resource

capacity transfers and optimise the staffing plan for each project independently given this

transferred resource capacity.

4.1 Column generation

The column generation algorithm iterates between the so-called restricted master problem

(RMP ) and the pricing problem (PP ). The restricted master problem is similar to the

defined master problem (eqs. (1)-(6)) but takes only a subset of the column variables J̄p′ ⊂

Jp′ into account. In order to find the optimal LP solution, the integrality conditions of the

(restricted) master problem (eq. (6)) are relaxed. Note that as a result of the presence of

temporary workers in the problem definition, a feasible solution to the RMP always exists,

even if J̄ = ∅.

Based on the dual variables of the restricted master problem, the pricing problem searches

for feasible columns with negative reduced cost in order to decrease the objective function

value of the restricted master problem. The formulation of the personnel pricing problem is

dependent on the considered base project p′ and may be solved multiple times in different

guises according to the selected characteristics following the embedded state space reduction

approach (cf Section 4.2.2). The personnel pricing problem embodies an acyclic days-off

scheduling problem that comprehends the personnel scheduling constraints as postulated

in the subproblem definition (eqs. (7)-(24)). The objective function (eq. (25)) of the

pricing problem minimises the reduced cost (RC), which is determined by the cost of the

personnel pattern cjp′ and the dual prices πpt related to constraints (2) resulting from the

restricted master problem. This pricing problem is a weighted resource-constrained shortest

path problem with capacity constraints, which has been shown to be NP-hard (Garey and

Johnson, 1979; Dumitrescu and Boland, 2003). In the literature, different approaches have

been proposed for solving this problem, amongst them are branch-and-bound approaches,

which is applied in this study, implemented via a commercial IP solver.

Minimise RC = cjp′ −
∑

p∈P

∑

t∈Tp

πpt upt (25)
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Whenever a new column has been added to the restricted master problem, a new iteration is

performed and the restricted master problem is resolved. The procedure is terminated when

no more columns with negative reduced cost can be found (Barnhart et al., 1998).

4.2 Speed-ups for the column generation algorithm

In order to decrease the computational time of the column generation algorithm, differ-

ent speed-up mechanisms are implemented in the algorithm. In Section 4.2.1, the solution

methodology is discussed to construct an initial heuristic solution. Section 4.2.2 presents the

state reduction approach defining the sequence and characteristics of the pricing problems

to be solved. Section 4.2.3 discusses other included speed-up mechanisms.

4.2.1 Initialisation of the column generation algorithm

In order to initialise the column generation algorithm, we first construct an initial upper

bound assuming that all resources are dedicated to a specific project since the sharing of

resources between different projects with explicit resource transfers times complicates the

problem under study significantly. This initial heuristic applies a heuristic state space de-

composition of the multi-project staffing problem setting ω equal to 1. The problem is

decomposed into multiple single-project staffing problems determining the personnel budget

for each project separately. Summing the personnel costs for the different projects leads

to the total required personnel budget, which is set as an initial upper bound. This upper

bound can be used to analyse the benefits of resource transfer flexibility, which will be dis-

cussed in the computational experiments. In order to find an initial solution, we apply the

branch-and-price procedure of Van Den Eeckhout et al. (2020). Preliminary experiments

showed that this solution procedure leads to better results to obtain the personnel budget

for individual projects, compared to other solution procedures in the literature. Note that

the different sets of personnel patterns that are generated to find the initial incumbent with

resources dedicated to a specific project, are used to initialise the column generation algo-

rithm for finding the optimal LP solution of the multi-project staffing problem with shared

resources.

4.2.2 State space reduction to solve the pricing problem

In the proposed problem formulation, the sharing of the resources between projects is mod-

elled implicitly in the personnel pattern variables of the restricted master problem and is

explicitly modelled in the personnel pricing problem. As a result, this pricing problem con-

tains a large number of variables and constraints, which impacts the problem complexity and

associated solution time. In order to decrease the computational time to solve the personnel

pricing problem, a state space reduction (SSR) approach is applied in which iteratively,
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a subset of the assignments in the pricing problem are not eligible and are fixed to zero.

The construction of the state space reduction algorithm is such that the column generation

procedure is guaranteed to find the optimal LP solution. We start from a smaller number of

eligible assignments and whenever we are not able to find a column with negative reduced

cost, the state space is adapted by gradually increasing its size or changing the relevant set

of variables until the complete solution space is explored. This is motivated by two factors.

First, the computational time increases if the possible number of assignments and constraints

increase. Second, previous research showed that by including a limited degree of flexibility,

the largest cost improvements can already be ensured.

The state space reduction approach is guided by the parameters SSRstrat, Projectstrat and

Prioritystrat. These parameters steer the computational effort and the convergence of the

column generation algorithm towards the optimal LP solution by defining the sequence of

the type of pricing problems that are solved in a successive manner. The parameter SSRstrat

determines the set of different state spaces S to be visited for a certain base project. The

personnel pricing problem should be solved for each base project, which would lead to a total

of |S| × |P | pricing problems. However, not all these subproblems should be solved in each

column generation iteration. Once a personnel pattern with negative reduced cost is found,

the restricted master problem can be revisited, leading to more accurate dual variables to

solve the next pricing problem, which may again feature a lower number of variables and

constraints. The parameter Projectstrat defines the project ordering according to which

the related personnel pricing problems are visited. The parameter Prioritystrat indicates if

priority should be given to solving all pricing problems successively related to a certain state

space or related to a certain base project. Note that when the column generation algorithm

reaches its final iterations, the impact of these parameters will decrease since more/all pricing

problems should be solved to obtain a personnel pattern with negative reduced cost.

Definition and ordering of the visited state spaces (SSRstrat)

The state space reduction strategy (SSRstrat) stipulates the amount |S|, the order and

the characteristics of the state spaces that are potentially visited in the pricing step. The

state space of a pricing problem is defined via the maximum number of projects ω and

the set of eligible projects P e ⊆ P to which the regular workers can be assigned. These

parameters determine the relevant decision variables and constraints in a pricing problem

and the associated computational complexity of this pricing problem (cf Appendix A). The

smaller the number of projects considered, the larger the number of variables in the pricing

problem that are set to 0. As a result, constraint (26) is added to the personnel pricing

problem (7)-(25) and the set P e will replace the set P in constraints (7)-(24). When ω = 1,

constraint (27) can be added stating that no resource transfers are allowed.
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∑

p∈P :p/∈Pe

∑

t∈Tp′

upt +
∑

p∈P :p/∈Pe

∑

t∈Tp′

ept +
∑

p∈P :p/∈Pe

yp = 0 (26)

∑

t∈Tp′

kt +
∑

t∈Tp′

qt = 0 (27)

Every state space reduction strategy starts from a state space without the sharing of resources

between projects (ω = 1, |P e| = 1). When no eligible personnel pattern is found with

a negative reduced cost, the state space is gradually increased and a different state space

will be visited by increasing the maximum number of projects ω and/or adapting the set

of eligible projects P e ⊆ P . The pricing problem with the largest state space (ω = |P |,

|P e| = |P |) is solved last in the pricing step. We consider the following strategies to define

the different state spaces:

• SSRstrat = 0: A single state space is constructed where an employee can be assigned to

every project (ω = |P |, |P e| = |P |). This strategy resembles the base setting where no

state space reduction is applied and only the original personnel pricing problem (7)-(25)

is solved for each base project in the pricing step.

• SSRstrat = 1: This strategy considers two state spaces, i.e. a state space without resource

sharing (ω = 1, |P e| = 1) and a state space with complete resource sharing where the

personnel resources are potentially shared between all projects (ω = |P |, |P e| = |P |).

• SSRstrat = 2: In this strategy, we consider three state spaces, i.e. (i) without resource

sharing (ω = 1, |P e| = 1); (ii) with a limited degree of resource transfer flexibility (ω = 2,

|P e| = |P |), i.e. the employee is allowed to work on one additional project apart from

his base project, without specifying the additional project; (iii) with complete resource

sharing (ω = |P |, |P e| = |P |).

• SSRstrat = 3: This strategy considers |P | different state spaces, defined by the maximum

number of projects to which an employee can be assigned. In this way, the parameter

ω is gradually increased in the interval [1, |P |]. All projects are eligible for selection

(|P e| = |P |).

• SSRstrat = 4: This strategy visits the same state spaces as defined by SSRstrat = 2.

However, when ω = 2, the additional project to which the regular worker can be assigned

during the planning horizon apart from the base project is specified via the set P e (ω = 2,

|P e| = ω).

• SSRstrat = 5: This strategy visits the same state spaces as defined by SSRstrat = 3.

However, when ω ∈ [2, |P | − 1], the additional project(s) to which the regular worker can

be assigned during the planning horizon apart from the base project is specified via the

set P e (|P e| = ω).

To illustrate the defined state space strategies, Table 1 displays the characteristics of all

pricing problems for the strategies SSRstrat = 0, 2 and 4 given |P | = 4. The second column

displays the value of the parameter ω for each state space. The other columns represent the

projects included in the set P e, where the number before the semicolon indicates the base
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project. For example ’1: 2’ indicates the state space where project 1 is the base project and

employees can also be assigned to project 2. When no SSR is applied, |P | pricing problems

exist and only the order of base projects should be determined to visit the corresponding

pricing problems. When SSR is applied, the number of pricing problems increase (e.g. 20

pricing problems for SSRstrat = 4).

ω Pe

SSRstrat = 0 4 1: 234 2: 134 3: 124 4: 123

SSRstrat = 2

1 1: 2: 3: 4:

2 1: 234 2: 134 3: 124 4: 123

4 1: 234 2: 134 3: 124 4: 123

SSRstrat = 4

1 1: 2: 3: 4:

2 1: 2 2: 1 3: 1 4: 1

2 1: 3 2: 3 3: 2 4: 2

2 1: 4 2: 4 3: 4 4: 3

4 1: 234 2: 134 3: 124 4: 123

Table 1: Illustration of state space characteristics for SSRstrat = 0, 2 and 4 with |P | = 4

Note that the state spaces are always visited with an increasing value for the parameter ω.

However, for SSRstrat = 4 and SSRstrat = 5, the additional eligible project(s) should be

specified as well leading to different state spaces with the same value for ω. Preliminary

experiments showed that applying a random order with respect to the state space definition

of P e performed best.

Ordering personnel pricing problems according to the (base) project (Projectstrat)

The parameter Projectstrat defines the order of base projects according to which the related

pricing problems are visited. We distinguish the following categories:

• Random: The order of projects is determined in a random manner.

• Deterministic: The order of projects is based on instance information related to the

different projects. More specifically, we consider the project deadline and work content

in increasing/decreasing order, and the logical order of projects based upon the project

numbering.

• Dynamic: The order of projects is based on information that is updated during the

column generation algorithm. More specifically, the projects are ordered based on infor-

mation of the last pricing problem related to a specific project, i.e. the required CPU

time or the reduced cost (RC), or based on the information related to the solution of the

restricted master problem, i.e. the number of workers assigned to the project.

Note that to fully explore the impact of the random and dynamic strategies, the base project

ordering is re-determined each time the pricing step is invoked to find a suitable pattern
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related to any base project.

Ordering personnel pricing problems according to the given priority (Prioritystrat)

The parameter Prioritystrat defines the interplay between the visited state space and the

base project ordering. We define the following priority-based strategies:

• State space → Project (Prioritystrat = 0): This strategy gives priority to the visited

state space and solves first the pricing problems related to each base project for a given

state space, before adapting the state space. The pseudocode for this strategy is displayed

in Algorithm 2. Assuming the logical order is applied to visit the base projects, the pricing

problems in Table 1 are visited in the order from left to right (given a particular SSRstrat).

Algorithm 2 Column generation algorithm for Prioritystrat = 0

1: List all possible state spaces (SSRstrat)
2: do
3: Solve restricted master problem
4: Determine order for visiting state spaces
5: for Each state space do
6: Determine order of projects (Projectstrat)
7: for Each base project do
8: Solve corresponding personnel pricing problem
9: if Reduced cost < 0 then
10: Break
11: if Reduced cost < 0 then
12: Break
13: while Reduced cost < 0

• Project → State space (Prioritystrat = 1): This strategy gives the priority to a certain

base project and visits first the pricing problems related to all state spaces for a particular

base project before considering another project as the base project. The pseudocode for

this strategy is displayed in Algorithm 3. Assuming the logical order is applied to visit the

base projects, the pricing problems in Table 1 are visited in the order from top to bottom

(given a particular SSRstrat).

Algorithm 3 Column generation algorithm for Prioritystrat = 1

1: List all possible state spaces (SSRstrat)
2: do
3: Solve restricted master problem
4: Determine order of projects (Projectstrat)
5: for Each base project do
6: Determine order for visiting state spaces
7: for Each state space do
8: Solve corresponding personnel pricing problem
9: if Reduced cost < then
10: Break
11: if Reduced cost < 0 then
12: Break
13: while Reduced cost < 0
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4.2.3 Other speed-up mechanisms

In the literature, different speed-ups are proposed to decrease the computational time to find

the optimal LP solution in a column generation framework (Desaulniers et al., 2002). We

implemented the following mechanisms, i.e.

• Cut-off value: Since we are only interested in personnel patterns with a negative reduced

cost, a cut-off value can be imposed on the objective function (25) and constraint (28) is

included in the pricing problem. Jourdan et al. (2009) classify this technique also as a

state space reduction approach. This speed-up mechanism reduces the number of eligible

columns in the restricted master problem and the associated solution time.

cjp′ −
∑

p∈P

∑

t∈T

πpt upt < 0 (28)

• Adding multiple personnel patterns: Instead of only adding a single personnel pat-

tern with the most negative reduced cost, we add all feasible personnel patterns that are

encountered during the search for the optimal solution.

• Partial pricing: Since the pricing problems for different base projects use the same dual

information, the procedure tends to produce days-off schedules covering the same workload

and projects. In order to accelerate the procedure, only a small group of subproblems is

solved at each iteration rather than all subproblems for all projects. In the next iteration,

more accurate dual variables will be obtained to generate better patterns for the other

pricing problems. As the iterations progress, it becomes increasingly difficult to find a

column with negative reduced cost. Therefore, more and more subproblems are solved

until, ultimately, all subproblems need to be solved. When partial pricing is applied, the

RMP is re-solved from the moment a single pattern with negative reduced cost is found

for any project. When partial pricing is not applied, the RMP is re-solved when a single

pattern with negative reduced cost is found after solving the pricing problem for every

base project.

4.3 Diving heuristics

The optimal LP solution obtained by the column generation algorithm may be fractional

and branch-and-price has been commonly applied as a methodology to convert a fractional

solution into the optimal integer solution (Barnhart et al., 1998). However, due to the high

computational time of the column generation algorithm, a branch-and-price procedure will

be very time consuming. We propose a diving heuristic to derive high-quality integer solu-

tions. We refer to Joncour et al. (2010) and Sadykov et al. (2019) for an overview of different

diving techniques. The diving heuristic applies a depth-first search without backtracking

until an integer solution is found. The heuristic repetitively fixes one or multiple (fractional)

assignments to a positive integer value and uses column generation in each node of the
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branching tree to include promising personnel patterns. In this way, the LP is re-optimised

taking the diving constraints into account.

In each node of the branching tree, two type of variables may be fractional, namely the ac-

tivity start time variables vpit and the personnel pattern variables xjp′ . Based on preliminary

experiments, diving is only performed on the activity start time variables. We do not fix

variables related to the personnel staffing plan since diving on these variables requires sig-

nificant adaptations to the pricing problem (Vanderbeck, 2000). Moreover, the preliminary

experiments showed that diving on these variables requires a significant amount of time and

dives, and may lead to an infeasible solution. As a result, a restricted branch-and-bound

based on the set of generated personnel patterns is additionally required to drive the solu-

tion to integrality. In the following, we discuss the variable fixing performed by the diving

heuristic and the branch-and-bound to devise integer solutions.

Variable fixing

The variables stemming from the optimal LP solution may be integer or fractional. We

first fix all activity start time variables with a value equal to one. Related to the fixing of

fractional activity start time variables, we devise the following strategies:

• High. frac.: This strategy fixes only the start time variable with the fractional value

closest to 1.

• Cut-off : All fractional start time variables with a value greater than θ are fixed to 1. Note

that to preserve feasibility, this cut-off should be greater than 0.5. When no fractional

value satisfies this cut-off value, the start time variable with the largest fractional value is

selected for diving.

• % frac.: This strategy determines the number of activities with fractional activity start

times and assigns a start time to a certain percentage (θ) of these activities by fixing its

highest fractional variable to 1. To preserve feasibility, the start time windows are adapted

after fixing a certain activity start time and therefore, no fractional value may exist in the

resulting start time window of an activity. In this case, a random start time in this time

window is selected. To the best of our knowledge, this technique has not been applied in

the literature.

Restricted branch-and-bound

Due to the partial diving algorithm, an integer solution is calculated by applying a branch-

and-bound procedure on the restricted master problem formulation (eqs. (1)-(6)). This

branch-and-bound only considers a restricted set of personnel patterns, which have been

generated via column generation. The procedure is known as a restricted branch-and-bound

procedure (Van Den Eeckhout et al., 2019), a reduced column subset method (Eitzen et al.,

2004) or a restricted master heuristic (Joncour et al., 2010). We consider the following two

strategies to find an integer solution via the restricted branch-and-bound, i.e.

• RBBf : This strategy assumes that all activity start time variables are fixed by the diving

algorithm and only the personnel staffing plan has to be constructed for the different

24



projects.

• RBB: This strategy relaxes the assignments fixed by the diving heuristic. The branch-

and-bound procedure constructs a schedule for the multiple projects and corresponding

personnel staffing plans simultaneously. The restricted branch-and-bound considers a large

set of personnel patterns generated via the diving heuristic and the column generation

algorithm.

4.4 Improvement step

In order to further improve the upper bound resulting from the diving heuristic, we apply

an improvement procedure that improves the personnel staffing plan per project given the

realised resource transfers in the solution resulting from the diving heuristic. This solution

indicates the amount and timing of resource transfers. In this improvement step, we fix these

resource transfers and try to improve the project schedule and associated personnel staffing

plan per project in subsequent order. The resource transfers show (i) the transfer of resource

capacity from personnel assigned to a different base project towards the project under con-

sideration, i.e. incoming resource capacity, and (ii) the transfer of resource capacity from

the workforce associated with a particular (base) project to the other projects, i.e. outgoing

resource capacity. We define this resource capacity using the following parameters:

• Incoming resource capacity: The incoming resource capacity ∆+
p′t on a particular day t

for project p′ is the additional capacity (i.e. the sum of working duties) of workers assigned

to a different base project p 6= p′ that is transferred to project p′. This additional transfer

capacity can be calculated as follows, where the xjp values are based on the upper bound

solution of the diving heuristic:

∆+
p′t =

∑

p∈P\{p′}

∑

j∈J̄p

ajpp′txjp ∀t ∈ Tp′ (29)

• Outgoing resource capacity: The outgoing resource capacity (∆−

p′t) for project p′ is

the capacity (i.e. sum of working duties) of workers assigned to base project p′ that is

transferred to other projects p 6= p′. This transferred capacity can be calculated as follows:

∆−
p′t =

∑

p∈P\{p′}

∑

j∈J̄p′

ajp′ptxjp′ +
∑

j∈J̄p′

bjp′txjp′ ∀t ∈ Tp′ (30)

Taking the parameter values for ∆+
pt and ∆−

pt into account, the multi-project problem can

be decomposed per project into multiple single-project staffing problems by adapting the

staffing constraints linking the project scheduling problem and the staffing problem (cf eq.

(2)) as follows:
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∑

j∈J̄p

ajpt xjp + opt −
∑

i∈N

t∑

t∗=max(1,t−dpi+1)

rpi vpit∗ +∆+
pt −∆−

pt ≥ 0 ∀p ∈ P, ∀t ∈ T (31)

In order to optimise the personnel staffing plan for a single project given the resource trans-

fers, the decomposed branch-and-price procedure of Van Den Eeckhout et al. (2020) is ap-

plied for each individual project separately, given the adapted resource linking constraints

(eq. (31)). The result will be an optimal personnel plan for each project given the resource

transfers and may improve the solution resulting from the diving heuristic.

5 Computational experiments

In this section, we provide computational insights to calibrate the proposed procedure and

analyse the impact of resource sharing in a multi-project environment. In Section 5.1, we

describe the test design and parameter settings used in the experimental analysis. Section

5.2 demonstrates the performance of the devised strategies associated with the column gen-

eration algorithm and the diving heuristic to design a well-performing algorithm. In Section

5.3, we provide managerial insights into the impact of resource sharing and the definition

of transfer flexibility. Because of the randomness included in the proposed state space re-

duction approach, we have carried out 10 independent runs for all experiments in order to

present coherent and unbiased results. All computational tests are performed on a Intel Core

E5-2660v3 processor with 4 GB RAM and 2.6GHz. The algorithm is coded in C++ using

XCode (version 8.0) and relies on Gurobi 7.0 to solve mathematical problem formulations

with a time limit imposed of 3600 seconds, unless otherwise stated.

5.1 Dataset

The problem instances used in the computational experiments comprehend project schedul-

ing, personnel staffing and resource sharing information.

Project scheduling information

In the literature, different datasets have been developed for the RCMPSP (e.g. Krüger and

Scholl (2009); Browning and Yassine (2010); Homberger (2012); Wauters et al. (2016)). These

datasets, however, are not relevant to validate the proposed procedure since we deal with only

a single renewable resource and consider both the scheduling of activities and resources, which

gives rise to a higher complexity. As a result, we have generated multi-project instances in line

with the literature. In our test design, we utilise the single-project instances of Vanhoucke

et al. (2001), which have been constructed using the network generator Progen/Max, to

generate a set of 50 multi-project instances by combining different single-project instances

in a random manner. Each multi-project instance comprehends 4 single-project instances
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consisting of 10 activities. From these instances, the network topology and the activity

durations are retained. Since the instances of Vanhoucke et al. (2001) consider multiple

renewable resources, we generate the resource demand of each activity randomly using a

discrete uniform distribution on the interval [1,10], which is in line with the resource demand

generation of Vanhoucke et al. (2001). For each project in the multi-project instances, a

deadline is set equal to the critical path of the related single-project instance. Note that

in an integrated project and personnel scheduling context, the deadline of a project is,

apart from the number of activities, a determinant for the instance size and computational

complexity since resources are scheduled over this planning horizon. The average project

deadline of the generated instances is 26.5 days, which is in line with the planning period of

28 days commonly applied in personnel scheduling problems.

Personnel staffing parameters and time-related scheduling constraints

The parameters related to the personnel staffing problem are taken from related project

staffing problems in the literature (Maenhout and Vanhoucke, 2016; Van Den Eeckhout

et al., 2020). More specifically, we set the length of a unit time period to 7 (|Tl|), the mini-

mum and maximum number of assignments equal to 5 (wmin and wmax), the minimum and

maximum number of consecutive working days to respectively 2 (nmin) and 6 (nmax) and

the minimum and maximum number of consecutive days off to respectively 1 (fmin) and 2

(fmax). The objective function weights, i.e. the daily cost for hiring regular and temporary

workers, are set to respectively 2 (cRG) and 4 (cTW ).

Resource sharing parameters

The parameters related to the resource sharing constraints are set in such a way that the

transfer flexibility is varied. To that purpose, we consider different resource sharing scenarios

that are displayed in Table 2, by setting specific values related to the number of eligible

projects (ω), the minimum consecutive days workers should be assigned to another project

(αmin), the maximum consecutive days a worker is at least once assigned to his base project

p′ (αmax) and the transfer time (β). Scenario 1 represents the resource sharing scenario

with maximal flexibility. The other scenarios are characterised by a lower flexibility. Note

that in all these scenarios constraints (20) and (21) are not considered. In Section 5.2, these

scenarios are utilised, leading to 5 × 50 = 250 instances, to validate the performance and

design choices of the algorithm. In Section 5.3, a wider range of settings is considered related

to the parameter values defining the resource transfer flexibility to study the managerial

impact of resource sharing on the staffing budget.

5.2 Algorithmic performance

In this section, we give insight in the computational performance of the different components

and devised optimisation strategies. Section 5.2.1 investigates the impact of the different

speed-up mechanisms on the computational performance of the column generation algorithm.
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Scenario
Constraint parameter
ω αmin αmax β

1 4 1 |Tp′ |+ 1 1
2 2 1 |Tp′ |+ 1 1
3 4 5 |Tp′ |+ 1 1
4 4 1 7 1
5 4 1 |Tp′ |+ 1 2

Table 2: Test design - Parameter settings for different resource sharing scenarios

The impact of the different diving strategies and parameter settings is discussed in Section

5.2.2. In Section 5.2.3, we show the contribution of the diving heuristic and the improvement

procedure related to the progress of the incumbent solution value. The results in this section

represent the average values over the different resource sharing scenarios defined in Table

2 in order to come up with general findings. An analysis of the results showed similar

(relative) findings for the different resource sharing scenarios, such that average results can

be presented without loss of information.

5.2.1 Computational analysis of the column generation algorithm

We evaluate the convergence and the related computational performance of the column

generation algorithm to determine the optimal LP solution in the root node of the search

tree as follows. First, the impact of the different state space reduction strategies (SSRstrat)

and the priority of visiting the different state spaces (Prioritystrat) is investigated. Second,

the impact of the order for visiting the different base projects (Projectstrat) is analysed.

Third, the overall impact of the different speed-ups applied in the procedure is highlighted.

Note that for the analysis in this section, a time limit is imposed of 10 hours.

Impact of strategies SSRstrat and Prioritystrat

In this analysis, we focus on the state space reduction approach for solving the pricing

problem presented in Section 4.2.2 and explore the impact of different parameter values for

SSRstrat and Prioritystrat. The relevant parameters which are not considered in this analysis

are set to their best values. Table 3 shows the computational performance for different

settings of SSRstrat and Prioritystrat solely related to the column generation algorithm

in the root node. We report the average total required CPU time (CPUCG), the average

number of personnel patterns generated (|J̄ |), the average number of solved restricted master

problems (#RMP ), the average number of solved personnel pricing problems (#PP ) visited

and the average CPU time for solving a single problem (CPURMP
avg , CPUPP

avg ). The best

performing setting for a certain Prioritystrat is indicated in bold.
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Prioritystrat SSRstrat CPUCG |J̄ | #RMP #PP CPURMP
avg CPUPP

avg

- 0 495 644 65 108 0.03 3.71

0

1 425 887 155 474 0.04 0.74

2 340 886 158 486 0.04 0.57

3 371 888 158 491 0.04 0.63

4 121 1067 199 710 0.04 0.14

5 145 1068 199 726 0.04 0.17

1

1 363 651 90 192 0.03 1.46

2 335 642 92 218 0.03 1.27

3 427 643 92 241 0.03 1.48

4 126 733 115 263 0.03 0.39

5 167 736 115 307 0.03 0.46

Table 3: Results related to the different strategies for SSRstrat and Prioritystrat on the
column generation algorithm in the root node

Table 3 clearly shows that state space reduction to steer the convergence of the column

generation algorithm is beneficial compared to the benchmark approach that constructs

only a single pricing problem per base project (SSRstrat = 0 and Prioritystrat = -), which

requires 495 seconds to find the optimal LP solution. The strategies visiting different state

spaces significantly decrease the required CPU time. The best strategy (SSRstrat = 4 and

Prioritystrat = 0) requires only 121 seconds. The results reveal that this is mainly thanks

to the decrease in complexity of most pricing problems solved, i.e. the required CPU time

CPUPP
avg decreases from 3.71 to 0.14 seconds, which compensates for the larger number of

pricing problems (#PP ) and column generation iterations (#RMP ).

When comparing the different SSR strategies (SSRstrat), we observe that those strategies

specifying the set of eligible projects P e, i.e. SSRstrat = 4 and 5, perform best in terms

of CPU time (CPUCG). Using only the parameter ω to limit the number of projects an

employee can be assigned to, as done in SSRstrat = 1, 2 and 3, leads to only a slightly lower

CPU time compared to SSRstrat = 0. When P e has been specified, the computational effort

decreases significantly because of the dramatic decrease in the number of relevant variables

and constraints in the pricing problem. This is especially observed in the required average

computational time for solving a pricing problem (CPUPP
avg ), which is significantly lower

for SSRstrat = 4 and 5. The number of column generation iterations (#RMP ) and visited

pricing problems (#PP ) are, in contrast, significantly higher. Note that applying state space

reduction increases the number of generated personnel patterns (|J̄ |), but this has only a very

limited impact on the solution time of the restricted master problem (CPURMP
avg ). These

conclusions are similar for the different priority strategies (Prioritystrat).

The different values of the parameter Prioritystrat have a smaller impact on the performance,

which implies that the construction of different state spaces (guided by SSRstrat) is more

important than the order of visiting these state spaces (guided by Prioritystrat). However,

a pairwise comparison between the different SSR strategies (SSRstrat) reveals that visiting

the pricing problems per state space (Prioritystrat = 0) performs better than visiting all

state spaces per base project (Prioritystrat = 1) for those strategies that define a larger
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number of state spaces (SSRstrat = 3, 4 or 5). This can be explained by the smaller average

CPU time required to solve the pricing problems (CPUPP
avg ) for Prioritystrat = 0, despite the

larger number of pricing problems (#PP ) and restricted master problems (#RMP ) solved.

When SSRstrat = 4, the performance between both priorities is similar, i.e. 121 seconds

(Prioritystrat = 0) versus 126 seconds (Prioritystrat = 1).

Impact of strategies Projectstrat

The impact of the order in which the different (base) projects are visited is investigated

only for the best performing strategies resulting from previous analysis, i.e. SSRstrat is set

to 4 and Prioritystrat is set to 0 or 1. Table 4 shows the results for different strategies

Projectstrat to determine the project ordering (cf Section 4.2.2), i.e. the random order

(’Random’), a deterministic order (logical - ’Logical’, based on the deadline - ’δp,n+1’, based

on the work content of project p - ’wcp’) or a dynamic ordering (based on the number of

employees assigned to the project p in the last RMP solution (|W |RMP
p ), based on the CPU

time or on the reduced cost of the last pricing problem solved for project p - ’CPUPP
p ’ and

’RCp’ respectively). Note that these orderings can be ranked from low to high (’L → H’) or

from high to low (’H → L’). We report the average total required CPU time (CPUCG), the

average number of solved restricted master problems (#RMP ) and the average number of

solved personnel pricing problems (#PP ) visited. Note that for some settings the column

generation algorithm did not converge to the optimal LP solution within the time limit of

10 hours. These instances are not taken into account when displaying the results, which is

indicated by an asterisk (*).

Prioritystrat = 0 - SSRstrat = 4 Prioritystrat = 1 - SSRstrat = 4
Category Projectstrat CPUCG #RMP #PP CPUCG #RMP #PP

Random Random 123 199 674 276 121 381

Determ.

Logical L → H 162 236 831 2080* 235* 1222*
δp,n+1 L → H 125 200 849 1788* 173* 1320*
δp,n+1 H → L 190 282 842 3613* 377* 1617*

wcp L → H 154 234 866 2028* 253* 1418*
wcp H → L 156 243 832 2296* 268* 1318*

Dynamic

|W |RMP
p L → H 174 249 808 2289* 306* 1453*

|W |RMP
p H → L 130 215 842 1464* 184* 1018*

CPUPP
p L → H 121 199 710 126 115 263

RCp L → H 131 215 590 279 144 336

Table 4: Results related to the different strategies for Projectorder on the column generation
algorithm in the root node

Table 4 reveals that the CPU time (CPUCG) is fairly similar for different project or-

dering strategies when pricing problems are visited per state space (Prioritystrat = 0).

This is in contrast to the performance when pricing problems are visited per base project

(Prioritystrat = 1), which is very much dependent on the project ordering, as a result from

the definition of this latter priority strategy. In addition, for every project ordering, the

former strategy (Prioritystrat = 0) outperforms the latter (Prioritystrat = 1). This stems

from the fact that when Prioritystrat = 1 also larger state spaces for a certain project need

to be explored, before the pricing problem of another base project can be explored, which
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may find a pattern with negative reduced cost in a smaller state space.

When analysing the results for ’Prioritystrat = 0− SSRstrat = 4’, we see that the dynamic

measure ’CPUp L → H’ yields the best performance (CPUCG = 121 seconds). Since the

CPU time is a proxy for the problem complexity, we prefer to solve pricing problem with

a smaller complexity first, in line with the state space reduction. The strategies ’Random’

and ’δp,n+1 L → H’ also perform very well. For ’Prioritystrat = 1− SSRstrat = 4’, we also

observe that the strategy ’CPUp L → H’ performs best. The performance of most other

metrics is unacceptable.

In the remainder of the computational experiments, we employ the best settings, i.e. SSRstrat =

4, Prioritystrat = 0 and Projectstrat = ’CPUp L → H’, in the column generation algo-

rithm.

Impact of all speed-up mechanisms

The contribution of all speed-up mechanisms (cf Section 4.2) is displayed in Table 5. The

impact of the speed-up techniques is determined via the comparison of different variants of

the proposed column generation algorithm. In this regard, we consider a variant without any

speed-up mechanism (’No speed-up’), with all speed-up mechanisms included (’All speed-

ups’) and a number of variants that excludes one specific speed-up technique leaving the rest

of the algorithm unchanged, i.e. without creating an upper bound solution to obtain a good

initial set of personnel patterns (’w/o initialisation step’), without the state space reduction

approach (’w/o SSR’), without partial pricing (’w/o partial pricing’), without adding multi-

ple patterns per pricing problem (’w/o multiple patterns.’) and without imposing the cut-off

on the objective function of the pricing problem (’w/o cut-off’).

Variant CPUCG |J̄ | #RMP #PP RMP cpu
avg PP cpu

avg

No speed-ups 1143 212 59 235 0.02 4.14
All speed-ups 142 594 206 731 0.03 0.15

w/o initialisation 136 533 278 879 0.03 0.12
w/o SSR 543 394 66 109 0.03 4.01

w/o partial pricing 473 477 45 485 0.03 0.68
w/o multiple patterns 186 485 315 1078 0.03 0.14

w/o cut-off 121 1067 199 710 0.04 0.14

Table 5: Impact of speed-up mechanisms on the performance of the column generation
algorithm

Table 5 reveals that incorporating the proposed speed-up mechanisms decreases the re-

quired computational effort (CPUCG) from 1143 seconds (’No speed-ups’), which is used

as a benchmark to evaluate the performance of the algorithm, to 142 seconds (’All speed-

ups’). Dropping the partial pricing or the state space reduction mechanism has the largest

impact on the CPU time, leading to an increase in CPU time to 473 seconds, respectively

543 seconds. Only including a single personnel pattern per pricing problem (’w/o multiple

patterns’) leads to an increase to 186 seconds.

When no cut-off is imposed on the objective function value of the pricing problem (’w/o

cut-off’), CPUCG decreases from 142 to 121 seconds. This is a consequence of the interplay

with the speed-up ’Adding multiple patterns’. When a cut-off is imposed on the objective
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function, a smaller number of feasible solutions will be encountered during the search and

thus less patterns are added to J̄p, which is clear from the number of personnel patterns

|J̄ | (594 versus 1067 personnel patterns). This implies that also including patterns with a

positive reduced cost helps to reduce the CPU time. Starting the column generation al-

gorithm with an empty set of personnel patterns (’w/o initialisation’) leads to a slightly

lower CPU time for the column generation algorithm, decreasing the CPU time from 142

to 136 seconds. This means that an initial set of dedicated personnel patterns, constructed

without taking (dual) information from other projects into account, does not lead to a faster

convergence. However, note that this initialisation step ensures a reasonable upper bound

solution with dedicated resources, which is be used as a benchmark to value the sharing

of resources and is exploited as initial incumbent to generate an integer solution via the

restricted branch-and-bound implemented in the diving heuristic.

5.2.2 Impact diving heuristic

In order to obtain insight in the performance of the diving heuristic (cf Section 4.3), we vary

the strategies and parameter settings related to the variable fixing (’High. frac.’, ’Cut-off’

and ’% frac.’) and the restricted branch-and-bound (RBBf and RBB). Table 6 displays

the results of the different diving strategies for different threshold values θ. The first line

provides the benchmark setting where no diving is performed and the RBB is directly

solved based on the columns that have been generated in the root node of the search tree

via column generation. We report the average optimality gap (%Gap = (UB − LB)/LB)

comparing the incumbent solution and the optimal LP solution, the average depth of the

search tree (#Dives) and the average computation time of the diving algorithm ( CPUDH),

the restricted branch-and-bound (CPURBB) and the entire proposed column generation-

based diving heuristic procedure (CPUCGDH).

Variable fixing Restricted branch-and-bound strategy

strategy RBBf RBB

Type θ %Gap #Dives CPUDH CPURBB CPUCGDH %Gap #Dives CPUDH CPURBB CPUCGDH

- - - - - - - 2.46% 0 0 1656 1814

High. frac. - 3.22% 11.4 688 478 1311 2.66% 11.4 688 1542 2364

Cut-off

0.9 3.24% 11.0 681 505 1330 2.63% 11.0 681 1573 2394

0.8 3.24% 9.8 651 489 1285 2.61% 9.8 651 1599 2386

0.7 3.15% 8.3 590 528 1270 2.50% 8.3 590 1652 2381

0.6 3.10% 6.2 512 580 1235 2.46% 6.2 512 1714 2365

0.5 3.08% 3.9 383 590 1130 2.28% 3.9 383 1884 2404

% frac.

1 3.61% 1.0 132 443 735 2.13% 1.0 132 2082 2354

0.75 3.15% 2.1 244 596 996 2.12% 2.1 244 2016 2401

0.5 2.98% 4.0 363 618 1133 2.18% 4.0 363 1940 2445

0.25 3.05% 6.7 503 558 1217 2.36% 6.7 503 1767 2414

0.1 3.24% 10.0 645 500 1286 2.60% 10.0 645 1578 2363

Table 6: Computational results for different strategies related to the diving heuristic

Table 6 reveals that the components associated with the diving heuristic, i.e. the search

tree and especially the restricted branch-and-bound, to find a high-quality solution for the

problem under study require significant computational effort (CPUDH and CPURBB). The
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benchmark procedure that applies a restricted branch-and-bound on the patterns found in

the root node without diving, i.e. with variable fixing strategy ’-’, requires on average 1814

seconds finding a solution with an optimality gap of 2.46%.

When diving is applied, the different diving strategies and associated threshold value θ im-

pact the solution quality (%Gap) and the depth of the search tree (#Dives). When only the

highest fractional variable is fixed (High. frac.), on average 11.4 dives are required to obtain

an integer multi-project schedule. This depth gradually decreases for the strategy ’Cut-off’

when a lower threshold is imposed, from 11.0 to 3.9. For the strategy ’% frac.’, an opposite

behaviour is observed, in line with the definition of this strategy, i.e the depth of the tree

increases from 1.0 (θ = 1) to 10.0 (θ = 0.1). Note that there is no clear relationship between

the depth of the tree and the solution quality, as it may have been expected that a larger

depth in the search tree may lead to a larger set of patterns generated and consequently

result in a higher solution quality of the staffing plan of the incumbent solution. For the

strategy ’Cut-off’, the best solution quality is obtained when θ is low (θ = 0.5). For the

strategy ’% frac.’, the best solution quality is obtained when θ is average to high (θ = 0.5,

0.75 and 1). When comparing the different diving strategies, Table 6 shows that the strategy

’High frac.’, which is commonly applied in the literature, is outperformed by the other two

strategies. The strategy ’% frac.’ delivers the best results.

When analysing the performance of the two branch-and-bound strategies, we notice that the

solution quality (%Gap) when fixing the activity start times according to the diving heuristic

(RBBf ) is worse compared to the strategy that relaxes the start time assignments resulting

from the diving heuristic (RBB). The required solution times (CPUCGDH), however, are

significantly lower. The best setting with RBBf (i.e., % frac, θ = 0.5) results in a opti-

mality gap equal to 2.98% (%Gap) and a CPU time of 1133 seconds (CPUCGDH). When

RBB is applied, different variants of the algorithm with diving are outperformed by the al-

gorithm without diving. Since additional personnel patterns are generated during the diving

iterations, the restricted branch-and-bound with a larger number of patterns should lead to

better results. However, due to the imposed time limit of 3600 seconds, we notice that this is

not always the case. The time required for diving (CPUDiving) leads to less time remaining

for the restricted branch-and-bound (CPURBB) to search for high-quality solutions. Only

when the depth of the search tree is limited (#Dives ≤ 6.7), a better solution quality is

obtained with diving. The best performing strategy with RBB (i.e., % frac, θ = 0.75) leads

to an optimality gap of 2.12% (%Gap) and a CPU time of 2401 seconds (CPUCGDH). This

setting is used in further experiments.

In order to better estimate the quality of the incumbent solutions based on the optimal-

ity gap, we calculated the optimal LP solution value when no resource sharing is allowed

(ω = 1), which equals to 3447.8. The initial upper bound solution value, which provides the

optimal integer resource budget without resource sharing, leads to a solution value equal to

3524.2. The resulting optimality gap equals 2.26% and, consequently, we can conclude that

the proposed procedure with application of the diving heuristic is able to find high-quality

solutions.
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5.2.3 Contribution of the multistage solution methodology

Table 7 shows the average value of the incumbent solution found after each stage x (UBx)

and the average required computational time for each stage x (CPUx). The improvement

of the incumbent solution compared to the previous stage is displayed (UBx
impr).

x CPUx UBx UBx
impr

Stage 1 121 3524.2 -

Initialisation CG 5 3524.2 -

Column generation 116 3524.2 -

Stage 2: Diving heuristic 2262 3364.2 -4.55%

Stage 3: Improvement step 18 3359.6 -0.13%

CGDH 2401 3359.6 -

Table 7: Computational results for the different stages

The results show that the diving heuristic, which constructs an integer staffing plan for

different projects simultaneously with resource transfers, is the most expensive step in terms

of CPU time (CPUx = 2262 seconds). When the problem is decomposed and a staffing plan

is derived for each project independently (’Initialisation step CG’ and ’Improvement step’),

the CPU time amounts to 5, respectively 18 seconds. This shows that resource sharing has

a tremendous impact on the computational complexity. Related to the solution quality, we

observe that the initial upper bound solution is improved with 4.55% by the diving heuristic,

which is an indication of the added value of resource sharing. The improvement step further

improves the incumbent solution value with 0.13%, showing that only minor improvements

are made when calculating the optimal solution for individual projects with fixed timing for

the resource transfers.

5.3 Managerial insights into the impact of resource transfer flexibility

In this section, we evaluate the impact of transfer flexibility on the sharing of resources

between projects and the resulting personnel staffing budget. In the problem under study,

the resource transfer flexibility is defined via different parameters and constraints, i.e. (i)

the maximum number of projects an employee can be assigned to (ω); (ii) the minimum

number of consecutive days an employee should be stationed at a project (αmin); (iii) the

period during which an employee should be assigned once to his base project (αmax); (iv)

the duration of the resource transfer (β). The required assignment of an employee on the

first and last day of the planning period to his base project (eqs. (20)-(21)) are included in

these experiments. The impact of the parameters is analysed for three different scenarios,

for which different base parameter values are considered, i.e.

• Full flexibility (’Full’): This scenario assumes maximum transfer flexibility for sharing of

resources between different projects. The base parameter values are set as follows: ω = 4,
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αmin = 1, αmax = |Tp| +1 and β = 1.

• Limited flexibility (’Limited’): This scenario assumes resources may be shared between

different projects to a limited extent. The base parameter values are set as follows: ω = 2,

αmin = 3, αmax = 10 and β = 1.

• No flexibility : This scenario assumes that all projects are carried out by dedicated resources

and that there is no sharing of resources between projects (ω = 1). The other parameters

and constraints are not relevant. This scenario serves as a benchmark to calculate the

benefits of resource sharing given the defined resource transfer flexibility.

Figure 2 reveals the impact of varying the parameters related to resource transfer flexibil-

ity in an independent manner. The figures display the percentage improvement in staffing

budget comparing the scenarios with resource sharing (’Full’ or ’Limited’) versus the sce-

nario without resource sharing (No flexibility) (’%Impr’) and the CPU time required by the

solution procedure (CPUCGDH). Note that the parameter values are arranged from more

flexible towards more restrictive settings.

(a) Cost benefits and CPU in function of ω (b) Cost benefits and CPU in function of αmin

(c) Cost benefits and CPU in function of αmax (d) Cost benefits and CPU in function of β

Figure 2: Impact of constraint parameter values on the personnel budget and CPU time

Figure 2 shows a clear relation between the defined transfer flexibility, the percentage im-

provement (’%Impr’) and the CPU time (CPUCGDH). In general, allowing less resource

flexibility leads to a lower added value of sharing resources and a lower required CPU time.

Figure 2(a) confirms that when employees are allowed to work on one additional project

on top of the base project (ω = 2), the largest benefits in terms of cost improvement are

obtained. Further increasing ω improves only marginally the staffing budget or even dete-

riorates the budget due to the larger complexity. Note that a larger value for ω does not
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significantly impact the number and the average duration of the transfers realised in the

incumbent solutions.

Figure 2(b) shows that increasing αmin leads initially to only a small decrease in the cost

improvements, i.e. ’%Impr’ is larger than 3% as long as αmin ≤ 6 for the scenario ’Full

flexibility’. When the scenario ’Limited flexibility’ is considered, a dramatic decrease in the

benefits of resource sharing (’%Impr’) is observed when αmin > 4. Note that when αmin

increases, the number of resource transfers decrease, whereas the duration of the transfers

is stable. Figure 2(c) shows that the cost benefits are gradually decreasing when αmax de-

creases. When αmax ≤ 8, the slope becomes steeper and the cost benefits rapidly reduce.

Note that when αmax decreases, the duration of the resource transfers obviously decrease

whereas the number of resource transfers is rather stable.

Figure 2(d) shows that the resource transfer time β is a main determinant for the cost ben-

efits related to resource sharing. When the resource transfer time β is equal to 0, the cost

improvements are significantly higher (approximately 6.8%). These benefits reduce rapidly

when β increases. The cost benefits range between 2.5% and 3.5% when β = 1 and are

smaller than 0.5% when β ≥ 3. The large decrease of the cost improvements when β is in-

creased from 0 to 1, is not explained by the number or the duration of the resource transfers,

which are more or less stable for β = 0 and 1. In this way, the unproductive time associated

with the resource transfers is the main responsible for the decrease in the cost improvements.

Only when β is increased to 2, there is a large decrease in the number and the duration of

the transfers. The latter resulting from the parameter value set for αmax.

In general, the results show that a similar trend is observed for both scenarios ’Full flexibil-

ity’ and ’Limited flexibility’, when varying a parameter to define resource transfer flexibility.

Substantial cost improvements related to the project staffing budget are obtained as a result

of resource sharing, although the obtained cost improvements are obviously higher for the

scenario ’Full flexibility’. The largest impact stems from the resource transfer time parameter

β which is rarely taken into account in previous research.

6 Conclusion

In this paper, we studied the multi-project staffing problem with calendar constraints and

resource sharing. In order to accurately assess the staffing budget of the different projects,

we simultaneously construct the project schedule of the different projects and a baseline

personnel schedule giving insight in the minimum number of regular and temporary workers.

The timing of the workload stemming from the project activities is an endogenous variable in

the model. The problem definition includes resource flexibility via resource sharing subject

to resource transfer constraints to decrease the staffing budget.

We proposed a multi-stage solution methodology to tackle the problem under study labelled

as a Column Generation-based Diving Heuristic. First, we calculate the optimal LP solution

methodology via column generation. Due to the high complexity of the pricing problem stem-
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ming from the embedded time-related and resource sharing constraints, different speed-up

mechanisms relying on a state space reduction are presented to increase the efficiency of the

column generation algorithm. Second, a diving heuristic is applied to convert the fractional

LP solution into an integer solution. A depth-first search is conducted by repetitively fixing

a subset of the fractional activity start time variables. An integer staffing plan is obtained

by conducting a restricted branch-and-bound using the patterns generated via column gen-

eration in the different nodes of the search tree. Third, an improvement step improves the

incumbent solution by fixing the resource transfer capacity and determining the correspond-

ing optimal personnel budgets for each project separately. In the computational experiments,

we demonstrated that the proposed state reduction approach significantly outperforms the

standard approach defining a singular pricing problem per base project. Furthermore, we

showed that fixing a percentage of the fractional variables leads to high-quality solutions,

outperforming existing approaches to obtain integer solutions based on the optimal LP so-

lution.

Finally, we provided managerial insights concerning the impact of imposing restrictions on

the resource transfer flexibility. The unproductive transfer times stemming from resource

transfers have the largest impact on the staffing budget, followed by the constraint that

defines the maximum time period during which an employee should be assigned at least

once to his base project. Last, most cost improvements of resource sharing are obtained

when allowing workers to work on one additional project, which is in accordance with the

literature.
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Krüger, D. and Scholl, A. (2009). A heuristic solution framework for the resource constrained (multi-) project

scheduling problem with sequence-dependent transfer times. European Journal of Operational Research,

197(2):492–508.
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A Impact of the state space reduction on the computational

complexity

The computational time complexity of the column generation algorithm and the associated

strategies to conduct a state space reduction are primarily assessed in a empirical manner

via computational experimentation (cf Section 5.2.1). However, in order to give the reader

an indication on the reduced complexity of the pricing step, we report some characteristics

of a singular pricing problem (i.e. the number of decision variables, constraints and feasible

patterns) and the number of pricing problems that needs to be solved to proof LP optimality

(i.e. |S|×|P |) for different parameter settings defined by the state space reduction strategies.

The state space reduction is primarily guided by the parameter SSRstrat via the definition

of the following two parametrised settings, i.e. (i) the maximum number of projects (ω) and

the set of eligible projects (P e). The ordering strategies Projectstrat and Prioritystrat do not

impact the characteristics of a singular pricing problem nor the theoretical number of pricing

problems to proof LP optimality but only the order in which the different subproblems are

visited, impacting the number of column generation iterations for finding the optimal LP

solution.

Table 8 displays the theoretical number of times a pricing problem needs to be solved to proof

the LP optimality for each parameter setting of SSRstrat when the number of projects |P |

is equal to 4. When SSRstrat = 0, the state space is not reduced and four pricing problems

are required to proof LP optimality. When SSRstrat = 5, the state space is reduced based

on different settings for ω and P e and in total 68 pricing problems are required to proof LP

optimality.
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SSRstrat

0 1 2 3 4 5

Maximum # projects (ω) 4 1 or 4 1, 2 or 4 1, 2, 3 or 4 1, 2 or 4 1, 2, 3 or 4
# eligible projects (|P e|) |P | |P | |P | |P | ω ω

# state spaces (|S|) per base project
ω = 1 0 1 1 1 1 1
ω = 2 0 0 1 1 3 3
ω = 3 0 0 0 1 0 12
ω = 4 1 1 1 1 1 1
Total 1 2 3 4 5 17

# pricing problems (=|S| × |P |) 4 8 12 16 20 68

Table 8: The number of pricing problems required to proof LP optimality (|P | = 4)

Table 9 provides an overview how the different parameter settings for SSRstrat impact the

number of decision variables and the number of feasible patterns. This table gives insight

in the impact of different constraints and groups of constraints (time-related constraints,

resource sharing constraints) and primarily in the parametrised settings ω and P e. The

table displays for each setting both the number of feasible patterns and the number of

constraints between brackets. These characteristics are devised for problem instances with

|P | = 4 and |Tp′ | = 21.

# eligible projects

|P e| = 1(a) |P e| = 2 |P e| = 3 |P e| = 4

# eligible decision variables 42 128 171 214
# feasible patterns

- No constraints 2(2×21) (0) 2(5×21) (0) 2(7×21) (0) 2(9×21) (0)
- 1 assignment/day constr (7) 221 (21) 521 (21) 721 (21) 221 (21)
- Time-related constr (7)-(13) 1675 (100) ≈ 2.5× 1012 (100) ≈ 2.6× 1015 (100) ≈ 3.9× 1017 (100)

+ Resource sharing constr (14)-(23)

ω = 1(a) 1675 (100) 1675 (100) 1675 (100) 1675 (100)
ω = 2 1675 (100) ≈ 12× 106 (266) ≈ 13× 106 (327) ≈ 19× 106 (388)
ω = 3 1675 (100) ≈ 12× 106 (266) ≈ 50× 106 (327) ≈ 66× 106 (388)
ω = 4 1675 (100) ≈ 12× 106 (266) ≈ 50× 106 (327) ≈ 151× 106 (388)

(a)When |P e| or ω equals 1, a personnel member is only assigned to his base project subject to the time-
related constraints. The decision variables and constraints related to resource sharing are redundant and are
not counted.

Table 9: Impact of SSRstrat on the number of decision variables and the feasible number of
patterns for project p (|P | = 4, |Tp′ | = 21, constraint parameters as defined in Section 5.1)

The table reveals that the number of (binary) decision variables in the pricing problem is

determined by both the time horizon |Tp′ | of project p′ considered as base project and the

number of projects |P |. However, as a result of the definition of the subset P e, a subset of

the decision variables is fixed to zero such that the solution space of the pricing problem is

significantly reduced. Table 9 displays only the number of eligible variables, which is equal

to 2 × |Tp′ | × (1 + |P e|) + |P e|. The number of relevant constraints is determined by |Tp′ |,

|P e| and the constraint input parameters as defined in Section 5.1. Hence, when |P e| = 4,

the number of binary decision variables is 214 and the number of constraints is 388. When

|P e| = 2, the number of eligible decision variables drops from 214 to 128 and the number

of relevant constraints from 388 to 266, as listed between brackets. Note that when ω = 1

or |P e| = 1, only assignments are allowed to the base project such that the pricing problem
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can be formulated without decision variables related to other projects or transfer duties and

only time-related constraints included.

Further, the table gives insight in the number of feasible patterns contained in the pricing

problems related to the parameter setting of the state reduction strategy SSRstrat. Both

the time-related and resource sharing constraints have a significant impact on the number of

feasible patterns, adding both to the complexity of the pricing problem. Further, we observe

that the number of feasible patterns are largely reduced for pricing problems defined by a

smaller state space. For the standard pricing problem that considers all projects (ω = |P e| =

4), the total number of feasible patterns amounts approximately 151 × 106. Reducing the

maximum number of projects (e.g. ω = 2) leads to only 19×106 feasible patterns. Specifying

the set of eligible projects (e.g. |P e| = 2) further diminishes the number of feasible patterns

to approximately 12 × 106. In general, the definition of a restricted set of eligible projects

P e has the largest impact on the feasible solution space.
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