
19.1 Introduction

Human- robot interaction (HRI) studies the interaction between  people and robotic systems. 
While robots are traditionally operated using user interfaces gleaned from human- computer 
interaction, such as control panels or screen- based interfaces,  there is potential to move 
 toward more natu ral modes of interaction.  These  will, to a large extent, be modeled on 
how  people interact with each other and are composed of verbal and nonverbal ways of 
interacting.

HRI is a broad church: at one end of the spectrum, it studies how an operator can control 
one or more robotic systems through traditional methods and sometimes focuses on the 
cognitive load imposed by controlling one or more robots. For example, if an operator 
coordinates a handful of semiautonomous drones during a search and rescue operation, 
how can the cognitive load on the operator be optimized to maximize the efficiency of the 
overall mission (e.g., Goodrich et al. 2011)? On the other end of the spectrum of HRI, 
one finds research into natu ral interaction between  humans and robots. This field is also 
known as social robotics, and the large majority of research efforts in HRI concentrate 
on it (Bartneck et al. 2020). The holy grail of social HRI, of course, is the natu ral and 
intuitive interaction between  people and artificial systems. On one hand, this is a techni-
cal effort, with results in social signal pro cessing, artificial intelligence, and robotics 
coming together to create social robots. But social robotics offers a unique opportunity 
to study how  people respond and interact with artificial social agents. Social robots take 
up a singular position in agents we interact with. The interaction between  people has, 
of course, been the subject of extensive study for more than a  century, and the interac-
tion between animals and  people has been researched at length, but robots are a new 
and,  until recently, unexplored “species.”  Until recently, we have known very  little about 
how  people interact with robots, and our relation and interaction with robots is continu-
ously evolving. Culture, media, education, context, and exposure change our attitudes 
 toward robots and the ways in which we interact with them. When we meet a robot, 
several automatic social responses kick in that color our interaction with the robot;  these 
responses evolved or developed to interact with other  humans and often transfer to our 
interaction with robots.
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This is not unique to robots. We treat all technology to some extent as if it is humanlike, 
something known as anthropomorphization, which Clifford Nass called the “media equa-
tion.” We relate to media— computers, printers, mobile phones, and of course robots—as 
if they are  human (Reeves and Nass 1996). Every one has at one time or another muttered 
at their computer when it crashed or cursed their printer when the paper jammed, but the 
media equation theory takes  things a  little further by claiming that we not only respond 
to  these media as if they  were persons but ascribe personal qualities to each, such as a 
personality, expertise, and even gender. And we often do so without being aware of it. The 
media equation is taken to the extreme in social robots, as the appearance of the robot and 
its be hav ior (the  things it does) have been carefully designed to elicit a strong social 
response from us.

19.2 Cognitive and Neuroscientific Insights Informing HRI

Social psy chol ogy is immediately relevant to the design of social robots, and knowingly 
or not, designers and programmers of social robots take concepts and theories from social 
psy chol ogy into consideration when building robots. Failing to do so usually results in a 
disappointing HRI.  Whether you wish to create a friendly robot or a horror experience, 
you  will rely on fundamentals from social psy chol ogy when designing the appearance of 
your robot and its interaction.

The media equation predicts that  people  will perceive and treat robots in a humanlike way, 
but the fact that we readily interpret animated objects as having humanlike emotions and 
intentions has been known for a long time. Fritz Heider and Marianne Simmel (1944), two 
psychologists working together in the United States, published an influential paper titled 
“An Experimental Study of Apparent Be hav ior” in which they described a  simple and elegant 
experiment: They asked  people to describe short film clips of moving geometric figures, 
such as circles and triangles. The figures  were animated by hand and seemed to play out a 
short story. Every one who saw the videos ascribed emotions and intentions to the figures. 
The original videos from the 1940s can still be found online, and even now when seeing the 
videos,  people readily see the figures having emotions, intentions, and motivations, and they 
see a narrative unfold over the few minutes of video runtime. This is our social brain inter-
preting the world around it and, specifically, our theory of mind— our ability to attribute 
 mental states to  others and ourself— overinterpreting moving geometric figures. This concept 
has been gratefully used by animators, and some striking examples exist of very minimalist 
animation films that show that very  little is needed to nudge our social brain into interpreting 
 simple shapes and movement as having agency (Thomas and Johnston 1995). If you have 
ever observed a vacuuming robot moving around the room, you have prob ably been struck 
by its animallike appearance as it scuttles around the room,  gently bumping into furniture 
and working hard at getting specks of dirt from the floor.  These robots are not designed to 
be social, and yet they still evoke a strong social response in us. In social robots, designers 
add ele ments such as a head, eyes, and reactive responses to evoke a strong social response 
in  people.

One such social response on which designers rely is pareidolia: the tendency to see 
 human or animal forms in objects, such as dogs in clouds or the face of Elvis on a piece 
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of burnt toast. Using magnetoencephalography (MEG), researchers found that the ventral 
fusiform face area (FFA) in the brain is involved. The FFA has been implicated in detect-
ing  faces of  people and animals and is also involved in distinguishing animate from inani-
mate visual stimuli (Kanwisher et al. 1999). This area shows a cortical response 170 ms 
 after we are presented with a  human face and shows a similar but slightly  earlier activation 
of 165 ms when seeing objects that resemble  faces (Hadjikhani et al. 2009). This suggests 
that seeing  faces is a very early and automatic response and is not something the brain 
puzzles together  after extended cognitive pro cessing. As such, we can assume that responses 
to robots with a face are early and automatic.

19.3 Design of Social Robots

One aspect that often arises in robot design is that of neoteny, a juvenile appearance that 
usually evokes a caring response and is generally described as “cute.” Young animals, includ-
ing  human  children, have a large head, large eyes, chubby cheeks, a small chin, a flat face, 
a small nose, and relatively short arms and legs. Konrad Lorenz (1982) argued that infantile 
and juvenile features have a biological function by triggering nurturing responses in adults. 
We are so keen on neotenous appearances that we breed domesticated animals to retain 
neotenous features. Many breeds of smaller dogs retain juvenile features, such as a short 
snout and a relatively large head and large eyes, and consequently are considered cute by 
most  people. The nurturing response is also largely cross- cultural. The same physical features 
evoke a similar response in  people regardless of culture or background. This has been used 
to good effect by robot designers: if a robot is to be likeable, designers  will give it features 
that evoke a caring response. This not only  causes  people interacting with the robot to find 
it cute but also makes them inclined to feel more generous  toward any  mistakes the robot 
makes. The opposite seems to hold as well. Robots that have adult, or gerontomorphic, 
features appear less cute and have less appeal. While  there is no research on this yet, it is 
likely that they are considered more knowledgeable and authoritative, and therefore it makes 
sense for robot designers to give robots that need to radiate authority or trust an adult appear-
ance (see figure 19.1).

Perhaps the most well- known issue in robot design is that of the uncanny valley 
(figure 19.2). This effect, first hypothesized by Mori in 1970 (Mori et al. 2012), describes 
the familiarity or appeal of a robot as a function of its  human likeness. Mori in his original 
paper wrote about 親和感 (shinwa- kan), which does not translate well into En glish but is 
sometimes described as familiarity, appeal, likeability, or affinity. When a robot does not 
resemble a  human, it has low familiarity. This gradually goes up: As  human likeness 
increases, so does familiarity,  until the robot is almost humanlike but not quite. At this point 
familiarity gets knocked back, and when plotted this resembles a sharp dip in the familiarity 
curve. This is known as the uncanny valley. Androids, robots that have humanlike skin but 
lack humanlike motions, find themselves firmly in the uncanny valley. You can climb out 
of the uncanny valley by making a robot that is almost indistinguishable from a person. 
Note that the uncanny valley effect is more pronounced when the robot is moving: the 
familiarity or eeriness of the robot is more exaggerated when the robot is animated. Mori 
never backed up his hypothesis with data, but  later empirical research has shown that the 
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Figure 19.1
A neotenous appearance, characterized by a large forehead, big eyes, a small mouth, and a large head, in robots 
such as the SoftBank Robotics NAO robot (left), make  people feel more attracted to them. Robots with adultlike 
features, such as the Engineered Arts SociBot, which has an adult face (right), are likely to be found more 
authoritative and knowledgeable.
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Figure 19.2
A plot showing the uncanny valley, with the famous dip when robots look almost humanlike but repel us  because 
they are not sufficiently humanlike. Source: Based on Mori 1970, Wikimedia.
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uncanny valley is indeed real (MacDorman and Ishiguro 2006; MacDorman and Chatto-
padhyay 2016).

Rosenthal- von der Pütten et al. (2019) studied the neural mechanisms under lying  human 
responses to artificial agents and, specifically, the uncanny valley response. They suggest 
that the uncanny valley requires a neural system that derives  human likeness from sensory 
cues followed by a downstream system that integrates  these signals into a nonlinear value 
function representing the uncanny valley response curve. Using functional magnetic reso-
nance imaging (f MRI), they investigated the neural activity of  people when observing 
 people and artificial agents, including robots, while making rated responses or expressing a 
preference for stimuli. They found that the ventromedial prefrontal cortex encoded a repre-
sen ta tion of the uncanny valley, in which the subjective likability of artificial agents was a 
nonlinear function of  human likeness. Functionally connected areas in the brain encoded 
critical inputs for signals: the temporoparietal junction (TPJ) encoded a linear  human likeness 
continuum. The TPJ was also found to be active in detecting agency (Mar et al. 2007), belief 
attribution, and learning from  others (Rosenthal- von der Pütten et al. 2019). In addition, 
nonlinear repre sen ta tions of  human likeness found in the dorsomedial prefrontal cortex 
(DMPFC) and fusiform gyrus (FFG) emphasized a human- nonhuman distinction. The 
DMPFC is known to show activity when attributing  mental states to  others or when assessing 
per for mance of  others or of the self (Rosenthal- von der Pütten et al. 2019), while the FFG 
is implicated in distinguishing animate from inanimate stimuli (Chaminade et al. 2010). 
Activation in the amygdala, which in  humans is implicated in the formation and storage of 
memories associated with emotional events, was found to predict a negative response to 
artificial agents. As such, the brain seems to have a direct neural repre sen ta tion of the uncanny 
valley, or rather the uncanny valley can be explained by brain pro cesses that are universal 
to all  people.

If the same neural mechanisms implicated in assessing  people,  people’s be hav ior, and 
the agency of stimuli are also active when we perceive robots, then this might help us 
design more effective robots. Generally, what makes  people appealing  will make robots 
appealing, and only cultural conditioning and habituation are likely to change the initial, 
and often automatic, responses we have to robots.

When discussing the uncanny valley, one cannot escape mentioning androids and perhaps 
their more famous ilk, the Geminoids. A Geminoid— a contraction of Gemini (meaning 
“twins” in Latin) and android—is modeled  after a  human being and as such is their robotic 
doppelgänger. Hiroshi Ishiguro was the first to build Geminoids, and the vari ous models that 
have been built— including ones of himself, his  daughter, and a Japa nese news anchor— have 
been the subject of academic study into the uncanny valley effect.  These studies showed that 
the uncanny valley effect is sometimes not  there or cannot be explained by relying on appear-
ance alone. Bartneck et al. (2009) had  people briefly interact with Hiroshi Ishiguro or with 
his Geminoid. While participants could clearly distinguish an android from a  human, and 
unsurprisingly found the  human to be more humanlike, the android was not liked less, which 
goes against Mori’s prediction. This result and  others suggest that the uncanny valley is a 
multidimensional phenomenon and that the two- dimensional plot of figure 19.2 should be 
revised. Instead the effect is caused by a mismatch between dif fer ent aspects of the robot: a 
robot that appears  human but moves like a robot  causes tension in the observer, which leads 
to an eerie appearance (Moore 2012).
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19.4 Verbal Interaction

Social robots  will often be addressed using language. Even robots that are not humanlike 
in appearance, such as animallike robots, are often addressed using speech. Depending 
on the robot’s appearance,  people might expect a coherent linguistic response. We  don’t 
expect a robot dinosaur to talk back, but we do have expectations of humanoid robots and 
are invariably somewhat disappointed when  those expectations are not met.

In addition, language is most likely to be the most natu ral and therefore intuitive way 
to interact with robots. But despite the use of language seeming effortless to us, verbal 
interaction between  people and robots is still a formidable challenge. The typical approach 
in building natu ral language interaction (NLI) has been to cut up the prob lem into several 
components: speech recognition, dialogue management, language generation, and speech 
production. And while pro gress is being made in each of  these, unconstrained natu ral 
language interaction is still well beyond our technical grasp. Speech recognition, using 
deep neural networks trained on large sets of annotated speech, now performs better than 
 human transcribers for En glish spoken by adults (e.g., Xiong et al. 2018). Speech produc-
tion is almost indistinguishable from  human speech for the reading of text with neutral 
prosody (van den Oord et al. 2016). The developments in speech recognition and speech 
production have led to a raft of novel applications. Prime examples are the digital assis-
tants, such as Amazon’s Alexa or Apple’s Siri assistants, that can act on spoken instructions 
and respond using speech. But  these assistants are still very much  limited in their func-

Figure 19.3
Hiroshi Ishiguro and his Geminoid, a robot replica used to study  people’s responses to lifelike robots. Source: 
Osaka University, Intelligent Robotics Laboratory.
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tionality, as are most spoken NLI applications. They can take short phrases and take the 
user through a turn- based dialogue to fill in slots, but they cannot engage in unconstrained 
dialogue. They do strug gle with pragmatic language use— that is, the social language that 
we use in our daily interactions with  others, from the short utterances such as “yup,” 
“sure,” or “dunno” that keep linguistic interaction flowing to the extensive reliance on 
contextual cues to interpret and produce linguistic utterances.

When comparing artificial linguistic interaction systems to language pro cessing in the 
 human brain, it is clear that the two are far apart on several levels. At a fundamental level, 
language in computers is meaningless to the computer. A chatbot can utter phrases about 
feelings or the weather, but it does not  really understand what it is talking about. It has never 
experienced feelings or weather, or any other words for that  matter. The words that a chatbot 
uses are not grounded. Grounding happens when words and linguistic expressions are expe-
rienced and from that become meaningful. The word “chair” only becomes meaningful when 
a computer or robot has an experiential sensation of a chair by seeing a chair through its 
camera, by feeling a chair through tactile sensors, or by understanding the function of a chair.

 There have been some in ter est ing developments in statistical language pro cessing, 
where algorithms are used to build models of a language by analyzing large corpora of 
text. The earliest such algorithms built cooccurrence statistics of words, basically counting 
which words appeared near  others in texts. A distance mea sure is used to report which 
words are closer in meaning and which are not. One such technique, latent semantic analy sis 
(LSA), can tell that “king” and “queen” are closely related and that “king” and “lemon” 
are not (Landauer et al. 1998). New neural network- based approaches take statistical cooc-
currence further by learning long- distance dependencies between words. The most recent 
solutions use recurrent neural networks. At the time of writing, the most notable model is 
the generative pretrained transformer 3, or GPT-3, but given the arms race between large 
corporations to outperform each other’s language models, the GPT-3  will soon be super-
seded. The GPT-3 uses transformer networks and was trained on hundreds of billions of 
words. It was tasked with learning to predict the next word in a sentence and by  doing so 
built a model not only of the En glish language but also of programming languages (Brown 
et al. 2020). The GPT-3 seems to have a firm grasp on semantics. It can not only complete 
sentences;  there are impressive examples of it completing short- story lines starting from 
only an opening paragraph. It can answer questions and passes tests aimed at assessing the 
vocabulary skills of  children. From a cursory inspection, it would seem that the GPT-3 
understands language, as it uses language in a very coherent way. However, while the GPT-3 
can tell you who the president of the United States is, it would not be able to recognize the 
president in a photo. The reason, of course, is that the GPT-3, and all other text- based natu-
ral language pro cessing systems, are completely text based: the words they use are not 
grounded.

The contrast with  human cognition could not be greater: all the words and linguistic 
constructions we use are grounded in a sensory real ity (Harnad 1990). Many have argued 
that robots should do the same if they are to interact with  people in a way in which our 
exchanges are meaningful (Cangelosi et al. 2002). A robot without grounded linguistic 
symbols can seem to know the “color of grass,” but if it is not able to tie the visual per-
ception of green and grass together, together with all the other memories and cultural 
agreements on language, human- robot conversation is likely to remain fairly  limited.
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Another challenge, especially in the context of cognitive robotics, is that language in 
the  human brain is rather poorly understood. We can prod the linguistic brain through 
behaviorist experiments— for example, by mea sur ing response times to words, which gives 
us an insight into how words and their meaning might be represented in the brain. Or we 
sometimes get intriguing views into the linguistic brain through patients who have suffered 
brain injuries. Impor tant brain regions implicated in language pro cessing and production, 
such as Broca’s and Wernicke’s areas,  were discovered  after studying patients with lesions 
to  those areas. We also discovered that language is to some extent pro cessed in the right 
hemi sphere,  after studying patients who had both hemi spheres separated by cutting the 
corpus callosum, the part of the brain connecting both hemi spheres, but  were still able to 
interpret words shown to only the right visual field.

But even modern brain- imaging techniques have shed relatively  little light on how 
language is pro cessed (Dronkers et al. 2004), represented (Hagoort 2005), and produced 
in the brain (Levelt 2001) and certainly not to an extent in which insights from cognitive 
neuroscience would enable us to build better natu ral language interaction systems. If  there 
is perhaps one valuable lesson, it is that language is not compartmentalized. Instead lan-
guage seems to permeate the entire brain, with some clear loci for more specific language 
functions. Artificial NLP, on the other hand, is compartmentalized into components such 
as speech recognition, language interpretation, dialogue pro cessing, language generation, 
and speech production while ignoring ele ments often essential to linguistic communica-
tion. Most importantly, the multimodal and nonverbal aspects of communication are 
largely ignored, and artificial NLP is therefore rather impoverished. Two examples should 
make this clear: prosody and priming. Prosody is ignored in NLP, although the meaning 
of a spoken utterance can be completely changed through prosody. Just think of the many 
ways in which “I’m not at all angry” can be expressed and how the meaning of such a 
short sentence can swing between joking, furious, irritated, or sad.  Human linguistic per-
ception and production is fine- tuned for this, but it remains firmly outside the grasp of 
artificial speech recognition and production.

Priming is the effect whereby one stimulus influences the response to a  later stimulus. For 
example, asking, “What do cows drink?” often results in  people answering “milk” instead 
of “ water” (Rose et al. 2015). Language in the brain is or ga nized as an associative network, 
with sounds, words (or lemmas), and meaning connected in networks (Collins and Loftus 
1975; Levelt 2001). Statistical methods of language modeling, such as hidden Markov 
models or long short- term memory networks, indispensable in speech recognition and 
machine translation, explic itly learn statistical associations between phonemes and words. 
Priming is a very impor tant mechanism both in the brain and in  these artificial models: the 
pre sen ta tion of a word or phoneme primes, or rather predicts, the next most probable word 
or phoneme. In the brain, priming is multimodal (Wood et al. 2012), but in NLP the priming 
only happens within the phonetic or lexical domain, thereby cutting NLP off from modalities 
that the  human brain relies upon to disambiguate and enrich language.

19.5 Nonverbal Interaction

Most content of a natu ral interaction is contained in its nonverbal aspects. Of course, written 
text contains very  little nonverbal communication (apart from the occasional emoticon) and 
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seems to work well at conveying information. But spoken language, and specifically lan-
guage spoken in the presence of  others, relies heavi ly on nonverbal ele ments. The division 
of  labor between verbal and nonverbal is contested. A widely cited statement is that of 
Mehrabian (1972), which claims that 55  percent of communication is contained in body 
language, 38  percent in tone of voice, and only 7  percent in the words spoken. While the 
exact ratio is up for debate, the fact that verbal communication only accounts for a fraction 
of communication should point out the flaws in our current efforts in building HRI. For 
historical reasons most of our technical efforts have been on creating verbal or text- based 
linguistic interactions while at the same time ignoring nonverbal aspects of interaction. And 
if we did study nonverbal interaction, we studied it in isolation from other communication 
channels.

Emotion is a textbook example of this: Due to technical and resource limitations, the 
first studies of emotion used photo graphs of facial expressions. Paul Ekman, in his effort 
to show that some emotions are universal, took a number of photo graphs of himself and 
 others showing extreme emotions, such as happiness or anger. He indeed confirmed that 
 these emotions are universally recognized and, building on this work, argued that  there 
are at least six or seven basic emotions (Ekman 1972, 1992). Ekman built on a tradition 
started by Darwin (1872) of using photo graphs of  faces to study emotions, and ever since 
the discussion of emotions has been dominated by a focus on facial expressions. Neverthe-
less,  faces only show extreme emotions, and emotion is much more likely to be gleaned 
from context and other body cues (Kappas 2003). In a striking experiment, it was shown 
that the body posture of tennis players, rather than their facial expressions, showed  whether 
they had won or lost a point, convincingly demonstrating that the face is not necessarily 
a win dow to the soul, or to emotions in this case (Aviezer et al. 2012).

Just as with anthropomorphization, the  human brain is ever  eager to interpret nonverbal 
signals as meaningful. The clicks, beeps, and whirrs that R2- D2, one of the robot leads 
from the Star Wars series, emits are never interpreted as background noise on the 
soundtrack of the film but are interpreted as meaningful and relevant by the cinema audi-
ence.  These clicks and beeps, or nonlinguistic utterances (NLU), can be used to add a 
nonlinguistic communication channel to robots, complementing language or even short-
cutting the need for language. NLUs are interpreted as meaningful by  children and adults 
and can be used to communicate the emotional state of the robot (Read and Belpaeme 
2014; see figure 19.4).

Further analy sis showed how NLUs are interpreted categorically: if  people are asked to 
interpret an NLU as an emotion, then their interpretation is being drawn to one of only a 
handful of basic emotions such as happiness, anger, surprise, or fear (Read and Belpaeme 
2016). Categorical perception is a fundamental property of perception and is instrumental 
in interpreting perceptual stimuli. The  human brain interprets sensory perception as belong-
ing to a  limited number of conceptual states. For example, speech sounds are interpreted as 
belonging to only a distinct number of phonemes. If hearing a speech continuum in which 
the amount of voicing is changed gradually, from not at all in “p” in /pa/ to fully voiced in 
“b” in /ba/, then the perception  will be drawn  toward known vowels,  either “pa” or “ba” but 
nothing in between. It is surprising that the cognitive mechanisms used to interpret human- 
human verbal and nonverbal communication are still at work when we are interpreting robotic 
communicative signals.
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The combination of verbal and nonverbal interaction, often referred to as multimodal 
communication in technical parlance, is perhaps the biggest challenge in HRI. One of the 
reasons for this is that a divide- and- conquer approach, in which a prob lem is divided up 
into smaller prob lems, each to be solved on their own before being recombined to form a 
total solution, does not seem promising when it comes to building multimodal HRI. In 
 human cognition, multimodal interaction is a complex activity to which all cognitive facul-
ties contribute without clear division, sequence, or hierarchy. For example, hearing a verb 
(such as “kick”) activates the corresponding action in the motor cortex (activity when 
kicking or thinking about kicking; Pulvermüller 1999), and hearing a naturalistic sound 
(such as a dog’s “woof”) and spoken words (/dɔg/) 346 ms before a picture search task 
led to faster visual detection of the picture of a dog from between distractors (Chen 
and Spence 2011). It is very likely that the cognitive organ ization of  human interaction 
 will need to be reflected in some way when building HRI. The current separation of 
pro cessing, with separate components such as speech recognition, dialogue, text to speech, 
emotion recognition, facial expressions, gesture production, or prosody is artificial and 
does not have the tight and dynamic coupling that is likely to be necessary for natu ral 
HRI.
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Figure 19.4
Random robot sounds, a concatenation of clicks and beeps,  were played to  children between six and eight years 
old. The  children  were asked to show which emotion the robot was displaying by recreating the emotion on a digital 
face.  These responses  were then mapped to a 3D emotion space. Instead of responses being uniformly scattered 
over the emotion space plot, the  children’s responses clustered together near basic emotion. This suggests that robot 
sounds are interpreted as humanlike emotions and that this pro cess is categorical. Source: From Read and Belpaeme 
2012, 2016.
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19.6 Applications

A better understanding of the cognitive mechanisms involved in HRI would surely allow 
us to build better robots, better interactions, and the best applications. For now, the design 
of robots and interactions has relied a lot on the gut feeling of designers and engineers and 
to a lesser extent on theory. However, as soon as HRI is used for applications, an improved 
understanding of the responses of the  human brain to robots might be essential.

Social robots can be used to entertain, persuade, and inform. The strong social character 
of robots lends itself well to establishing a social bond, and this can be used in diverse 
applications, such as retail, education, or therapy.

Robots show potential in education. When compared to screen- based learning technolo-
gies, such as educational software on computers or tablets, robots tend to have better out-
comes. This can be explained by the explicit and tangible social character of the robots, 
which leads to both improved attitudes  toward learning and better learning outcomes. In a 
metareview (Belpaeme et al. 2018), papers comparing tutoring robots against an alternative, 
such as educational software or an on- screen avatar, showed that the mean cognitive outcome 
effect size (Cohen’s d) of robot tutoring is 0.70 (95  percent confidence interval (CI), 0.66 to 
0.75), which compares favorably to what  human tutors can achieve:  human tutors achieve 
an outcome effect size of d = 0.79 (Vanlehn 2011). While robot tutors do show promise, 
designing a robot tutor still is challenging. Robots can be used to tutor restricted domains, 
such as  simple math exercises, but  little is known about how to design robot tutors that tackle 
harder learning challenges. One such challenge is language: the current school- based teach-
ing of a second language relies a  great deal on class- based learning of vocabulary and 
grammar with  little to no attention to language use and interaction. This is far removed from 
how a first language is seemingly effortlessly acquired through interacting with parents, 
siblings, and peers. The main reason why school- based language learning is so dif fer ent is 
that the teacher cannot engage in interaction on an individual basis with all pupils in the 
classroom. And this is where robots show considerable promise: a robot has the time and 
infinite patience to interact with  those learning a target language. A robot prob ably also has 
a better accent than the teacher and can personalize its tutoring to the learner.

Vogt et al. (2019) reported on a large- scale study in which a language- tutoring robot helped 
young  children learn the words and grammar of a second language (see figure 19.5). They 
used a NAO robot to teach En glish to five- to- six- year- olds in the Netherlands.  Children 
learned not only nouns (“giraffe” or “boy”) but also words used in numeracy (counting words 
or quantities, such as “more” or “fewer”) and spatial language (such as “ behind,” “in front,” 
and “next to”). The robot tutored the  children over seven lessons, introducing six new words 
during  every lesson. The study was used not only to establish  whether the robot would be 
better than only a tablet but also to see  whether a robot using gestures to accentuate the words 
would be a better language tutor. It was divided over four study conditions (a control condi-
tion receiving no tutoring, a tablet- only condition, a robot without gestures condition, and 
a robot with gestures condition), and 208  children took part. While the  children did learn 
En glish, no significant difference could be found between the learning outcomes:  children 
did not learn more from a robot,  whether it was using gestures or not, than from a tablet alone. 
While  there are demonstrations of robots being very effective tutors in narrow domains, the 
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benefits of using robots in more complex domains, such as second- language tutoring, are 
harder won. Robots have been shown to be effective in tutoring vocabulary (van den Berghe 
et al. 2019), but a more complex use of language prob ably requires a more complex HRI. A 
better understanding of how  children and adults learn, and how robots can have an impact on 
this pro cess,  will be necessary. It is likely that the social and physical presence of robots is a 
strong influence on the learning pro cess, but without more open- ended natu ral interaction, 
the use of robot tutors is likely to be  limited to narrow and closed domains, such as math 
exercises or vocabulary.

Another application of HRI in which robots are likely to have a significant impact in 
the  future is therapy (Belpaeme et al. 2013). In the last two de cades, robotics has been 
promoted as a promising new technology in autism spectrum disorder (ASD) therapy 
(Scassellati, Admoni, and Matarić 2012; Thill et al. 2012), and while many supportive 
case studies exist,  there has been a dearth of quantitative empirical evidence about the 
efficacy of robot therapy (Diehl et al. 2012; Pennisi et al. 2016) that only recently is being 
resolved. The effect of robots and their be hav ior on  people with ASD is only being studied 
through the lens of psychological therapy, with  little consideration for the cognitive pro-
cesses involved in the perception of and interaction with robots. It is very likely that a 
better understanding of the neuropsychology and cognition involved in HRI  will allow us 
to build more effective HRI.

19.7 Conclusion

The relation between  human cognition and HRI has largely been explored at the behavioral 
level. Recently, brain- imaging techniques and response time experiments have given us a 

Figure 19.5
A child learning a second language with the support of a social robot.
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view on how the brain responds to robot stimuli and interactions with robots. All data 
seem to suggest that interaction with robots relies on the very same social cognitive 
mechanisms and neural pathways that are also active when we interact with  people. This 
in itself is not very surprising: the brain just generalizes, and our social cognition spills 
over to nonhuman agents, be they pets or robots. What is more surprising is that our brain 
readily interprets robotic be hav iors, robot forms, and robot noises for which our brain 
certainly did not evolve. Of course, the nonlinguistic utterances of fictional robots and toy 
robots have been designed to be interpretable, but even odd combinations— such as a robot 
vacuum cleaner with a wagging tail (Singh and Young 2012)— remain legible and socially 
meaningful to us, showing that the  human brain  really is a most gregarious social inter-
preter. Understanding how it accomplishes that is likely to lead to a more efficient design 
of new forms and be hav ior in HRI.

Additional Reading and Resources

•  A classic survey of early approaches to HRI: Goodrich, Michael A., and Alan C. Schultz. 
2007. “Human- Robot interaction: A Survey.” Foundations and Trends in Human- Computer 
Interaction 1 (3): 203–275.
•  A recent, comprehensive volume on HRI: Bartneck, Christoph, Tony Belpaeme, Frie-
derike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanovic. 2020. Human- 
Robot Interaction: An Introduction. Cambridge: Cambridge University Press.
•  A recent collection on research methods in HRI: Jost, Céline, Brigitte Le Pévédic, Tony 
Belpaeme, Cindy Bethel, Dimitrios Chrysostomou, Nigel Crook, Marine Grandgeorge, 
and Nicole Mirnig, eds. 2020. Human- Robot Interaction: Evaluation Methods and Their 
Standardization. Vol. 12. Berlin: Springer.
•  A time line of HRI, podcasts on HRI, and additional material accompanying Bartneck 
et al. (2020): https:// www . human - robot - interaction . org / .
•  The portal link to the flagship HRI conference in the field and resources on HRI: http:// 
humanrobotinteraction . org / .
•  A one- hour video introduction to HRI and social robotics: https:// www . youtube . com 
/ watch ? v = Lpp1FjkOyN4.
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