

Effects of Smartphone Sensor Characteristics on Dermatoscopic Images, a Simulation Study.

V. Vasudev,^{a,c} L. De Paepe,^a A. Maidment,^b T. Kimpe,^a L. Platisa,^c W. Philips,^c and P. Bakic^b ^aBarco Healthcare, Kortrijk, Belgium, ^bDept. of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA, ^cimec-IPI, Ghent University, Belgium

MOTIVATION

- In today's mostly virtual world, smartphones are being utilised more and more as replacement dermatoscopes¹.
- Diagnosing a lesion requires the overall analysis of the lesion and any/all of its dermatoscopic features² that may be present (globules, blue white veil, blood vessels etc,.).
- Different smartphone sensors will result in differing images that will affect diagnosis.
- We examine possible effects a smartphone sensor may have on dermatoscopic images, and how it would stack up when compared to a modern digital dermatoscope sensor.

BACKGROUND

- Smartphones are being leveraged to capture images of skin lesions in situations where the patient is unable to visit a dermatologist or is in need of a quick diagnosis.
- There are even smartphone attachments¹ that help alleviate some of the negative aspects (for e.g., magnification) of utilising a smartphone as a replacement dermatoscope.
- The sensors have been analysed with the help of the dermatoscope module that is part of the virtual simulation pipeline for dermatology, VCT-Derma³.

Table 1 - Smartphone Sensor Characteristics

- We have simulated two smartphone sensors (sensors X and Y), and one reference device; the acquisition parameters of all devices can be seen in Table 1.
- Polarization is not considered so the subject has been adapted to prevent specular reflection.
- Smartphone-specific image processing is also not considered as this information is proprietary.

• Simulations were run in Blender⁴, with the help of a CAD model of a dermatoscope, to act as reference, and two test subjects: a skin model part of VCT-Derma³, and an image of a ColorGauge Nano chart⁵ (both of which can be seen in Figure 1 alongside).

- The tests employ a simple setup consisting of a camera (dermatoscope model), a uniformly distributed light source, and the test subject. The first test involving the skin model uses an ambient light source, the default "Sun" light source, that is available in Blender⁴. The second test with the chart employs strategically placed white leds as the light source.
- The camera model parameters have been modified based on those mentioned in Table 1 for the respective sensors.

Name	Sensor Spatial Resolution	Sensor Size	Pixel Size	Chroma	f-stop	Focal Length	Crop Factor
Reference	3864 x 2202	7.20mm	1.62µm	RGB	f/3.7	57.6mm	6.0
device	8.51MP	(1/2.5")					
Х	4032 x 3024	6.15mm	1.22µm	RGB	f/2.2	29mm	7.2
	12.2MP	(1/2.93")					
Y	4032 x 3024	7.06mm	1.4µm	RGB	f/1.7	26mm	6.1
	12.2MP	(1/2.55")					

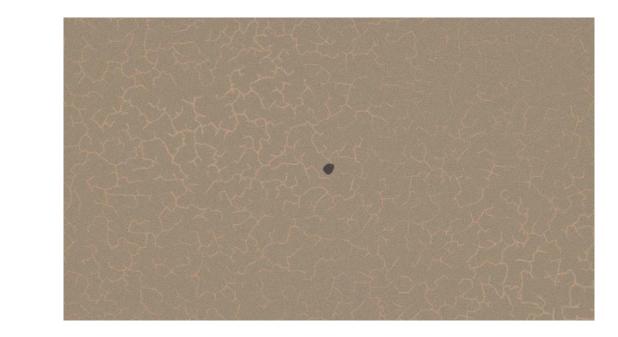
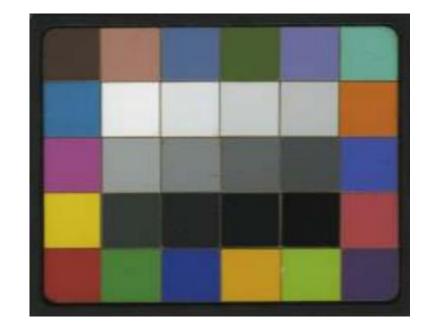
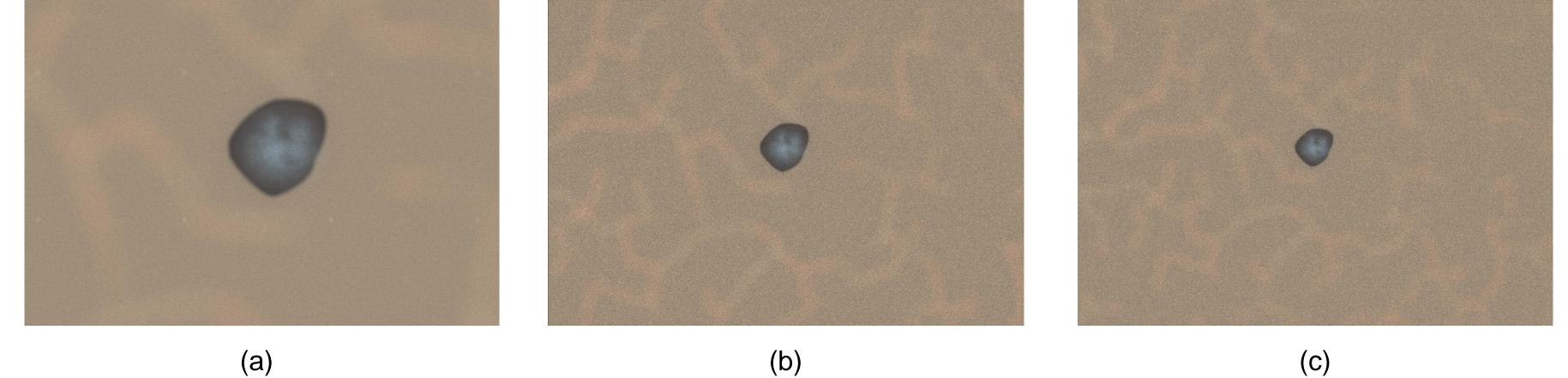




Figure 1 - Test Subjects: VCT-Derma Skin Model³ (left), and ColorGauge Nano Chart⁵ (right)

RESULTS AND DISCUSSION

• Figure 2 shows the result of the first test involving the skin model. A blue white veil⁶ has

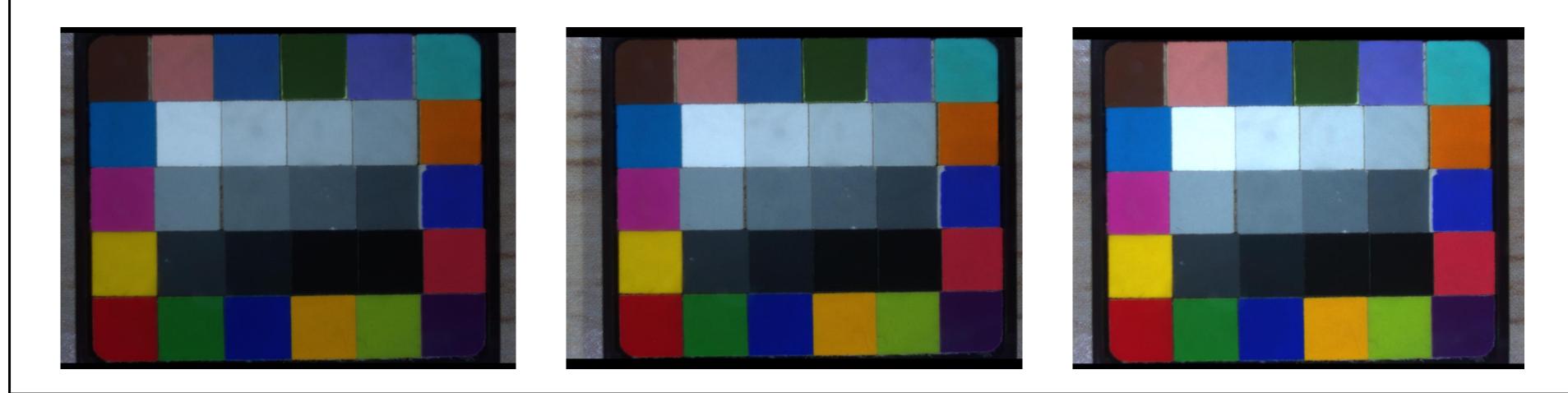


Figure 2 – The skin model as seen from (a) Reference Device, (b) Sensor X, and (c) Sensor Y

been inserted into the image⁷ to help show the difference in the optics of the sensors.

- There is improved clarity and magnification in the reference device image as compared to images from sensors x and y.
- The increased magnification allows for a better analysis of dermatoscopic features² that may be present, allowing for a more accurate diagnosis.
- Figure 3 shows the results of the second test involving the ColorGauge chart.
 - The differing sensor characteristics (Table 1) results in differing results with respect to color. Some colors appear to be oversaturated in images from Sensors X and Y as compared to the reference device.
- Results of imaging the ColorGauge chart show average Δ E2000 values of ~12.5 across all color patches for the reference device, and smartphone sensors (more details can be found in the accompanying manuscript)

CONCLUSIONS

• We have demonstrated that the same lesion appears differently when imaged by different smartphones.

• Differences in image feature clarity, and color, are observed from our tests, with the skin model and chart.

ACKNOWLEDGEMENT

This work is supported by the Flanders Agency for Innovation & Entrepreneurship in the context of the Baekeland research Grant

REFERENCES

- 1. Dermatoscope overview dermnetnz.org
- 2. ABCD rule dermoscopedia.org/ABCD_rule
- 3. V. Vasudev, et al., "Simulation pipeline for virtual

Figure 3 – The ColorGauge Chart as seen from (a) Reference Device, (b) Sensor X, and (c) Sensor Y

• Some colors were notably more saturated with the smartphone sensors than the reference device, leading

to potential loss of information, which can be of clinical significance in dermatological applications.

• Future work includes studying the effect of multispectral illumination on smartphone sensors.

"Virtual Clinical Trials for Dermatology", HBC.2017.0583, and the Burroughs-Wellcome Fund (IRSA 1016451).

Email: varun.vasudev@barco.com

clinical trials of dermatology images," Proc.SPIE (2019) 4. Blender Foundation – blender.org 5. Image Science Associates: ColorGauge Nano Target. 6. Marghoob, A. A., Malvehy, J. and Braun, R. P., [Atlas of dermoscopy] (2012). 7. V. Vasudev et al., "Simulation and evaluation of clinically relevant features in a computational skin model," in 29th EADV Congress, Abstracts, online conference, 2020.