- Author
- Frederik Broucke (UGent) , Gregory Debruyne (UGent) and Jasson Vindas Diaz (UGent)
- Organization
- Project
- Keywords
- Generalized integers with Riemann hypothesis, generalized integers with large oscillation, Beurling generalized prime numbers, saddle-point method, Bohr’s extremal example for convexity bound, Diamond-Montgomery-Vorhauer probabilistic method, ASYMPTOTIC-DISTRIBUTION, PRIMES
Downloads
-
2004.11501.pdf
- full text (Accepted manuscript)
- |
- open access
- |
- |
- 398.13 KB
-
(...).pdf
- full text (Published version)
- |
- UGent only
- |
- |
- 603.32 KB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8676944
- MLA
- Broucke, Frederik, et al. “Beurling Integers with RH and Large Oscillation.” ADVANCES IN MATHEMATICS, vol. 370, 2020, doi:10.1016/j.aim.2020.107240.
- APA
- Broucke, F., Debruyne, G., & Vindas Diaz, J. (2020). Beurling integers with RH and large oscillation. ADVANCES IN MATHEMATICS, 370. https://doi.org/10.1016/j.aim.2020.107240
- Chicago author-date
- Broucke, Frederik, Gregory Debruyne, and Jasson Vindas Diaz. 2020. “Beurling Integers with RH and Large Oscillation.” ADVANCES IN MATHEMATICS 370. https://doi.org/10.1016/j.aim.2020.107240.
- Chicago author-date (all authors)
- Broucke, Frederik, Gregory Debruyne, and Jasson Vindas Diaz. 2020. “Beurling Integers with RH and Large Oscillation.” ADVANCES IN MATHEMATICS 370. doi:10.1016/j.aim.2020.107240.
- Vancouver
- 1.Broucke F, Debruyne G, Vindas Diaz J. Beurling integers with RH and large oscillation. ADVANCES IN MATHEMATICS. 2020;370.
- IEEE
- [1]F. Broucke, G. Debruyne, and J. Vindas Diaz, “Beurling integers with RH and large oscillation,” ADVANCES IN MATHEMATICS, vol. 370, 2020.
@article{8676944, articleno = {{107240}}, author = {{Broucke, Frederik and Debruyne, Gregory and Vindas Diaz, Jasson}}, issn = {{0001-8708}}, journal = {{ADVANCES IN MATHEMATICS}}, keywords = {{Generalized integers with Riemann hypothesis,generalized integers with large oscillation,Beurling generalized prime numbers,saddle-point method,Bohr’s extremal example for convexity bound,Diamond-Montgomery-Vorhauer probabilistic method,ASYMPTOTIC-DISTRIBUTION,PRIMES}}, language = {{eng}}, pages = {{38}}, title = {{Beurling integers with RH and large oscillation}}, url = {{http://doi.org/10.1016/j.aim.2020.107240}}, volume = {{370}}, year = {{2020}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: