Advanced search
2 files | 1.00 MB Add to list

Beurling integers with RH and large oscillation

Frederik Broucke (UGent) , Gregory Debruyne (UGent) and Jasson Vindas Diaz (UGent)
Author
Organization
Project
Keywords
Generalized integers with Riemann hypothesis, generalized integers with large oscillation, Beurling generalized prime numbers, saddle-point method, Bohr’s extremal example for convexity bound, Diamond-Montgomery-Vorhauer probabilistic method, ASYMPTOTIC-DISTRIBUTION, PRIMES

Downloads

  • 2004.11501.pdf
    • full text (Accepted manuscript)
    • |
    • open access
    • |
    • PDF
    • |
    • 398.13 KB
  • (...).pdf
    • full text (Published version)
    • |
    • UGent only
    • |
    • PDF
    • |
    • 603.32 KB

Citation

Please use this url to cite or link to this publication:

MLA
Broucke, Frederik, et al. “Beurling Integers with RH and Large Oscillation.” ADVANCES IN MATHEMATICS, vol. 370, 2020, doi:10.1016/j.aim.2020.107240.
APA
Broucke, F., Debruyne, G., & Vindas Diaz, J. (2020). Beurling integers with RH and large oscillation. ADVANCES IN MATHEMATICS, 370. https://doi.org/10.1016/j.aim.2020.107240
Chicago author-date
Broucke, Frederik, Gregory Debruyne, and Jasson Vindas Diaz. 2020. “Beurling Integers with RH and Large Oscillation.” ADVANCES IN MATHEMATICS 370. https://doi.org/10.1016/j.aim.2020.107240.
Chicago author-date (all authors)
Broucke, Frederik, Gregory Debruyne, and Jasson Vindas Diaz. 2020. “Beurling Integers with RH and Large Oscillation.” ADVANCES IN MATHEMATICS 370. doi:10.1016/j.aim.2020.107240.
Vancouver
1.
Broucke F, Debruyne G, Vindas Diaz J. Beurling integers with RH and large oscillation. ADVANCES IN MATHEMATICS. 2020;370.
IEEE
[1]
F. Broucke, G. Debruyne, and J. Vindas Diaz, “Beurling integers with RH and large oscillation,” ADVANCES IN MATHEMATICS, vol. 370, 2020.
@article{8676944,
  articleno    = {{107240}},
  author       = {{Broucke, Frederik and Debruyne, Gregory and Vindas Diaz, Jasson}},
  issn         = {{0001-8708}},
  journal      = {{ADVANCES IN MATHEMATICS}},
  keywords     = {{Generalized integers with Riemann hypothesis,generalized integers with large oscillation,Beurling generalized prime numbers,saddle-point method,Bohr’s extremal example for convexity bound,Diamond-Montgomery-Vorhauer probabilistic method,ASYMPTOTIC-DISTRIBUTION,PRIMES}},
  language     = {{eng}},
  pages        = {{38}},
  title        = {{Beurling integers with RH and large oscillation}},
  url          = {{http://doi.org/10.1016/j.aim.2020.107240}},
  volume       = {{370}},
  year         = {{2020}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: