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THE NUCLEARITY OF GELFAND-SHILOV SPACES AND KERNEL

THEOREMS

ANDREAS DEBROUWERE, LENNY NEYT, AND JASSON VINDAS

Abstract. We study the nuclearity of the Gelfand-Shilov spaces S
(M)
(W ) and S

{M}
{W } ,

defined via a weight (multi-)sequence system M and a weight function system W . We
obtain characterizations of nuclearity for these function spaces that are counterparts
of those for Köthe sequence spaces. As an application, we prove new kernel theorems.
Our general framework allows for a unified treatment of the Gelfand-Shilov spaces

S
(M)
(A) and S

{M}
{A} (defined via weight sequences M and A) and the Beurling-Björck

spaces S
(ω)
(η) and S

{ω}
{η} (defined via weight functions ω and η). Our results cover

anisotropic cases as well.

1. Introduction

Nuclear spaces play a major role in functional analysis. One of their key features
is the validity of abstract Schwartz kernel theorems, which often allows for the rep-
resentation and study of important classes of continuous linear mappings via kernels.
Therefore, establishing whether a given function space is nuclear becomes a central
question from the point of view of both applications and understanding its locally
convex structure.

In the case of weighted Fréchet spaces of smooth functions on Rd, the nuclearity
question has been completely settled. Let W = (wn)n∈N be a sequence of positive
continuous functions on R

d such that 1 ≤ w1 ≤ w2 ≤ · · · . Consider the associated
Gelfand-Shilov spaces of smooth functions [13]

Kq(W ) = {ϕ ∈ C∞(Rd) | max
|α|≤n
‖ϕ(α)wn‖Lq <∞ ∀n ∈ N}, q ∈ [1,∞],

endowed with their natural Fréchet space topologies. If W satisfies the mild regularity
hypothesis

(wM) ∀n ∈ N ∃m ∈ N ∃C > 0 ∀x ∈ R
d : sup

|y|≤1

wn(x+ y) ≤ Cwm(x),

then Kq(W ) is nuclear if and only if W satisfies the condition

(N) ∀n ∈ N ∃m ∈ N : wn/wm ∈ L
1.
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2 A. DEBROUWERE, L. NEYT, AND J. VINDAS

In fact, this result follows from Vogt’s sequence space representation ofKq(W ) [30, The-
orem 3.1] and the well-known corresponding characterization of nuclearity for Köthe
sequence spaces [19, Proposition 28.16]. Condition (N) appears already in the work
of Gelfand and Shilov, who proved the nuclearity of K∞(W ) under it and some extra
regularity assumptions in a direct fashion [12, p. 181].

The goal of this article is to establish the analogue of the above result for Gelfand-
Shilov spaces of ultradifferentiable functions, both of Beurling and Roumieu type.
These spaces, also known as spaces of type S, were introduced in the context of para-
bolic initial-value problems [12, 13], and thereafter turned out to be the right frame-
work for the analysis of decay and regularity properties of global solutions to large
classes of linear and semi-linear PDE on Rd. We refer to the monograph [21] and
the survey article [14] for accounts on applications of Gelfand-Shilov spaces; see also
[9, 26] for global pseudo-differential calculus in this setting. The study of nuclear-
ity for spaces of type S goes back to Mityagin [20], and has recently captured much
attention [4, 5, 6, 11, 25]; particularly, in connection with applications to microlo-
cal analysis of pseudo-differential operators and the convolution theory for generalized
functions. We mention that in some cases nuclearity becomes a straightforward con-
sequence of sequence space representations provided by eigenfunction expansions with
respect to various PDO [8, 18, 31]. However, such representations are not available for
all Gelfand-Shilov spaces. We deal in this article with the latter situation.

We shall work here with the notion of ultradifferentiability defined through weight
matrices [27], called weight sequence systems in the present article. In particular,
as explained in [27], this leads to a unified treatment of classes of ultradifferentiable
functions defined via weight sequences [16] and via weight functions [7]. Moreover, we
further extend the considerations from [27] to multi-indexed weight sequence systems
in order to cover the anisotropic case as well. Our spaces are defined as follows. Given
a family M = {Mλ | λ ∈ R+} of (multi-indexed) sequences Mλ = (Mλ

α)α∈Nd of positive
numbers such thatMλ ≤ Mµ for all λ ≤ µ and a family W = {wλ | λ ∈ R+} of positive
continuous functions wλ on Rd such that 1 ≤ wλ ≤ wµ for all µ ≤ λ, we consider the
Gelfand-Shilov spaces

S
(M)
(W ),q = lim

←−
λ→0+

SM
λ

wλ,q, S
{M}
{W },q = lim

−→
λ→∞

SM
λ

wλ,q, q ∈ [1,∞],

where SM
λ

wλ,q is the Banach space consisting of all ϕ ∈ C∞(Rd) such that

‖ϕ‖
SMλ

wλ,q

= sup
α∈Nd

‖ϕ(α)wλ‖Lq

Mλ
α

<∞.

We use S
[M]
[W ],q as a common notation for S

(M)
(W ),q and S

{M}
{W },q. In Section 5, we give sufficient

conditions for S
[M]
[W ],q to be nuclear in terms of M and W ; see Theorem 5.1. Actually, we

show that for an important class of weight sequence systems our hypotheses also become
necessary, providing a full characterization of nuclearity in such a case; see Theorem

5.6. Moreover, nuclearity is related to the identity S
[M]
[W ],q = S

[M]
[W ],r, q 6= r. Section

4 is devoted to studying when this equality holds; see Theorem 4.2 and Theorem
5.7. A useful feature of our approach is that our considerations are stable under
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tensor products. We shall exploit this fact to derive new kernel theorems for Gelfand-
Shilov spaces in Section 7. Note that these kernel theorems are ‘global’ counterparts
of Petzsche’s results from [22].

We end this introduction by stating two samples of our results in the particular but

important case of the Gelfand-Shilov spaces S
[M ]
[A],q arising from single weight sequences

M = (Mp)p∈N and A = (Ap)p∈N . We refer to Section 3 and Section 4 for unexplained
notions.

Theorem 1.1. Let M = (Mp)p∈N and A = (Ap)p∈N be two weight sequences satisfying

(M.1). Suppose that S
[M ]
[A],q 6= {0} for some q ∈ [1,∞]. Then, the following statements

are equivalent:

(i) M and A both satisfy (M.2)′.

(ii) S
[M ]
[A],q is nuclear for all q ∈ [1,∞].

(iii) S
[M ]
[A],q is nuclear for some q ∈ [1,∞].

The implication (i) ⇒ (ii) in the Roumieu case is actually contained in Mityagin’s
work [20]. The same topic is treated in [25, Proposition 2.11 and Remark 2.13] including
also the Beurling case but making use of stronger assumptions on the weight sequences.
On the other hand, to the best of our knowledge, the converse, i.e., the implication
(iii) ⇒ (i) appears to be new even in the particular case we have stated in Theorem

1.1. Notice that (i) is well-known to yield the equality S
[M ]
[A],q = S

[M ]
[A],r as locally convex

spaces for all q, r ∈ [1,∞], see e.g. [10, Theorem 2.5.2]. Interestingly, when we fix the
weight sequence M and assume that it satisfies (M.1) and (M.2)′ (cf. Subsection 3.2),
then we can also get back from this statement to nuclearity.

Theorem 1.2. Let M = (Mp)p∈N be a weight sequence satisfying (M.1) and (M.2)′.

Let A = (Ap)p∈N be a weight sequence satisfying (M.1). Suppose that S
[M ]
[A],q 6= {0} for

some q ∈ [1,∞]. Then, the following statements are equivalent:

(i) A satisfies (M.2)′.

(ii) S
[M ]
[A],q is nuclear for all q ∈ [1,∞].

(iii) S
[M ]
[A],q is nuclear for some q ∈ [1,∞].

(iv) S
[M ]
[A],q = S

[M ]
[A],r as locally convex spaces for all q, r ∈ [1,∞].

(v) S
[M ]
[A],q = S

[M ]
[A],r as sets for some q, r ∈ [1,∞] with q 6= r.

It should be noticed that Theorem 1.2 corresponds to the classical characterization
of nuclearity for Köthe sequence spaces (cf. [19, Proposition 28.16]) in the setting of
Gelfand-Shilov spaces. As a corollary of our more general considerations, we shall also
obtain in Section 5 an analogue of Theorem 1.2 for spaces of Beurling-Björck type
[3] with ultradifferentiable component defined through a Braun-Meise-Taylor weight
function [7]; in fact, Theorem 5.8 considerably improves recent results by Boiti et al. [4,
5, 6]. In this regard, we mention our recent article [11], whose results apply to Beurling-
Björck spaces not necessarily arising from Braun-Meise-Taylor weight functions.
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2. Nuclear Köthe sequence spaces

Köthe sequence spaces, both of echelon and co-echelon type [19, 2], are essential
tools in this work. We review in this short section when they are nuclear.

Given a sequence a = (aj)j∈Zd of positive numbers, we define lq(Zd, a) = lq(a),

q ∈ [1,∞], as the weighted Banach sequence space consisting of all c = (cj)j∈Zd ∈ CZd

such that

‖c‖lq(a) =


∑

j∈Zd

(|cj |aj)
q




1/q

<∞, q ∈ [1,∞),

and
‖c‖l∞(a) = sup

j∈Zd

|cj|aj <∞.

Set R+ = (0,∞). A Köthe set is a family A = {aλ | λ ∈ R+} of sequences a
λ of positive

numbers such that aλj ≤ aµj for all j ∈ Zd and µ ≤ λ. We define the associated Köthe
sequence spaces as

λq(A) = lim
←−
λ→0+

lq(aλ), λq{A} = lim
−→
λ→∞

lq(aλ), q ∈ [1,∞].

Note that λq(A) is a Fréchet space, while λq{A} is a regular (LB)-space, as follows from
[1, p. 80, Corollary 7]. We will use λq[A] as a common notation for λq(A) and λq{A}.
In addition, we shall often first state assertions for λq(A) followed in parenthesis by the
corresponding statements for λq{A}. Similar conventions will be used for other spaces
and notations.

The nuclearity of the spaces λq[A] can be characterized in terms of the following
conditions on the Köthe set A:

(N) ∀λ ∈ R+ ∃µ ∈ R+ : aλ/aµ ∈ l1;
{N} ∀µ ∈ R+ ∃λ ∈ R+ : aλ/aµ ∈ l1.

Proposition 2.1 (cf. [19, Proposition 28.16] and [1, Proposition 15, p. 75])). Let A be
a Köthe set. The following statements are equivalent:

(i) A satisfies [N].
(ii) λq[A] is nuclear for all q ∈ [1,∞].
(iii) λq[A] is nuclear for some q ∈ [1,∞].
(iv) λq[A] = λr[A] as locally convex spaces for all q, r ∈ [1,∞].
(v) λq[A] = λr[A] as sets for some q, r ∈ [1,∞] with q 6= r.

3. Weight sequence systems and weight function systems

In this section, we define weight sequence systems (introduced in [27] under the name
weight matrix) and weight function systems.

3.1. Weight function systems. A positive continuous function w on Rd is called a
weight function on Rd if w(x) ≥ 1 for all x ∈ Rd. A weight function system on Rd is
a family W = {wλ | λ ∈ R+} of weight functions wλ on R

d such that wλ(x) ≤ wµ(x)
for all x ∈ Rd and µ ≤ λ. We consider the following conditions on a weight function
system W :
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(wM) ∀λ ∈ R+ ∃µ ∈ R+ ∃C > 0 ∀x ∈ Rd : sup|y|≤1w
λ(x+ y) ≤ Cwµ(x);

{wM} ∀µ ∈ R+ ∃λ ∈ R+ ∃C > 0 ∀x ∈ Rd : sup|y|≤1w
λ(x+ y) ≤ Cwµ(x);

(M) ∀λ ∈ R+ ∃µ, ν ∈ R+ ∃C > 0 ∀x, y ∈ Rd : wλ(x+ y) ≤ Cwµ(x)wν(y);
{M} ∀µ, ν ∈ R+ ∃λ ∈ R+ ∃C > 0 ∀x, y ∈ Rd : wλ(x+ y) ≤ Cwµ(x)wν(y);
(N) ∀λ ∈ R+ ∃µ ∈ R+ : wλ/wµ ∈ L1;
{N} ∀µ ∈ R+ ∃λ ∈ R+ : wλ/wµ ∈ L1.

Clearly, [M] implies [wM]. Note that [wM] yields that

∀λ ∈ R+ ∃λ
′ ∈ R+ ∀µ

′ ∈ R+ ∃µ ∈ R+ (∀λ′ ∈ R+ ∃λ ∈ R+ ∀µ ∈ R+ ∃µ
′ ∈ R+)(3.1)

∃C > 0 ∀x ∈ R
d : sup

|y|≤1

wλ(x+ y)

wµ(x+ y)
≤ C

wλ
′
(x)

wµ′(x)
.

We define the tensor product of a finite number of weight function systems Wj =
{wλj | λ ∈ R+} on Rdj , j = 1, . . . , k, as

W1 ⊗ · · · ⊗Wk = {w
λ
1 ⊗ · · · ⊗ w

λ
k | λ ∈ R+},

where (wλ1 ⊗ · · · ⊗ w
λ
k)(x) = wλ1 (x1) · · ·w

λ
k(xk) for x = (x1, . . . , xk) ∈ Rd1+...+dk . Note

that W1⊗· · ·⊗Wk satisfies [wM] ([M] and [N], respectively) if and only if each Wj does
so.

The following lemma will be needed later on. We denote by C0 the space of contin-
uous functions vanishing at ∞.

Lemma 3.1. Let W be a weight function system satisfying [wM] and [N]. Then,

∀λ ∈ R+ ∃µ ∈ R+ (∀µ ∈ R+ ∃λ ∈ R+) : wλ/wµ ∈ L1 ∩ C0.

Proof. This is a consequence of (3.1). �

Given a weight function system W , we associate to it the Köthe set

AW = {(wλ(j))j∈Zd | λ ∈ R+}.

The next result shows that the notion [N] is unambiguous.

Lemma 3.2. Let W be a weight function system satisfying [wM]. Then, W satisfies
[N] if and only if AW satisfies [N].

Proof. This again follows from (3.1). �

3.2. Weight sequence systems. A sequence M = (Mα)α∈Nd of positive numbers is
called a weight sequence on Nd if limα→∞(Mα)

1/|α| =∞. We write ej for the standard
coordinate unit vectors in R

d, j = 1, . . . , d. We consider the following conditions on a
weight sequence M :

(M.1) (log-convexity) M2
α+ej
≤MαMα+2ej for all α ∈ Nd and j ∈ {1, . . . , d};

(M.2)′ (derivation-closedness) Mα+ej ≤ CH |α|Mα for all α ∈ Nd and j ∈ {1, . . . , d},
and some C,H > 0.
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The conditions (M.1) and (M.2)′ are denoted by (Mlc) and (Mdc), respectively, in [27].
We use here the standard notation from [16]. The associated function of M is defined
as

ωM(x) = sup
α∈Nd

log
|xα|M0

Mα
, x ∈ R

d.

Observe that ωM(x) = ωM(|x1|, . . . , |xd|) for all x = (x1, . . . , xd) ∈ Rd.
We define the tensor product of a finite number of weight sequencesMj = (Mj,α)α∈Ndj

on Ndj , j = 1, . . . , k, as M1 ⊗ · · · ⊗Mk = (M1,α1 · · ·Mk,αk
)(α1,...,αk)∈N

d1+···+dk . Note that

M1 ⊗ · · · ⊗Mk satisfies (M.1) ((M.2)′, respectively) if and only if this property holds
for each Mj. Moreover,

ωM1⊗···⊗Mk
(x) =

k∑

j=1

ωMj
(xj), x = (x1, . . . , xk) ∈ R

d1+···+dk .

Next, a weight sequence system on Rd is a family M = {Mλ | λ ∈ R+} of weight
sequences Mλ on N

d satisfying (M.1) such that Mλ
α ≤ Mµ

α for all α ∈ N
d and λ ≤ µ.

We will work with some of the following conditions on a weight sequence system M:

(L) ∀R > 0 ∀λ ∈ R+ ∃µ ∈ R+ ∃C > 0 ∀α ∈ Nd : R|α|Mµ
α ≤ CMλ

α ;
{L} ∀R > 0 ∀µ ∈ R+ ∃λ ∈ R+ ∃C > 0 ∀α ∈ Nd : R|α|Mµ

α ≤ CMλ
α ;

(M.2)′ ∀λ ∈ R+ ∃µ ∈ R+ ∃C,H > 0 ∀α ∈ N
d ∀j ∈ {1, . . . , d} : Mµ

α+ej ≤ CH |α|Mλ
α ;

{M.2}′ ∀µ ∈ R+ ∃λ ∈ R+ ∃C,H > 0 ∀α ∈ Nd ∀j ∈ {1, . . . , d} : Mµ
α+ej ≤ CH |α|Mλ

α .

The conditions [L] and [M.2]′ are denoted by (M[L]) and (M[dc]), respectively, in [27].
Furthermore, M is called accelerating if Mλ

α+ej
/Mλ

α ≤ Mµ
α+ej/M

µ
α for all α ∈ Nd,

j ∈ {1, . . . , d}, and λ ≤ µ.
We define the tensor product of a finite number of weight sequence systems Mj =

{Mλ
j | λ ∈ R+} on Ndj , j = 1, . . . , k, as

M1 ⊗ · · · ⊗Mk = {M
λ
1 ⊗ · · · ⊗M

λ
k | λ ∈ R+}.

Clearly, M1 ⊗ · · · ⊗Mk satisfies [L] ([M.2]′, respectively) if and only if each Mj does
so.

We are interested in the ensuing special types of weight sequence systems. A weight
sequence system M is called isotropic if, for each λ ∈ R+, M

λ = (Mλ
|α|)α∈Nd for a

sequence (Mλ
p )p∈N, which we identify with Mλ itself. Given a permutation σ of the

indices {1, . . . , d}, we write σ(M) = {(Mλ
(ασ(1),...,ασ(d))

)(α1,...,αd)∈Nd | λ ∈ R+}. We call M

isotropically decomposable if there is a permutation σ such that σ(M) = M1⊗· · ·⊗Mk

with each Mj isotropic. We also define these notions for single weight sequences in the
natural way.

Given a weight sequence system M, we associate to it the weight function system

WM = {eωMλ | λ ∈ R+}.

If M is isotropically decomposable, various of the conditions on M and WM are related
as follows.
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Lemma 3.3. Let M be an isotropically decomposable weight sequence system satisfying
[L].

(a) WM satisfies [M].
(b) Consider the following statements:

(i) M satisfies [M.2]′.
(ii) AWM

satisfies [N].
(iii) WM satisfies [N].

Then, (i)⇒ (ii)⇔ (iii). If in addition M is accelerating, then (iii)⇒ (i).

Proof. We may assume that M is isotropic, say, Mλ = (Mλ
|α|)α∈Nd for a sequence

(Mλ
p )p∈N. We set

ηλ(t) = sup
p∈N

log
tpMλ

0

Mλ
p

, t ≥ 0.

Note that

(3.2) ηλ(d−1/2|x|) ≤ ωMλ(x) ≤ ηλ(|x|), x ∈ R
d.

(a) Condition [L] implies that

∀R > 0 ∀λ ∈ R+ ∃µ ∈ R+ (∀R > 0 ∀µ ∈ R+ ∃λ ∈ R+) ∃C > 0 ∀x ∈ R
d :(3.3)

ωMλ(Rx) ≤ ωMµ(x) + logC.

Since ηλ is increasing, (3.2) implies that

ωMλ(x+ y) ≤ ωMλ(2d1/2x) + ωMλ(2d1/2y), x, y ∈ R
d,

the result follows from (3.3).
(b) (i)⇒ (ii) This follows by combining (3.3) with the fact that [M.2]′ implies that

∀λ ∈ R+ ∃µ ∈ R+ (∀µ ∈ R+ ∃λ ∈ R+) ∃C
′, H ′ > 0 ∀x ∈ R

d :(3.4)

ωMλ(x) + log(1 + |x|)d ≤ ωMµ(H ′x) + logC ′.

(ii)⇔ (iii) In view of (a), Lemma 3.2 yields the result.
(iii) ⇒ (i) (if M is accelerating) Define mλ

p = Mλ
p /M

λ
p−1 for p ≥ 1 and let mλ(t) =∑

mλ
p≤t

1 for t ≥ 0. Set wλ(x) = eη
λ(|x|) for x ∈ Rd. Note that the weight function

system {wλ | λ ∈ R+} also satisfies [N ] because of (3.2) and (3.3).
It is well-known that [16, Equation (3.11)]

wλ(x) = exp

(∫ |x|

0

mλ(u)

u
du

)
, x ∈ R

d.

Let λ > 0 (µ > 0) be arbitrary and choose µ > 0 (λ > 0) such that wλ/wµ ∈ L1. In
particular, µ ≤ λ. Since M is accelerating, we have that mµ

p ≤ mλ
p for all p ≥ 1 and

thus mλ(t) ≤ mµ(t) for all t ≥ 0. Hence,
∫ t2

t1

mλ(u)−mµ(u)

u
du ≤ 0
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for all t2 ≥ t1 ≥ 0, which implies that wλ(x)/wµ(x) is non-increasing in |x| . Therefore,

|y|d
wλ(y)

wµ(y)
≤

1

|B(0, 1)|

∫

B(0,|y|)

wλ(x)

wµ(x)
dx ≤

1

|B(0, 1)|

∫

Rd

wλ(x)

wµ(x)
dx <∞

for all y ∈ R
d. This implies (3.4) for {ηλ | λ ∈ R+}, namely,

∀λ ∈ R+ ∃µ ∈ R+ (∀µ ∈ R+ ∃λ ∈ R+) ∃C
′, H ′ > 0 ∀t ≥ 0 :

ηλ(t) + log t ≤ ηµ(H ′t) + logC.

By combining the latter inequality with [16, Proposition 3.2]

Mλ
p =Mλ

0 sup
t≥0

tp

eηλ(t)
, p ∈ N,

we obtain that M satisfies [M.2]′. �

Finally, we present two examples of important instances of classes of weight sequence
systems and weight function systems. Firstly, given a single weight sequence M satis-

fying (M.1), we set MM = {(λ|α|Mα)α∈Nd | λ ∈ R+} and WM = WMM
= {eωM( ·

λ)| λ ∈
R+}.

Lemma 3.4. Let M be an isotropically decomposable weight sequence satisfying (M.1).

(a) MM is accelerating and satisfies [L].
(b) WM satisfies [M].
(c) M satisfies (M.2)′ if and only if MM satisfies [M.2]′ if and only if WM satisfies

[N].

Proof. Part (a) is obvious, while (b) and (c) have been established in Lemma 3.3. �

As a second example, following [27, Section 5], we can also introduce weight sequence
systems and weight function systems generated by a weight function in the sense of
[7]. We consider the following conditions on a non-negative non-decreasing continuous
function ω on [0,∞):

(α) ω(2t) = O(ω(t));
(γ) log t = O(ω(t));
{γ} log t = o(ω(t));
(δ) φ : [0,∞)→ [0,∞), φ(x) = ω(ex), is convex.

We call ω a Braun-Meise-Taylor weight function (BMT weight function) if ω|[0,1] ≡ 0
and ω satisfies (α), {γ} and (δ). In such a case, we define the Young conjugate φ∗ of
φ as

φ∗ : [0,∞)→ [0,∞), φ∗(y) = sup
x≥0

(xy − φ(x)).

Note that φ∗ is convex and y = o(φ∗(y)). We define Mω = {Mλ
ω | λ ∈ R+}, where

Mλ
ω =

(
exp

(
1
λ
φ∗(λ|α|)

))
α∈Nd ; the above stated properties of φ∗ imply that Mλ

ω is an

isotropic weight sequence satisfying (M.1). Furthermore, we set Wω = {e
1
λ
ω(| · |) | λ ∈

R+} (for general ω).

Lemma 3.5. Let ω be a non-negative non-decreasing continuous function on [0,∞).
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(a) If ω is a BMT weight function, then Mω satisfies [L] and [M.2]′.
(b) If ω satisfies (α), then Wω satisfies [M].
(c) ω satisfies [γ] if and only if Wω satisfies [N].

Proof. (a) This is shown in [27, Corollary 5.15].
(b) This follows from the fact that ω is non-decreasing.
(c) As ω is non-decreasing, this can be shown by using a similar argument as in the

proof of implication (iii)⇒ (i) in Lemma 3.3(b). �

4. Gelfand-Shilov spaces

In this section, we define and discuss the Gelfand-Shilov spaces S
[M]
[W ],q. Let M =

(Mα)α∈Nd be a sequence of positive numbers and let w be a non-negative function on
Rd. We define SMw,q = S

M
w,q(R

d), q ∈ [1,∞], as the seminormed space consisting of all

ϕ ∈ C∞(Rd) such that

‖ϕ‖SM
w,q

= sup
α∈Nd

1

Mα

(∫

Rd

(|ϕ(α)(x)|w(x))qdx

)1/q

<∞, q ∈ [1,∞),

and

‖ϕ‖SM
w,∞

= sup
α∈Nd

sup
x∈Rd

|ϕ(α)(x)|w(x)

Mα

<∞.

If w is positive and continuous, then SMw,q is a Banach space. Given a weight sequence
system M and a weight function system W , we define the Gelfand-Shilov spaces (of
Beurling and Roumieu type)

S
(M)
(W ),q = lim

←−
λ→0+

SM
λ

wλ,q, S
{M}
{W },q = lim

−→
λ→∞

SM
λ

wλ,q, q ∈ [1,∞].

Note that S
(M)
(W ),q is a Fréchet space, while S

{M}
{W },q is an (LB)-space. If W satisfies [wM],

then S
[M]
[W ],q is translation-invariant; we shall tacitly use this fact in the sequel. Given

two weight sequences M and A, we define S
[M ]
[A],q = S

[MM ]
[WA],q. Similarly, given a BMT

weight function ω and a non-negative non-decreasing continuous function η on [0,∞),

we set S
[ω]
[η],q = S

[Mω ]
[Wη ],q

.

Lemma 4.1. Let M be a weight sequence system, let W be a weight function system

and let q ∈ [1,∞]. Then, the (LB)-space S
{M}
{W },q is regular.

Proof. By [1, p. 80, Corollary 7], it suffices to show that, for each λ > 0, the closed

unit ball Bλ in SM
λ

wλ,q
is closed in S

{M}
{W },q. Note that S

{M}
{W },q ⊂ DLq ⊂ B with continuous

inclusion; the first inclusion is a consequence of the fact that 1 ≤ wλ for all λ > 0 and
the second one is a classical result of Schwartz [29]. Therefore, it is enough to prove
that Bλ is closed in B. Let (ϕn)n∈N be a sequence in Bλ and ϕ ∈ B such that ϕn → ϕ

in B. In particular, ϕ
(α)
n (x) → ϕ(α)(x) for all α ∈ Nd and x ∈ Rd. Hence, we obtain

that
‖ϕ(α)wλ‖Lq ≤ lim inf

n→∞
‖ϕ(α)

n wλ‖Lq ≤Mλ
α
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for all α ∈ Nd, where we have used Fatou’s lemma for q <∞. This shows that ϕ ∈ Bλ

and the proof is complete. �

We now study when the equality S
[M]
[W ],q = S

[M]
[W ],r holds.

Theorem 4.2. Let M be a weight sequence system satisfying [L] and [M.2]′, and let

W be a weight function system satisfying [wM]. Suppose that S
[M]
[W ],q 6= {0} for some

q ∈ [1,∞]. Consider the following statements:

(i) W satisfies [N].

(ii) S
[M]
[W ],q = S

[M]
[W ],r as locally convex spaces for all q, r ∈ [1,∞].

(iii) S
[M]
[W ],q = S

[M]
[W ],r as sets for some q, r ∈ [1,∞] with q 6= r.

Then, (i)⇒ (ii)⇒ (iii). If in addition W satisfies [M], then also (iii)⇒ (i).

We need several results in preparation for the proof of Theorem 4.2.

Lemma 4.3. Let M be a weight sequence system and let W be a weight function

system satisfying [wM] and [N]. Then, S
[M]
[W ],q ⊆ S

[M]
[W ],r with continuous inclusion for all

q, r ∈ [1,∞] with q ≥ r.

Proof. This follows from Hölder’s inequality and Lemma 3.1. �

Given a weight sequence system M and a weight function system W , we introduce
the auxiliary spaces

S̃
(M)
(W ) =

⋂

λ>0

⋂

k∈N

SM
λ

(1+| · |)kwλ,∞, S̃
{M}
{W } =

⋃

λ>0

⋂

k∈N

SM
λ

(1+| · |)kwλ,∞.

Lemma 4.4. Let M be a weight sequence system satisfying [L] and let W be a weight
function system satisfying [wM]. The following statements are equivalent:

(i) S
[M]
[W ],q 6= {0} for all q ∈ [1,∞].

(ii) S
[M]
[W ],q 6= {0} for some q ∈ [1,∞].

(iii) S̃
[M]
[W ] 6= {0}.

Proof. (i)⇒ (ii) Trivial.

(ii) ⇒ (iii) Let ϕ ∈ S
[M]
[W ],q be such that ϕ(0) = 1. Choose ψ ∈ D(Rd) such that∫

Rd ϕ(x)ψ(−x)dx = 1. Next, pick χ ∈ D(Rd) such that
∫
Rd χ(x)dx = 1 and consider its

Fourier transform χ̂(ξ) =
∫
Rd χ(x)e

−2πiξ·xdx. Then, ϕ0 = (ϕ ∗ ψ)χ̂ ∈ S̃
[M]
[W ] and ϕ0 6≡ 0

(as ϕ0(0) = 1).

(iii)⇒ (i) This follows from the fact that S̃
[M]
[W ] ⊂ S

[M]
[W ],q for all q ∈ [1,∞]. �

Next, we establish an important connection between the spaces S
[M]
[W ],q and λ

q[AW ].

Proposition 4.5. Let M be a weight sequence system, let W be a weight function
system satisfying [wM] and let q ∈ [1,∞]. The mapping

Sq = S : S
[M]
[W ],q → λq[AW ], S(ϕ) = (ϕ(j))j∈Zd

is continuous.
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Proof. For q = ∞ this is obvious. Assume now that q < ∞. We denote by H the
characteristic function of the orthant [0,∞)d and set ∂ = ∂d · · ·∂1. Then, ∂H = δ.
Choose ψ ∈ D

[− 1
2
, 1
2 ]

d such that ψ ≡ 1 on a neighbourhood of 0. Then, ∂(Hψ) − δ =

χ ∈ L∞ and suppχ ⊂
[
−1

2
, 1
2

]d
. Hence, ϕ = (∂ϕ) ∗ (Hψ)− ϕ ∗ χ for all ϕ ∈ C∞(Rd).

For each λ > 0 there are µ > 0 and C > 0 (for each µ > 0 there are λ > 0 and C > 0)
such that wλ(x+ t) ≤ Cwµ(x) for all x ∈ Rd and t ∈ [−1

2
, 1
2
]d. We obtain that

|ϕ(x)wλ(x)| ≤ C

(
‖ψ‖L∞

∫

x+[− 1
2
, 1
2
]d
|∂ϕ(t)|wµ(t)dt+ ‖χ‖L∞

∫

x+[− 1
2
, 1
2
]d
|ϕ(t)|wµ(t)dt

)

for all x ∈ Rd and ϕ ∈ C∞(Rd). By Jensen’s inequality, the latter inequality implies
that

‖(ϕ(j)wλ(j))j∈Zd‖lq ≤ C(‖ψ‖L∞‖∂ϕwµ‖Lq + ‖χ‖L∞‖ϕwµ‖Lq)

for all ϕ ∈ SM
µ

wµ,q, whence the result follows. �

Proposition 4.6. Let M be a weight sequence system, let W be a weight function

system satisfying [M] and let q ∈ [1,∞]. For each ψ ∈ S̃
[M]
[W ] , the mapping

Tψ,q = Tψ = T : λq[AW ]→ S
[M]
[W ],q, T ((cj)j∈Zd) =

∑

j∈Zd

cjψ( · − j)

is continuous.

Proof. We only show the result for q ∈ (1,∞); the proofs for q = 1 and q = ∞ are
similar and in fact simpler. Let ν > 0 be such that ψ ∈

⋂
k∈N S

Mν

(1+| · |)kwν ,∞
; this means

that ν is fixed in the Roumieu case but can be taken as small as needed in the Beurling
case. For each λ > 0 there are µ, ν > 0 and C > 0 (for each µ > 0 there are λ > 0 and
C > 0) such that wλ(x + y) ≤ Cwµ(x)wν(y) for all x, y ∈ Rd. We may assume that
ν ≤ λ. Let q′ = q/(q − 1) be the conjugate exponent of q. By Hölder’s inequality, we
have that, for all (cj)j∈Zd ∈ lq((wµ(j))j∈Zd),

∑

j∈Zd

|cj ||ψ
(α)(x− j)|wλ(x)

≤ C
∑

j∈Zd

|cj|w
µ(j)

(1 + |x− j|)(d+1)/q
|ψ(α)(x− j)|wν(x− j)(1 + |x− j|)(d+1)/q

≤ C


∑

j∈Zd

(|cj|w
µ(j))q

(1 + |x− j|)d+1




1/q

×


∑

j∈Zd

(
|ψ(α)(x− j)|wν(x− j)(1 + |x− j|)(d+1)/q)

)q′



1/q′

≤ C ′‖ψ(α)(1 + | · |)d+1wν‖L∞


∑

j∈Zd

(|cj|w
µ(j))q

(1 + |x− j|)d+1




1/q
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for all α ∈ Nd and x ∈ Rd, where C ′ = 2
d+1
q′ C

(∑
j∈Zd(1 + |j|)−d−1

)1/q′
. Hence,

‖
∑

j∈Zd

cjψ( · − j)‖SMλ

wλ,q

≤ sup
α∈Nd

1

Mν
α

‖
∑

j∈Zd

cjψ
(α)( · − j)wλ‖Lq

≤ C ′′‖ψ‖SMν

(1+| · |)d+1wν,∞
‖(cjw

µ(j))j∈Zd‖lq ,

with C ′′ = C ′
(∫
x∈Rd(1 + |x|)

−d−1dx
)1/q

. �

Lemma 4.7. Let M be a weight sequence system satisfying [L] and let W be a weight

function system satisfying [wM]. Suppose that S
[M]
[W ],q 6= {0} for some q ∈ [1,∞].

(a) There exists ψ ∈ S̃
[M]
[W ] such that ψ(j) = δj,0 for all j ∈ Zd.

(b) There exists ψ ∈ S̃
[M]
[W ] such that

∑
j∈Zd ψ( · − j) ≡ 1.

Proof. (a) By Lemma 4.4, there exists ϕ ∈ S̃
[M]
[W ] such that ϕ(0) = 1. Set

χ(ξ) = F(1[− 1
2
, 1
2
]d)(ξ) =

∫

[− 1
2
, 1
2
]d
e−2πiξ·xdx, ξ ∈ R

d.

Then, χ(j) = δj,0 for all j ∈ Zd. Hence, ψ = ϕχ satisfies all requirements.

(b) By Lemma 4.4, there is ϕ ∈ S̃
[M]
[W ] such that

∫
Rd ϕ(x)dx = 1 . Then,

ψ(x) =

∫

[− 1
2
, 1
2
]d
ϕ(x− t)dt, x ∈ R

d,

satisfies all requirements. �

We obtain the following useful corollary.

Corollary 4.8. Let M be a weight sequence system satisfying [L], let W be a weight

function system satisfying [M] and let q ∈ [1,∞]. Suppose that S
[M]
[W ],q 6= {0}. Then,

λq[AW ] is isomorphic to a complemented subspace of S
[M]
[W ],q.

Proof. Choose ψ as in Lemma 4.7(a). Consider the continuous linear mappings S :

S
[M]
[W ],q → λq[AW ] and Tψ : λq[AW ] → S

[M]
[W ],q from Proposition 4.5 and Proposition 4.6,

respectively, and note that S ◦ Tψ = idλq[AW ]. �

Proof of Theorem 4.2. (i)⇒ (ii) By Lemma 4.3, it suffices to show that S
[M]
[W ],q ⊆ S

[M]
[W ],r

with continuous inclusion for all q ≤ r. Since ‖f‖Lr ≤ ‖f‖
(r−q)/r
L∞ ‖f‖

q/r
Lq for all f ∈

L∞ ∩ Lr, it is enough to consider the case r =∞. We use the same notation as in the
proof of Proposition 4.5. By [wM], [M.2]′ and [L], we find that for each λ > 0 there
are µ > 0 and C,C ′ > 0 (for each µ > 0 there are λ > 0 and C,C ′ > 0) such that
wλ(x+ t) ≤ Cwµ(x) for all x ∈ Rd and t ∈ [−1

2
, 1
2
]d and Mµ

α+e ≤ C ′Mλ
α for all α ∈ Nd,

where e = (1, 1, . . . , 1) . We may assume that µ ≤ λ. Hence, by Jensen’s inequality,

‖ϕ‖
SMλ

wλ,∞

= sup
α∈Nd

sup
x∈Rd

1

Mλ
α

|ϕ(α)(x)|wλ(x)
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≤ C‖ψ‖L∞ sup
α∈Nd

sup
x∈Rd

1

Mλ
α

∫

x+[− 1
2
, 1
2
]d
|∂ϕ(α)(t)|wµ(t)dt+

C‖χ‖L∞ sup
α∈Nd

sup
x∈Rd

1

Mλ
α

∫

x+[− 1
2
, 1
2
]d
|ϕ(α)(t)|wµ(t)dt

≤ CC ′‖ψ‖L∞ sup
α∈Nd

sup
x∈Rd

1

Mµ
α+e

(∫

x+[− 1
2
, 1
2
]d
(|∂ϕ(α)(t)|wµ(t))qdt

)1/q

+

C‖χ‖L∞ sup
α∈Nd

sup
x∈Rd

1

Mµ
α

(∫

x+[− 1
2
, 1
2
]d
(|ϕ(α)(t)|wµ(t))qdt

)1/q

≤ C ′′‖ϕ‖SMµ

wµ,q
,

for all ϕ ∈ SM
µ

wµ,q, where C
′′ = C(C ′‖ψ‖L∞ + ‖χ‖L∞).

(ii)⇒ (iii) Trivial.
(iii) ⇒ (i) (if W satisfies [M]) Suppose that q < r. Choose ψ as in Lemma 4.7(a).

Consider the mappings Sq : S
[M]
[W ],q → λq[AW ] and Tψ,r : λ

r[AW ]→ S
[M]
[W ],r from Proposi-

tion 4.5 and Proposition 4.6, respectively. Note that c = Sq(Tψ,r(c)) ∈ λ
q[AW ] for all

c ∈ λr[AW ], that is, λr[AW ] ⊆ λq[AW ]. Since λq[AW ] ⊆ λr[AW ] always holds true, we
have that λr[AW ] = λq[AW ] as sets. The result now follows from Proposition 2.1 and
Lemma 3.2. �

In the sequel, we shall often drop the index q in the notation S
[M]
[W ],q if M is a weight

sequence system satisfying [L] and [M.2]′ and W is a weight function system satisfying
[wM] and [N ]. This is justified by Theorem 4.2.

5. Nuclearity

In this main section, we characterize the nuclearity of the Gelfand-Shilov spaces

S
[M]
[W ],q in terms of M and W . We start with the following result.

Theorem 5.1. Let M be a weight sequence system satisfying [L] and [M.2]′ and let W

be a weight function system satisfying [wM] and [N]. Then, S
[M]
[W ] is nuclear.

Our proof of Theorem 5.1 is based on Grothendieck’s criterion for nuclearity in terms
of summable sequences [15]. Let E be a lcHs (=Hausdorff locally convex space) and
denote by csn(E) the set of all continuous seminorms on E. A sequence (en)n∈N is
called weakly summable if

∑∞
n=0 |〈e

′, en〉| < ∞ for all e′ ∈ E ′. By Mackey’s theorem,
(en)n∈N is weakly summable if and only if the set

⋃

k∈N

{
k∑

n=0

cnen | |cn| ≤ 1, n = 0, . . . , k

}

is bounded in E. The sequence (en)n∈N is called absolutely summable if
∑∞

n=0 p(en) <∞
for all p ∈ csn(E). Clearly, (en)n∈N is absolutely summable if and only if

∑∞
n=0 p(en) <

∞ for all p belonging to some fundamental system of continuous seminorms on E.
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Proposition 5.2 ([23, Theorem 4.2.5]). Let E be a Fréchet space or a (DF )-space.
Then, E is nuclear if and only if every weakly summable sequence in E is absolutely
summable.

Proof of Theorem 5.1. We shall show that S
[M]
[W ] = S

[M]
[W ],∞ is nuclear. To this end, we

employ Proposition 5.2 with E = S
[M]
[W ],∞. Let (ϕn)n∈N ⊂ S

[M]
[W ],∞ be a weakly summable

sequence. This means that for all λ > 0 (for some λ > 0) there is C > 0 such that
∥∥∥∥∥

k∑

n=0

cnϕn

∥∥∥∥∥
SMλ

wλ,∞

≤ C

for all k ∈ N and |cn| ≤ 1, n = 0, . . . , k, where we have used Lemma 4.1 in the Roumieu
case. We claim that

(5.1) sup
α∈Nd

sup
x∈Rd

1

Mλ
α

∞∑

n=0

|ϕ(α)
n (x)|wλ(x) ≤ C.

Fix arbitrary α ∈ Nd and x ∈ Rd. Let k ∈ N. Choose |cn(α, x)| ≤ 1 such that

cn(α, x)ϕ
(α)
n (x) = |ϕ

(α)
n (x)|. Then,

1

Mλ
α

k∑

n=0

|ϕ(α)
n (x)|wλ(x) =

1

Mλ
α

∣∣∣∣∣

k∑

n=0

cn(α, x)ϕ
(α)
n (x)

∣∣∣∣∣w
λ(x) ≤ C,

whence the claim follows by letting k →∞. We now employ (5.1) to show that (ϕn)n∈N
is absolutely summable. By Theorem 4.2, it is enough to prove that

∞∑

n=0

‖ϕn‖SMµ

wµ,1
<∞

for all µ > 0 (for some µ > 0). Let µ > 0 be arbitrary (let λ > 0 be such that (5.1)
holds). Conditions [L] and [N] imply that there is λ > 0 (there is µ > 0) such that
2|α|Mλ

α ≤ C ′Mµ
α for all α ∈ N

d and some C ′ > 0 and wµ/wλ ∈ L1. Hence,
∞∑

n=0

‖ϕn‖SMµ

wµ,1
=

∞∑

n=0

sup
α∈Nd

1

Mµ
α

∫

Rd

|ϕ(α)
n (x)|wµ(x)dx

≤ C ′
∑

α∈Nd

1

2|α|

∫

Rd

1

Mλ
α

∞∑

n=0

|ϕ(α)
n (x)|wλ(x)

wµ(x)

wλ(x)
dx

≤ 2dCC ′‖wµ/wλ‖L1.

�

Our next goal is to discuss the necessity of the conditions [M.2]′ and [N] for S
[M]
[W ],q(R

d)

to be nuclear.

Proposition 5.3. Let M be a weight sequence system satisfying [L], let W be a weight

function system satisfying [M] and let q ∈ [1,∞]. Suppose that S
[M]
[W ],q(R

d) is non-trivial

and nuclear. Then, W satisfies [N].
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Proof. Since nuclearity is inherited to subspaces, Corollary 4.8 implies that λq[AW ] is
nuclear. The result therefore follows from Proposition 2.1 and Lemma 3.2.

�

Proposition 5.4. Let M be a weight sequence system satisfying [L], let W be a weight

function system satisfying [M] and let q ∈ [1,∞]. Suppose that S
[M]
[W ],q(R

d) is non-trivial

and nuclear. Then, AWM
satisfies [N].

We shall make use of the ensuing result due to Petzsche [22] in order to show Propo-
sition 5.4.

Lemma 5.5 ([22, Satz 3.5 and Satz 3.6]). Let A be a Köthe set and let E be a lcHs.

(a) Suppose that E is nuclear and that there are continuous linear mappings T :
λ1(A)→ E and S : E → λ∞(A) such that S ◦ T = ι, where ι : λ1(A)→ λ∞(A)
denotes the natural embedding. Then, λ1(A) is nuclear.

(b) Suppose that E ′
β is nuclear and that there are continuous linear mappings T :

λ1{A} → E and S : E → λ∞{A} such that S◦T = ι, where ι : λ1{A} → λ∞{A}
denotes the natural embedding. Then, λ1{A} is nuclear.

Proof. This is essentially shown in [22, Satz 3.5 and Satz 3.6] but we repeat the argu-
ment here for the sake of completeness and because our assumptions are slightly more
general.

(a) Since nuclearity is inherited to subspaces, it suffices to show that T is a topological
isomorphism onto its image. We write ei = (δj,i)j∈Zd for i ∈ Zd. Then, (ei)i∈Zd is a
Schauder basis for λ1(A) with coefficient functionals

ξi : λ
1(A)→ C, 〈ξi, (cj)j∈Zd〉 = ci, i ∈ Z

d.

Since T is continuous and S ◦ T = ι, (T (ei))i∈Zd is a Schauder basis for T (λ1(A)) with
coefficient functionals ηi = ξi ◦ T

−1 = ξi ◦ S for i ∈ Z
d. We claim that the Schauder

basis (T (ei))i∈Zd is equicontinuous, that is,

∀p ∈ csn(E) ∃q ∈ csn(E) ∀x ∈ T (λ1(A)) : sup
i∈Zd

|〈ηi, x〉|p(T (ei)) ≤ q(x).

Let p ∈ csn(E) be arbitrary. As T is continuous, there is λ > 0 such that

|〈ηi, x〉|p(T (ei)) ≤ |〈ξi, S(x)〉|‖ei‖l1(aλ) = |〈ξi, S(x)〉|a
λ
i ≤ ‖S(x)‖l∞(aλ)

for all x ∈ T (λ1(A)) and i ∈ Zd. The claim now follows from the continuity of S. Since
T (λ1(A)) is nuclear (as a subspace of the nuclear space E), the Dymin-Mityagin basis
theorem [23, Theorem 10.2.1] yields that (T (ei))i∈Zd is an absolute Schauder basis for
T (λ1(A)), that is,

(5.2) ∀p ∈ csn(E) ∃q ∈ csn(E) ∀x ∈ T (λ1(A)) :
∑

i∈Zd

|〈ηi, x〉|p(T (ei)) ≤ q(x).

We now show that T−1 : T (λ1(A)) → λ1(A) is continuous. Let λ > 0 be arbitrary.
Since S is continuous, there is p ∈ csn(E) such that

‖(ci)i∈Zd‖l1(aλ) =
∑

i∈Zd

|ci|‖ei‖l1(aλ) =
∑

i∈Zd

|〈ηi, T ((ci)i∈Zd)〉|‖S(T (ei))‖l∞(aλ)
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≤
∑

i∈Zd

|〈ηi, T ((ci)i∈Zd)〉|p(T (ei))

for all (ci)i∈Zd ∈ λ1(A), whence the continuity of T−1 follows from (5.2).
(b) By transposing, we obtain continuous linear mappings T t : E ′

β → (λ1{A})′β
and S : (λ∞{A})′β → E ′

β such that T t ◦ St = ιt. Consider the Köthe set A◦ =

{1/a1/λ | λ > 0} and the natural continuous embeddings ι1 : λ1(A◦) → (λ∞{A})′β and

ι2 : (λ
1{A})′β → λ∞(A◦). Note that (ι2 ◦T

t)◦ (St ◦ ι1) = τ , where τ : λ1(A◦)→ λ∞(A◦)

denotes the natural embedding. Hence, part (a) yields that λ1(A◦) is nuclear, which is
equivalent to the nuclearity of λ1{A} by Proposition 2.1. �

Proof of Proposition 5.4. By Proposition 2.1, it suffices to show that λ1[AWM
] is nu-

clear. To this end, we use Lemma 5.5 with A = AWM
and E = S

[M]
[W ],q (in the Roumieu

case, E ′
β is nuclear as the strong dual of a nuclear (DF )-space). For r = 1 or r = ∞

we define E
[M]
per,r as the space consisting of all Zd-periodic functions ϕ ∈ C∞(Rd) such

that

sup
α∈Nd

1

Mλ
α

‖ϕ(α)‖Lr([− 1
2
, 1
2
]d) <∞

for all λ > 0 (for some λ > 0). We endow E
[M]
per,r with its natural Fréchet space topology

((LB)-space topology). The mappings

T0 : λ
1[AWM

]→ E [M]
per,∞, T0((cj)j∈Zd) =


 ξ →

∑

j∈Zd

cje
−2πij·ξ




and

S0 : E
[M]
per,1 → λ∞[AWM

], S0(ϕ) =

(∫

[− 1
2
, 1
2
]d
ϕ(ξ)e2πij·ξdξ

)

j∈Zd

are continuous. Next, choose ψ as in Lemma 4.7(b) and consider the continuous linear
mapping

T1 : E
[M]
per,∞ → S

[M]
[W ],q, T1(ϕ) = ψϕ.

Note that W satisfies [N] by Proposition 5.3. Hence, Lemma 4.3 yields that the map-
ping

S1 : S
[M]
[W ],q → E

[M]
per,1, S1(ϕ) =

∑

j∈Zd

ϕ( · − j)

is continuous. Finally, we define the continuous linear mappings T = T1 ◦ T0 :

λ1[AWM
] → S

[M]
[W ],q and S = S0 ◦ S1 : S

[M]
[W ],q → λ∞[AWM

]. The choice of ψ implies

that S ◦ T = ι. �

We obtain the following two important results.

Theorem 5.6. Let M be an isotropically decomposable accelerating weight sequence
system satisfying [L] and let W be a weight function system satisfying [M]. Suppose

that S
[M]
[W ],q 6= {0} for some q ∈ [1,∞]. Then, the following statements are equivalent:

(i) M satisfies [M.2]′ and W satisfies [N].
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(ii) S
[M]
[W ],q is nuclear for all q ∈ [1,∞].

(iii) S
[M]
[W ],q is nuclear for some q ∈ [1,∞].

Proof. (i)⇒ (ii) This has been shown in Theorem 5.1.
(ii)⇒ (iii) Trivial.
(iii)⇒ (i) In view of Lemma 4.4, W satisfies [N] by Proposition 5.3, whileM satisfies

[M.2]′ by Proposition 5.4 and Lemma 3.3. �

Theorem 5.7. Let M be a weight sequence system satisfying [L] and [M.2]′. Let W be

a weight function system satisfying [M]. Suppose that S
[M]
[W ],q 6= {0} for some q ∈ [1,∞].

Then, the following statements are equivalent:

(i) W satisfies [N].

(ii) S
[M]
[W ],q is nuclear for all q ∈ [1,∞].

(iii) S
[M]
[W ],q is nuclear for some q ∈ [1,∞].

(iv) S
[M]
[W ],q = S

[M]
[W ],r as locally convex spaces for all q, r ∈ [1,∞].

(v) S
[M]
[W ],q = S

[M]
[W ],r as sets for some q, r ∈ [1,∞] with q 6= r.

Proof. In view of Lemma 4.4, this follows from Theorem 4.2, Theorem 5.1 and Propo-
sition 5.3. �

Note that, by Lemma 3.4, Theorem 1.1 and Theorem 1.2 stated in the introduction
are immediate corollaries of Theorem 5.6 and Theorem 5.7, respectively. Actually, the
isotropy of the weight sequences can be relaxed there to M and A being isotropically
decomposable. Furthermore, combining Theorem 5.7 with Lemma 3.5, we obtain the
following result for spaces of Beurling-Björck type.

Theorem 5.8. Let ω be a BMT weight function and let η be a non-negative non-

decreasing continuous function on [0,∞) satisfying (α). Suppose that S
[ω]
[η],q 6= {0} for

some q ∈ [1,∞]. Then, the following statements are equivalent:

(i) η satisfies [γ].

(ii) S
[ω]
[η],q is nuclear for all q ∈ [1,∞].

(iii) S
[ω]
[η],q is nuclear for some q ∈ [1,∞].

(iv) S
[ω]
[η],q = S

[ω]
[η],r as locally convex spaces for all q, r ∈ [1,∞].

(v) S
[ω]
[η],q = S

[ω]
[η],r as sets for some q, r ∈ [1,∞] with q 6= r.

6. Projective description

In this auxiliary section, we provide a projective description of the Gelfand-Shilov

spaces S
{M}
{W } . This result will be used in the next section to prove kernel theorems.

We start by recalling some basic results about the projective description of weighted
(LB)-spaces of continuous functions [1]. Let X be a completely regular Hausdorff
space. Given a non-negative function v on X , we write Cv(X) for the seminormed
space consisting of all f ∈ C(X) such that ‖f‖v = supx∈X |f(x)|v(x) < ∞. If v is
positive and continuous, then Cv(X) is a Banach space. A family V = {vλ | λ ∈ R+}
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consisting of positive continuous functions vλ on X such that vλ(x) ≤ vµ(x) for all
x ∈ X and µ ≤ λ is said to be a Nachbin family on X . We define the associated
(LB)-space

V C(X) = lim
−→
λ→∞

Cvλ(X).

The maximal Nachbin family associated with V , denoted by V = V (V ), is given by
the space consisting of all non-negative upper semicontinuous functions v on X such
that supx∈X v(x)/v

λ(x) < ∞ for all λ ∈ R+. The projective hull of V C(X) is defined
as the space CV (X) consisting of all f ∈ C(X) such that ‖f‖v <∞ for all v ∈ V . We
endow CV (X) with the locally convex topology generated by the system of seminorms
{‖ · ‖v | v ∈ V }. The spaces V C(X) and CV (X) are always equal as sets. If V satisfies
the condition [1, p. 94]

(S) ∀λ ∈ R+ ∃µ ∈ R+ : vµ/vλ vanishes at infinity,

then these spaces also coincide topologically [1, Corollary 5, p. 116].
Let Xj be a completely regular Hausdorff space and let Vj = {vλj | λ ∈ R+} be a

Nachbin family on Xj for j = 1, 2. Similarly as in Section 3, we denote by V1 ⊗V2 the
Nachbin family {vλ1 ⊗ v

λ
2 | λ ∈ R+} on X1 ×X2, where v

λ
1 ⊗ v

λ
2 (x1, x2) = vλ1 (x1)v

λ
2 (x2),

x1 ∈ X1, x2 ∈ X2. Note that V1 ⊗ V2 satisfies (S) if and only if both V1 and V2

do so. Moreover, V (V1) ⊗ V (V2) is upwards dense in V (V1 ⊗ V2), that is, for every
v ∈ V (V1 ⊗ V2) there are vj ∈ V (Vj), j = 1, 2, such that v(x1, x2) ≤ v1 ⊗ v2(x1, x2) for
all x1 ∈ X1, x2 ∈ X2.

Note that every weight function system W on Rd is a Nachbin family on X = Rd.
Lemma 3.1 implies that W satisfies (S) if {N} and {wM} hold for W . Likewise, a
weight sequence system M on Nd defines a Nachbin family on X = Nd via M

◦ =
{1/Mλ | λ ∈ R+}. If M satisfies {L}, then M

◦ satisfies (S). We define V (M) as the
family consisting of all sequences M of positive numbers such that 1/M ∈ V (M◦).
More concretely, V (M) consists of all sequences M of positive numbers such that
supα∈Nd Mλ

α/Mα < ∞ for all λ ∈ R+. Furthermore, a sequence (aα)α∈Nd of positive
numbers satisfies supα∈Nd aα/M

λ
α <∞ for some λ ∈ R+ if and only if supα∈Nd aα/Mα <

∞ for all M ∈ V (M).

Remark 6.1. Denote by R the family consisting of all non-decreasing sequences (rj)j∈N
of positive numbers such that rj →∞ as j →∞. Let M be a weight sequence. Then,
the set

(6.1) {(Mα

|α|∏

j=0

rj)α∈Nd | (rj)j∈N ∈ R}

is downwards dense in V (MM) (cf. [17, Lemma 3.4]). The family R was introduced by
Komatsu to obtain a projective description of the space E{M}(Ω) of ultradifferentiable
functions of Roumieu type [17, Proposition 3.5]. Later on, this family was also used

by Pilipović to give a projective description of the Gelfand-Shilov spaces S
{M}
{A} [24,

Lemma 4]. For general weight sequence systems M, the family V (M) is the natural
generalization of the family in (6.1).
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We are ready to state and prove the main result of this section.

Theorem 6.2. Let M be a weight sequence system satisfying {L} and {M.2}′, and let
W be a weight function system satisfying {wM} and {N}. Then, ϕ ∈ C∞(Rd) belongs

to S
{M}
{W } if and only if ‖ϕ‖SM

w,∞
<∞ for all M ∈ V (M) and w ∈ V (W ). Moreover, the

topology of S
{M}
{W } is generated by the system of seminorms {‖ · ‖SM

w,∞
|M ∈ V (M), w ∈

V (W )}.

We define

ι : C∞(Rd)→ C(Nd × R
d), ι(ϕ) = [(α, x) 7→ ϕ(α)(x)].

The proof of Theorem 6.2 is based on the ensuing lemma.

Lemma 6.3. Let M be a weight sequence system satisfying {L} and {M.2}′, and let
W be a weight function system satisfying {wM} and {N}. Then, ϕ ∈ C∞(Rd) belongs

to S
{M}
{W } if and only if ι(ϕ) ∈ (M◦ ⊗W )C(Nd × Rd). Moreover,

ι : S
{M}
{W } → (M◦ ⊗W )C(Nd × R

d)

is a topological embedding.

Proof. The first part and the fact that ι is continuous are obvious. We now show that
ι is a topological embedding. Fix an arbirtrary q ∈ (1,∞). For n ∈ Z+ we write Xn

for the Banach space consisting of all ϕ ∈ C∞(Rd) such that

‖ϕ‖Xn =

(
∑

α∈Nd

(
‖ϕ(α)wn‖Lq

Mn
α

)q)1/q

<∞

and Yn for the Banach space consisting of all sequences (ϕα)α∈Nd of measurable func-
tions such that

‖(ϕα)α∈Nd‖Yn =

(
∑

α∈Nd

(
‖ϕαw

n‖Lq

Mn
α

)q)1/q

<∞.

Note that both Xn and Yn are reflexive. The mapping ρn : Xn → Yn, ϕ 7→ (ϕ(α))α∈Nd

is a topological embedding. Set X = lim
−→n∈Z+

Xn and Y = lim
−→n∈Z+

Yn. Condition

{L} implies that X = S
{M}
{W },q = S

{M}
{W } as locally convex spaces. We claim that ρ =

lim
−→n∈Z+

ρn : X = S
{M}
{W } → Y is a topological embedding. Before we prove the claim,

let us show how it entails the result. Condition {L} and Lemma 3.1 imply that the
mapping

τ : (M◦ ⊗W )C(Nd × R
d)→ Y, f 7→ (f(α, · ))α∈Nd

is well-defined and continuous. Note that ρ = τ ◦ι. Hence, ι is a topological embedding
because ρ is so. We now show the claim with the aid of the dual Mittag-Leffler theorem
[16, Lemma 1.4]. For n ∈ Z+ we set Zn = Yn/ρn(Xn). Hence, Zn is a reflexive Banach
space. We denote by πn : Yn → Zn the quotient mapping. The natural linking
mappings Zn → Zn+1 are injective since ρn+1(Xn+1) ∩ Yn = ρn(Xn). Consider the
following injective inductive sequence of short topologically exact sequences
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0 X1 Y1 Z1 0

0 X2 Y2 Z2 0

...
...

...

ρ1 π1

ρ2 π2

The linking mappings of the inductive spectra (Xn)n∈Z+ , (Yn)n∈Z+ and (Zn)n∈Z+ are
weakly compact as continuous linear mappings between reflexive Banach spaces. In

particular, these inductive spectra are regular. Furthermore, lim
−→n∈Z+

Xn = X = S
{M}
{W }

is Montel since it is a nuclear (DF )-space. Therefore, the dual Mittag-Lefller theorem
[16, Lemma 1.4] yields that ρ = lim

−→n∈Z+
ρn is a topological embedding. �

Proof of Theorem 6.2. We write E for the space consisting of all ϕ ∈ C∞(Rd) such
that ‖ϕ‖SM

w,∞
< ∞ for all M ∈ V (M) and w ∈ V (W ) endowed with the locally

convex topology generated by the system of seminorms {‖ · ‖SM
w,∞
|M ∈ V (M), w ∈

V (W )}. We need to show that S
{M}
{W } and E coincide as locally convex spaces. Since

V (M◦) ⊗ V (W ) is upward dense in V (M◦ ⊗ W ), we have that ϕ ∈ C∞(Rd) belongs
to E if and only if ι(ϕ) ∈ CV (M◦ ⊗W )(Rd) and that ι : E → CV (M◦ ⊗W )(Rd) is a
topological embedding. As both the Nachbin families M◦ and W satisfy (S), M◦ ⊗W

does so as well. Hence, (M◦ ⊗W )C(Nd × R
d) = CV (M◦ ⊗W )(Rd) as locally convex

spaces. The result now follows from Lemma 6.3. �

7. Kernel theorems

We prove kernel theorems for the spaces S
[M]
[W ] in this section. To this end, we in-

troduce vector-valued versions of S
[M]
[W ] and give a tensor product representation for

them.
We start by briefly recalling some notions about the ε-product and tensor prod-

ucts [28, 17]. Given two lcHs E and F , we denote by L(E, F ) the space consisting
of all continuous linear mappings from E into F . The ε-product of E and F is de-
fined as EεF = L(F ′

c, E) endowed with the topology of uniform convergence over the
equicontinuous subsets of F ′, where the subscript c indicates that we endow F ′ with
the topology of uniform convergence on balanced convex compact subsets of F . The
spaces EεF and FεE are canonically isomorphic as locally convex spaces [17, p. 657].
If F is Montel, then EεF = Lβ(F

′
β, E). We write E ⊗ε F and E ⊗π F to indicate that

we endow the tensor product E ⊗ F with the ε-topology and the projective topology,
respectively. If either E or F is nuclear, we have that E ⊗ε F = E ⊗π F and we
drop the subscripts ε and π in the notation. The tensor product E ⊗ F is canonically
embedded into EεF and the induced topology on E⊗F is the ε-topology. If E and F
are complete and if either E or F has the weak approximation property (in particular,
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if either E or F is nuclear), then EεF and E⊗̂εF are canonically isomorphic as locally
convex spaces [17, Prop. 1.4].

Let us now introduce vector-valued Gelfand-Shilov spaces. Let M be a weight se-
quence system, let W be a weight function system and let E be a lcHs. We define

S
[M]
[W ],∞(Rd;E) = S

[M]
[W ](R

d;E) as the space consisting of all ϕ ∈ C∞(Rd;E) such that

for all p ∈ csn(E) and λ ∈ R+ (for all p ∈ csn(E), M ∈ V (M) and w ∈ V (W ))

pλ(ϕ) = sup
α∈Nd

sup
x∈Rd

p(ϕ(α)(x))wλ(x)

Mλ
α

<∞

(
pM,w(ϕ) = sup

α∈Nd

sup
x∈Rd

p(ϕ(α)(x))w(x)

Mα
<∞

)
.

We endow S
[M]
[W ](R

d;E) with the locally convex topology generated by the system of

seminorms {pλ | p ∈ csn(E), λ ∈ R+} ({pM,w | p ∈ csn(E),M ∈ V (M), w ∈ V (W )}).

Proposition 7.1. Let M be a weight sequence system satisfying [L] and [M.2]′, let
W be a weight function system satisfying [wM] and [N], and let E be a complete lcHs.
Then, the following canonical isomorphisms of locally convex spaces hold

S
[M]
[W ](R

d;E) ∼= S
[M]
[W ](R

d)εE ∼= S
[M]
[W ](R

d)⊗̂E.

We will make use of the ensuing result of Komatsu [17] to show Proposition 7.1.

Lemma 7.2 ([17, Lemma 1.12]). Let G be a semi-Montel lcHs such that G is con-
tinuously included in C(Rd) and let E be a complete lcHs. Then, every function
ϕ ∈ C(Rd;E) satisfying

(7.1) 〈e′,ϕ〉 : Rd → C, x 7→ 〈e′,ϕ(x)〉 belongs to G for all e′ ∈ E ′

defines an element of GεE via E ′
c → G, e′ 7→ 〈e′,ϕ〉. Conversely, for every T ∈ GεE

there is a unique ϕ ∈ C(Rd;E) satisfying (7.1) such that T (e′) = 〈e′,ϕ〉 for all e′ ∈ E ′.

Proof of Proposition 7.1. We only show the Roumieu case as the Beurling case is sim-

ilar. The second isomorphism follows from the fact that S
{M}
{W }(R

d) is complete and

nuclear (recall that every nuclear (DF )-space is complete). We now show the first
isomorphism. This amounts to showing that the mapping

(7.2) S
{M}
{W }(R

d;E)→ S
{M}
{W }(R

d)εE, ϕ 7→ [e′ 7→ 〈e′,ϕ〉]

is a topological isomorphism. We first show that it is a well-defined bijective mapping.

By Lemma 7.2 with G = S
{M}
{W }(R

d) (G is semi-Montel because it is nuclear), it suffices

to show that a function ϕ ∈ C(Rd;E) belongs to S
{M}
{W }(R

d;E) if and only if 〈e′,ϕ〉 ∈

S
{M}
{W }(R

d) for all e′ ∈ E ′. The direct implication is obvious. Conversely, let ϕ ∈

C(Rd;E) be such that 〈e′,ϕ〉 ∈ S
{M}
{W }(R

d) for all e′ ∈ E ′. In particular, 〈e′,ϕ〉 ∈

C∞(Rd) for all e′ ∈ E ′. By [28, Appendice Lemme II], we have that ϕ ∈ C∞(Rd;E)
and

〈e′,ϕ〉(α) = 〈e′,ϕ(α)〉, e′ ∈ E ′, α ∈ N
d.
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Theorem 6.2 implies that for all M ∈ V (M) and w ∈ V (W ) the set

{
ϕ

(α)(x)w(x)

Mα

| x ∈ R
d, α ∈ N

d

}

is weakly bounded in E. Hence, this set is bounded in E by Mackey’s theorem. This

means that ϕ ∈ S
{M}
{W }(R

d;E). Next, we show that the isomorphism in (7.2) holds

topologically. Let M ∈ V (M), w ∈ V (W ) and p ∈ csn(E) be arbitrary. We denote by
B the polar set of the p-unit ball in E. The bipolar theorem yields that

sup
e′∈B
‖〈e′,ϕ〉‖SM

w,∞
= sup

{
|〈e′,ϕ(α)(x)〉|w(x)

Mα
| x ∈ R

d, α ∈ N
d, e′ ∈ B

}
= pM,w(ϕ)

for all ϕ ∈ S
{M}
{W }(R

d;E). The result now follows from Proposition 6.2. �

We are ready to prove the kernel theorems.

Theorem 7.3. Let Mj be a weight sequence system on Ndj satisfying [L] and [M.2]′,
and let Wj be a weight function system on R

dj satisfying [wM] and [N] for j = 1, 2.
The following canonical isomorphisms of locally convex spaces hold

(7.3) S
[M1⊗M2]
[W1⊗W2]

(Rd1+d2) ∼= S
[M1]
[W1]

(Rd1)⊗̂S
[M2]
[W2]

(Rd2) ∼= Lβ(S
[M1]
[W1]

(Rd1)′β,S
[M2]
[W2]

(Rd2))

and

(7.4) S
[M1⊗M2]
[W1⊗W2]

(Rd1+d2)′β
∼= S

[M1]
[W1]

(Rd1)′β⊗̂S
[M2]
[W2]

(Rd2)′β
∼= Lβ(S

[M1]
[W1]

(Rd1),S
[M2]
[W2]

(Rd2)′β).

Proof. The isomorphisms in (7.4) follow from those in (7.3) and the general theory
of nuclear Fréchet and (DF )-spaces, see e.g. [17, Theorem 2.2]. We now show the

isomorphisms in (7.3). By Proposition 7.1 and the fact that S
[M1]
[W1]

(Rd1) is Montel (as it

is nuclear and barreled), it is enough to show that the following canonical isomorphism
of locally convex spaces holds

S
[M1⊗M2]
[W1⊗W2]

(Rd1+d2) ∼= S
[M1]
[W1]

(Rd1 ;S
[M2]
[W2]

(Rd2)).

This amounts to verify that the mappings

S
[M1⊗M2]
[W1⊗W2]

(Rd1+d2)→ S
[M1]
[W1]

(Rd1 ;S
[M2]
[W2]

(Rd2)) : ϕ 7→ [x1 7→ ϕ(x1, · )]

and

S
[M1]
[W1]

(Rd1 ;S
[M2]
[W2]

(Rd2))→ S
[M1⊗M2]
[W1⊗W2]

(Rd1+d2) : ϕ 7→ [(x1, x2) 7→ ϕ(x1)(x2)],

which are inverses of each other, are well-defined and continuous. But the proofs of
these facts are standard and therefore omitted (we only remark that in the Roumieu
case one needs to use Theorem 6.2). �
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[24] S. Pilipović, Characterization of bounded sets in spaces of ultradistributions, Proc. Amer. Math.

Soc. 120 (1994), 1191–1206.



24 A. DEBROUWERE, L. NEYT, AND J. VINDAS

[25] S. Pilipović, B. Prangoski, J. Vindas, On quasianalytic classes of Gelfand-Shilov type. Parametrix

and convolution, J. Math. Pures Appl. 116 (2018), 174–210.
[26] B. Prangoski, Pseudodifferential operators of infinite order in spaces of tempered ultradistribu-

tions, J. Pseudo-Differ. Oper. Appl. 4 (2013), 495–549.
[27] A. Rainer, G. Schindl, Composition in ultradifferentiable classes, Stud. Math. 224 (2014), 97–

131.
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