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HALÁSZ’S THEOREM FOR BEURLING GENERALIZED NUMBERS

GREGORY DEBRUYNE, FREDERICK MAES, AND JASSON VINDAS

Abstract. We show that Halász’s theorem holds for Beurling numbers under the
following two mild hypotheses on the generalized number system: existence of a
positive density for the generalized integers and a Chebyshev upper bound for the
generalized primes.

1. Introduction

Halász’s theorem [9] is a cornerstone in classical probabilistic number theory [8, 15].
This important result has been generalized by several authors [11, 16] to the context of
abstract analytic number theory; the most general version so far being the one recently
obtained by Zhang for Beurling numbers in [17].

Let 1 < p1 ≤ p2 ≤ . . . be a Beurling generalized prime number system. Its associated
set of generalized integers (cf. [1, 2, 7, 12]) is the multiplicative semigroup generated
by 1 and the generalized primes, which we arrange in a non-decreasing sequence taking
multiplicities into account, n0 = 1 < n1 ≤ n2 ≤ n3 ≤ . . . . Denote as N and π
the counting functions of the generalized integers and primes. As in classical number
theory, we consider the weighted prime counting functions

Π(x) =
∑

p
αk
k

≤x

1/αk and ψ(x) =

∫ x

1

log u dΠ(u).

Given a function of (local) bounded variation G, we denote its Mellin-Stieltjes trans-

form as Ĝ(s) =
∫∞
1−
x−sdG(x) and we use the notation s = σ+ it for complex variables.

Zhang’s version of Halász’s theorem reads as follows. His result generalizes [5, The-
orem 3.1], where the set of hypotheses (1.1), (1.2), and (1.3) were actually introduced.

Theorem 1.1 (Zhang [17]). Suppose that the generalized number system satisfies a
Chebyshev upper estimate

(1.1) ψ(x) ≪ x,
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the generalized numbers have positive density

(1.2) N(x) ∼ ax

for some a > 0, and (σ → 1+)

(1.3)

∫ ∞

1

|N(x)− ax|
xσ+1

dx≪ (σ − 1)−β for some β ∈ [0, 1/2).

Let g be a completely multiplicative function such that |g(nk)| ≤ 1 for each nk and set
G(x) =

∑
nk≤x g(nk). Then,

G(x) ∼ cx

if and only if

Ĝ(s) =
c

s− 1
+ o

(
1

σ − 1

)

uniformly for t on compact intervals.

The aim of this article is to considerably improve Theorem 1.1. We shall show that
it still holds if one removes the condition (1.3) from its hypotheses. In addition to
hold under weaker assumptions, our results are somewhat more general as they also
involve slowly varying functions in the asymptotic formulas and apply to multiplicative
functions on non necessarily discrete number systems. We mention that our method
here is inspired by the treatment of Schwarz and Spilker from [14] of the Daboussi-
Indlekofer elementary proof [4] of the classical Halász theorem.

Finally, it should be pointed out that our considerations yield the following improve-
ment to [5, Theorem 3.1], where M is the sum function of the Möbius function of a
generalized number system.

Corollary 1.2. The positive density condition (1.2) and the Chebyshev upper bound
(1.1) imply the estimate M(x) = o(x).

2. Main result and some consequences

Let us start with our definition of the analog of a multiplicative function on a non
necessarily discrete generalized number system. In a broader sense [2, 7], a Beurling
generalized number system is merely a pair of non-decreasing right continuous functions
N and Π with N(1) = 1 and Π(1) = 0, both having support in [1,∞), and subject
to the relation dN = exp∗(dΠ), where the exponential is taken with respect to the
(multiplicative) convolution of measures [7]. Since the hypotheses used in this article
always guarantee convergence of the Mellin transforms, the latter becomes equivalent
to the zeta function identity

ζ(s) =

∫ ∞

1−
x−sdN(x) = exp

(∫ ∞

1

x−sdΠ(x)

)
.

We shall say that a (complex-valued) measure dG (supported on [1,∞)) is arithmetic
(w.r.t. the number system under consideration) if it is absolutely continuous with
respect to dN . Furthermore, we call it multiplicative if it can be written as dG =
exp∗ (g dΠ) for some function g. Clearly, every multiplicative measure is arithmetic.
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We can now state the main result of this article, its proof will be postponed to
Section 4.

Theorem 2.1. Suppose the number system satisfies the upper and lower logarithmic
density conditions

(2.1)

∫ x

1−

dN(u)

u
≍ log x.

Let dG = exp∗ (g dΠ) be a multiplicative arithmetic measure with g = g1+g2 such that
|g1(x)| ≤ 1, the bound

∫ x

1
|g1(u)| log u dΠ(u) ≪ x holds, and

∫∞
1
x−1|g2(x)|dΠ(x) <∞.

Then, for real constants c, α, and a slowly varying function L(u) with |L(u)| = 1, the
relation

(2.2)

∫ x

1

G(u)

u
du =

cx1+iα

(1 + iα)2
L(log x) + o(x)

is satisfied if and only if

(2.3) Ĝ(s) =
c

s− 1− iα
L

(
1

σ − 1

)
+ o

(
1

σ − 1

)

holds uniformly for t in compact intervals.

The asymptotic relation (2.2) could be differentiated via elementary familiar argu-
ments (e.g. [10, Section I.18, p. 37]) if G satisfies additional Tauberian hypotheses. For
example, if g(u) ≥ 0, so that G is non-decreasing, we must essentially have α = 0 and
L(u) = 1 in (2.2); one then deduces G(x) ∼ cx. We might apply this to G(x) = N(x)
itself; the next corollary clarifies even more why the hypotheses on N in Theorem 1.1
are redundant.

Corollary 2.2. Assume that the Chebyshev upper bound (1.1) holds. Then, for a > 0,
N(x) ∼ ax holds if and only if

(2.4)

∫ ∞

1

|N(x)− ax|
xσ+1

dx = o

(
1

σ − 1

)
.

These relations are also equivalent to

(2.5) ζ(s) =
a

s− 1
+ o

(
1

σ − 1

)
,

uniformly for t on compact intervals.

Proof. The implications N(x) ∼ ax ⇒ (2.4) ⇒ (2.5) trivially hold unconditionally.
Assume now that (2.5) holds, then in particular ζ(σ) ∼ a/(σ − 1) and the Hardy-
Littlewood-Karamata theorem yields logarithmic density,

(2.6)

∫ x

1−

dN(u)

u
∼ a log x.

By Theorem 2.1, we have
∫ x

1
N(u)/u du ∼ ax. As explained above, using that N is

non-decreasing one concludes that N(x) ∼ ax, as required. �

Furthermore,
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Theorem 2.3. Assume N has positive density (1.2). Let dG = exp∗ (g dΠ) be a
multiplicative arithmetic measure with g = g1 + g2 such that |g1(x)| ≤ 1, the bound∫ x

1
|g1(u)| logu dΠ(u) ≪ x holds, and

∫∞
1
x−1|g2(x)|dΠ(x) < ∞. Then, for real con-

stants c, α, and a slowly varying function L(u) with |L(u)| = 1, the asymptotic relation

(2.7) G(x) =
cx1+iα

1 + iα
L(log x) + o(x)

is satisfied if and only if (2.3) holds uniformly for t in compact intervals.

Proof. The non-trivial implication is (2.3) implies (2.7). Set dGi = exp∗ (gi dΠ) and
in addition consider the convolution inverse of dG2, that is, dF = exp∗ (−g2 dΠ).
Since F̂ (s) is absolutely convergent on ℜe s = 1, a small computation shows that

(F̂ (s) − F̂ (1 + iα))/(s − 1 − iα) = o(1/(σ − 1)) uniformly for t on compacts. Thus,
with the same uniformity, (2.3) yields

Ĝ1(s) = Ĝ(s)F̂ (s) =
c1

s− 1− iα
L

(
1

σ − 1

)
+ o

(
1

σ − 1

)
,

where c1 = c/Ĝ2(1 + iα). Applying Theorem 2.1 to dG1, we obtain
∫ x

1

G1(u)

u
du =

c1x
1+iα

(1 + iα)2
L(log x) + o(x).

Let us verify that G1(x)/x is slowly oscillating (in the sense of Schmidt, cf. [10,
Def. I.16.1, p. 32]). Due to our hypothesis on G1 it is clear that |dG1| ≤ dN . Hence,
if η > 1,∣∣∣∣

G1(ηx)

ηx
− G1(x)

x

∣∣∣∣ ≤ (η − 1)

∣∣∣∣
G1(ηx)

ηx

∣∣∣∣ +
N(ηx)−N(x)

x
≪ η − 1 + oη(1),

by (1.2). Since L(log x) is slowly varying, a standard elementary Tauberian argument
gives

G1(x) =
c1x

1+iα

1 + iα
L(log x) + o(x).

The asymptotic formula (2.2) then follows from a variant of Wintner’s mean-value
theorem (i.e., Lemma 3.4(i) below). �

Combining Theorem 2.3 with [5, Lemma 3.6], we immediately obtain Corollary 1.2
with dM the convolution inverse of dN , namely, the measure dM = exp∗ (−dΠ) (for
discrete number systems M is then the sum function of the Beurling analog of the
Möbius function). It is worth pointing out that the hypothesis N(x) ∼ ax cannot be
omitted in Corollary 1.2, as shown by [5, Examples 4.2 and 4.3]. We also mention
that one can construct examples of number systems for which M(x) = o(x) and (1.2)
hold for some a > 0, but for which the Chebyshev bound (1.1) fails; see for instance
Kahane’s example [6, Example 3.6].

The ensuing version of the Halász mean-value theorem holds true.

Theorem 2.4. Assume the positive density condition (1.2) and the Chebyshev upper
bound (1.1) and let dG = exp∗ (g dΠ) be a multiplicative arithmetic measure such that
g = g1 + g2 with |g1(x)| ≤ 1 and

∫∞
1
x−1|g2(x)|dΠ(x) <∞.
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If there is α ∈ R such that

(2.8)

∫ ∞

1

1−ℜe (g(x)x−iα)

x
dΠ(x)

converges, then

(2.9) G(x) =
x1+iα

1 + iα
exp

(
−
∫ x

1

1− g(u)u−iα

u
dΠ(u)

)
+ o(x).

Otherwise, if there is no such α, then G has zero mean-value,

(2.10) G(x) = o(x).

In either case, there are real constants c, α, and a slowly varying function L(u) with
|L(u)| = 1 such that (2.7) holds.

Proof. Using again Lemma 3.4(i), we may assume that g2 = 0. The result can then
be deduced from Theorem 2.3 along the same lines of the proof of the corresponding
Halász mean-value theorem for the natural numbers given e.g. in Elliott’s book [8,
Chapter 6]. Therefore, we only give a brief sketch and leave most details to the reader.
When (2.8) diverges for every α, the classical argument involving Dini’s theorem yields

Ĝ(s) = o(1/(σ − 1)) (see e.g. [17, Lemma 3.1], one just uses here ζ(σ) ≪ 1/(σ − 1)),
so that we obtain (2.10) via Theorem 2.3 with c = 0.

In the case of convergence of (2.8), one may assume α = 0, because a simple inte-
gration by parts computation then yields the general result. We note that an adapted
version of [8, Lemma 6.8, p. 242] holds in view of ψ(x) ≪ x, while [8, Lemma 6.9,
p. 243] is valid because of N(x) ∼ ax in the form (2.5). Hence, similarly as in [8,
pp. 245–246], one derives that (2.3) holds for t on compacts with α = 0 and a slowly
varying function L with modulus 1 satisfying

cL(log x) = exp

(∫ ∞

1

g(u)− 1

u
exp

(
− log u

log x

)
dΠ(u)

)
+ o(1).

By Theorem 2.3, it thus just remains to verify that the latter integral expression equals
∫ x

1

g(u)− 1

u
dΠ(u) + o(1).

But this can also be established reasoning as in [8, pp. 246–247] with the aid of ψ(x) ≪
x and the simple bound

∫ x

1

log u

u
dΠ(u) =

ψ(x)

x
+

∫ x

1

ψ(u)

u2
du≪ log x.

�

As a simple corollary, one also obtains Wirsing’s mean-value theorem in this context.
Of course, Corollary 1.2 is also a consequence of it.
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Corollary 2.5. Suppose the positive density condition (1.2) and the Chebyshev upper
bound (1.1) hold. Let dG = exp∗ (g dΠ) be a real-valued multiplicative arithmetic
measure such that g = g1 + g2 with |g1(x)| ≤ 1 and

∫∞
1
x−1|g2(x)|dΠ(x) <∞. Then,

lim
x→∞

G(x)

x
= exp

(
−
∫ ∞

1

1− g(x)

x
dΠ(x)

)
,

where the right-hand side is taken as zero when the integral diverges.

Proof. Indeed, the convergent case directly follows from Theorem 2.4. Assume thus
that (2.8) diverges for α = 0. If it also diverges for all other values of α, we are done
as well since (2.10) holds. If (2.8) converges for some α 6= 0, then (2.7) holds for some
c ∈ R and L. We need to show that necessarily c = 0. If c were not zero, we would
have

lim
x→∞

G(xe
π
2α )

G(x)
= ie

π
2α ;

but this limit must be real so that one must either have c = 0 or that such an α does
not exist. �

We end this section with a remark concerning the case of discrete generalized number
systems.

Remark 2.6. All the results from this section cover the particular instance of multi-
plicative functions on a discrete generalized number system satisfying |f(nk)| ≤ 1 for
every generalized integer nk, provided the generalized number system has a positive
density and a Chebyshev upper bound holds for the generalized primes.

Given a multiplicative function f , the associated multiplicative measure is dG =
fdN . The functions f and g in the representation f dN = exp∗(g dΠ) determine one
another by their values on generalized prime powers linked by means of the relations

(2.11) 1 +

∞∑

ν=1

f(pνk)

psνk
=

∞∏

ν=1

exp

(
g(pνk)

νpνsk

)
,

which are obtained by comparing factors corresponding to each generalized prime pk in∑∞
k=0 n

−s
k f(nk) = exp

(∫∞
1
x−sg(x) dΠ(x)

)
with its Euler product. Taylor expanding

the exponential and multiplying out the right-hand side of (2.11), one readily deduces
that

(2.12) f(pνk) =
∑

ν=1·m1+2·m2+···+ν·mν

ν∏

j=1

1

mj !

(
g(pjk)

j

)mj

.

In particular, g(pk) = f(pk) for every generalized prime. The formula (2.12) can be
rewritten in terms of the (exponential) complete Bell polynomials (see e.g. [3, p. 134],
where the notation Yn = Bn is employed),

f(pνk) =
1

ν!
Bν(0!g(pk), 1!g(p

2
k), . . . , (ν − 1)!g(pνk)).
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Conversely, taking logarithms in (2.11) and using [3, Theorem A, p. 140],

(2.13) g(pνk) =

ν∑

j=1

(−1)j−1 (j − 1)!

(ν − 1)!
Bν,j(1!f(pk), 2!f(p

2
k), . . . , (ν − j + 1)!f(pν−j+1

k )),

where the Bν,j stand for the partial Bell polynomials. In particular, if f is completely
multiplicative, we have g(pνk) = f(pνk) for each k and ν ≥ 1. In view of |f(nk)| ≤ 1, we
find using (2.13) and [3, Eq. (3h), Theorem B, p. 135]

|g(pνk)| ≤
ν∑

j=1

(j − 1)!

(ν − 1)!
Bν,j(1!, 2!, . . . , (ν − j + 1)!) = 2ν − 1.

We further decompose g = g̃ + h with

g̃(pνk) =

{
g(pνk) if pk > 2

0 otherwise.

It is clear that the multiplicative arithmetic measure dG̃ = exp∗(g̃ dΠ) satisfies the
hypotheses we have been considering in this section. The Mellin transform of dH =
exp∗(h dΠ) is simply the Euler product

Ĥ(s) =
∏

pk≤2

(
1 +

∞∑

ν=1

f(pνk)

pνsk

)
,

which is obviously absolutely convergent for σ > 0. Using that Ĥ(s) ≪ 1 and

Ĥ ′(s) ≪ 1 on the half-plane σ ≥ 1, the proof of Theorem 2.1 we give in Section 4
can readily be adapted to obtain (2.2) for G(x) =

∑
nk≤x f(nk) from (2.3), |f(nk)| ≤ 1,

positive density N(x) ∼ ax, and the Chebyshev upper bound. On the other hand, the
conditions |f(nk)| ≤ 1 and N(x) ∼ ax imply that G(x)/x is slowly oscillating, so that
Theorem 2.3 is valid in this case. Applying Theorem 2.4 to G̃ and then Lemma 3.4(i)

to dG = dH ∗ dG̃, the Halász mean-value theorem takes the form: If there is α ∈ R

such that
∞∑

k=1

1−ℜe (p−iα
k f(pk))

pk

converges, then

1

x

∑

nk≤x

f(nk) =
xiα

1 + iα

∏

pk≤x

(
1− 1

pk

)(
1 +

∞∑

ν=1

f(pνk)

p
ν(1+iα)
k

)
+ o(1);

otherwise, f has zero mean-value. Moreover, the assertion in Corollary 2.5 becomes:
If in addition f is real-valued, we always have

lim
x→∞

1

x

∑

nk≤x

f(nk) =

∞∏

k=1

(
1− 1

pk

)(
1 +

∞∑

ν=1

f(pνk)

pνk

)
.
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3. Auxiliary elementary estimates

We start with a key estimate based on Rankin’s method (cf. [14, Section II.3]).

Proposition 3.1. Let dG = exp∗ (g dΠ) be a multiplicative arithmetic measure such
that

(3.1)

∫ x

1

|g(u)| logu dΠ(u) ≪ x logβ x,

with β ≥ 0. Then,

(3.2)
G(x)

x
≪ logβ−1 x exp

(∫ x

1

|g(u)|
u

dΠ(u)

)
.

Proof. We first estimate
∫ x

1
log u|dG(u)|. Note that the multiplication by log operator is

a derivation on the convolution algebra of measures [7, Section 2.8]. We have log ·dG =
dG ∗ (g · log dΠ) and so (3.1) yields
∫ x

1

log u |dG(u)| ≪
∫ x

1−

x

u
logβ

(x
u

)
|dG(u)| ≪ x logβ x exp

(∫ x

1

|g(u)|
u

dΠ(u)

)
,

where we have used that multiplying by 1/u commutes with the exponential of mea-
sures. We now apply Rankin’s trick,

G(x) ≪
∫ √

x

1

log u |dG(u)|+ 2

log x

∫ x

√
x

log u |dG(u)|

≪ (
√
x logβ x+ x logβ−1 x) exp

(∫ x

1

|g(u)|
u

dΠ(u)

)
.

�

From here we deduce:

Corollary 3.2. Suppose that
∫ x

1
u−1 dΠ(u) ≤ log log x+O(1). If dG = exp∗ (g dΠ) is

such that

(3.3)

∫ x

1

|g(u)| logu dΠ(u) ≪ x,

then

(3.4)
G(x)

x
≪ exp

(∫ x

1

|g(u)| − 1

u
dΠ(u)

)
,

(3.5)

∫

ℜe s=σ

∣∣∣∣∣
Ĝ(s)

s

∣∣∣∣∣

2

|ds| ≪
∫ ∞

0

e−2y(σ−1) exp

(
2

∫ ey

1

|g(u)| − 1

u
dΠ(u)

)
dy

as σ → 1+, and

(3.6)

∫

ℜe s=σ

∣∣∣∣∣
Ĝ′(s)

sĜ(s)

∣∣∣∣∣

2

|ds| ≪ 1

σ − 1
.
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Proof. Proposition 3.1 gives (3.4). The bound (3.5) then follows from the Plancherel

identity because for fixed σ the function Ĝ(s)/s is the Fourier transform of G(ey)e−σy.

Next, −Ĝ′(s)/Ĝ(s) is the Mellin transform of the measure g(u) logudΠ(u), whose prim-
itive is O(x) by (3.3). So, the Plancherel theorem implies (3.6). �

Let us point out that
∫ x

1
u−1 dΠ(u) ≤ log log x + O(1) implies upper logarithmic

density
∫ x

1
u−1dN(u) ≪ log x. Moreover, the condition (2.1) turns out to be equivalent

to a weak form of Mertens’ formula.

Lemma 3.3. (2.1) holds if and only if

(3.7)

∫ x

1

dΠ(u)

u
= log log x+O(1).

In addition, these relations are equivalent to ζ(σ) ≍ 1/(σ − 1).

Proof. Combine [7, Proposition 4.5 and Theorem 4.7] for (2.1) if and only if (3.7).
The equivalence between (2.1) and ζ(σ) ≍ 1/(σ − 1) follows from [7, Proposition 4.2,
Proposition 4.8, and Corollary 4.10]. �

We refer the reader to [7, 13] for more information on Mertens type results for
Beurling numbers.

We shall also need the ensuing simple lemma. Note that part (i) is a version of
Wintner’s mean-value theorem.

Lemma 3.4. Let A and B be two functions of local bounded variation on [1,∞) such
that

∫∞
1−
u−1|dA(u)| <∞. Consider dD = dA ∗ dB. Given a slowly varying function ℓ

with |ℓ(u)| = 1 and α, b ∈ R, we have:

(i) B(x) = bx1+iαℓ(x) + o(x) implies D(x) = Â(1 + iα)bx1+iαℓ(x) + o(x).
(ii)

∫ x

1
u−1B(u)du = bx1+iαℓ(x) + o(x) implies

∫ x

1

D(u)

u
du = Â(1 + iα)bx1+iαℓ(x) + o(x).

Proof. For (i), we have

1

x1+iαℓ(x)

∫ x

1−
dA ∗ dB =

∫ x

1−

B(x/u)

(x/u)1+iαℓ(x/u)

ℓ(x/u)

ℓ(x)

dA(u)

u1+iα
→ b

∫ ∞

1−

dA(u)

u1+iα
.

For (ii), we notice that
∫ x

1

B(u)

u
du =

∫ x

1−
log(x/u)dB(u) =

∫ x

1−
dH ∗ dB,

with dH(u) = u−1χ[1,∞)(u)du. So,
∫ x

1

D(u)

u
du =

∫ x

1−
dH ∗ dB ∗ dA,

whence we conclude that part (ii) is a special case of part (i). �

Finally, we translate (2.2) into another weighted average for dG.
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Lemma 3.5. Let G be a function of local bounded variation on [1,∞) such that∫ x

1
u−1G(u)du = o(x log x). Consider

(3.8) F (x) =

∫ x

1

(∫ u

1

log y dG(y)

)
du

u
.

Then, for ℓ slowly varying with |ℓ(u)| = 1 and some constant c ∈ R,
∫ x

1

G(u)

u
du = cxℓ(x) + o(x) if and only if F (x) = cxℓ(x) log x+ o(x log x).

Proof. Integrating by parts,
∫ x

1
u−1G(u) du ∼ cxℓ(x) is equivalent to

∫ x

1

log u
G(u)

u
du ∼ cxℓ(x) log x.

We also have

F (x) =

∫ x

1

log u
G(u)

u
du−

∫ x

1

1

u

∫ u

1

G(y)

y
dydu =

∫ x

1

log u
G(u)

u
du+ o(x log x),

whence the claim follows. �

4. Proof of Theorem 2.1

We start with some reductions. We only need to show that (2.3) implies (2.2). The
same reasoning employed at the beginning of the proof of Theorem 2.3 and Lemma
3.4(ii) allow us to assume without loss of generality that g2 = 0. So, our hypotheses on
g are |g(x)| ≤ 1 and (3.3). We may also assume that α = 0, namely, we are supposing
that

(4.1) Ĝ(s) =
c

s− 1
L

(
1

σ − 1

)
+ o

(
1

σ − 1

)
,

uniformly for t on compact intervals. In view of Lemma 3.3, the bound (3.4) from
Corollary 3.2 applies, so G(x) ≪ x. Therefore, G fulfills the conditions of Lemma 3.5
and from now on we can restrict our attention to the function F defined in (3.8).

We should prove that

(4.2) F (x) = cxL(log x) log x+ o(x log x).

The Mellin-Stieltjes transform of the function F is F̂ (s) = −Ĝ′(s)/s. Given x > e, it
is convenient to set σx = 1 + 1/ log x. By the Perron inversion formula, we have

F (x)

x
= − 1

2πi

∫

ℜe s=σx

xs−1Ĝ′(s)

s2
ds.

Next, we take a large number λ > 1, fixed for the while. We split the integral over the
line {s : ℜe s = σx} into three pieces, taken over

Γ0 = {σx + it : |t| ≤ λ/ log x},
Γ1 = {σx + it : λ/ logx < |t| ≤ λ},
Γ2 = {σx + it : λ < |t|}.



HALÁSZ’S THEOREM FOR BEURLING NUMBERS 11

The integral over Γ0 can easily be handled using the condition (4.1) and the fact
that L is slowly varying; proceeding exactly as in [8, p. 239], we obtain

− 1

2πi

∫

Γ0

xs−1Ĝ′(s)

s2
ds = cL(log x) log x+O

(
log x

λ

)
.

We now employ (3.6) and the Cauchy-Schwarz inequality in order to get

∫

Γj

xs−1Ĝ′(s)

s2
ds≪ log1/2 x



∫

Γj

∣∣∣∣∣
Ĝ(s)

s

∣∣∣∣∣

2

|ds|




1/2

, j = 1, 2.

It remains to estimate the latter two integrals. For the integral over the unbounded
intervals Γ2, we can apply (3.5) to the multiplicative arithmetic measures

exp∗ (u±i(λ+m)g(u)dΠ(u)
)
;

hence,

∫

Γ2

∣∣∣∣∣
Ĝ(s)

s

∣∣∣∣∣

2

|ds| ≤
∞∑

m=0

1

1 + (λ+m)2

(∫ −λ−m

−λ−m−1

+

∫ λ+m+1

λ+m

) ∣∣∣Ĝ(σx + it)
∣∣∣
2

dt

≤ 5

∞∑

m=0

1

1 + (λ+m)2

∫

ℜe s=σx



∣∣∣∣∣
Ĝ(s+ i(λ+m))

s

∣∣∣∣∣

2

+

∣∣∣∣∣
Ĝ(s− i(1 + λ+m))

s

∣∣∣∣∣

2

 |ds|

≪ 1

λ

∫ ∞

0

e−2(σx−1)ydy = O

(
log x

λ

)
.

On the other hand, using (4.1),

∫

Γ1

∣∣∣∣∣
Ĝ(s)

s

∣∣∣∣∣

2

|ds| ≤
(
|c| log x

λ
+ oλ(log x)

)1/2 ∫

ℜe s=σx

∣∣∣∣∣
(Ĝ(s))3/4

s

∣∣∣∣∣

2

|ds|.

To deal with the last integral we notice that (Ĝ(s))3/4 is the Mellin transform of the
arithmetic measure exp∗ (3g/4 dΠ) . Applying Plancherel’s identity and (3.2) to this
measure, using the upper bound from (3.7) and the hypothesis |g(u)| ≤ 1, we obtain

∫

ℜe s=σx

∣∣∣∣∣
(Ĝ(s))3/4

s

∣∣∣∣∣

2

|ds| ≪
∫ ∞

0

e−2y(σx−1)y−2 exp

(
2

∫ ey

1

(3/4)|g(u)|
u

dΠ(u)

)
dy

≪
∫ ∞

0

e−2y(σx−1)y−1/2dy ≪ log1/2 x.

Collecting all estimates, we arrive at

F (x)

x log xL(log x)
− c≪ 1

λ1/4
+ oλ(1).

Taking first the limit superior as x→ ∞ and then λ→ ∞, we have shown (4.2). This
establishes Theorem 2.1.
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Remark 4.1. It is worth pointing out that we have not used the lower bound from
(3.7) in this section. Thus, our proof above shows that Theorem 2.1 still holds true if
the hypothesis (2.1) is relaxed to

∫ x

1
u−1dΠ(u) ≤ log log x+O(1).
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