Advanced search
1 file | 507.98 KB Add to list

A multidimensional Tauberian theorem for Laplace transforms of ultradistributions

Lenny Neyt (UGent) and Jasson Vindas Diaz (UGent)
Author
Organization
Abstract
We obtain a multidimensional Tauberian theorem for Laplace transforms of Gelfand-Shilov ultradistributions. The result is derived from a Laplace transform characterization of bounded sets in spaces of ultradistributions with supports in a convex acute cone of , also established here.
Keywords
Laplace transforms, multidimensional Tauberian theorems, ultradistributions, Gelfand-Shilov spaces, quasiasymptotic behavior, ULTRADIFFERENTIABLE FUNCTIONS, SPACES, DISTRIBUTIONS

Downloads

  • (...).pdf
    • full text (Published version)
    • |
    • UGent only
    • |
    • PDF
    • |
    • 507.98 KB

Citation

Please use this url to cite or link to this publication:

MLA
Neyt, Lenny, and Jasson Vindas Diaz. “A Multidimensional Tauberian Theorem for Laplace Transforms of Ultradistributions.” INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, vol. 31, no. 5, 2020, pp. 395–411, doi:10.1080/10652469.2019.1699556.
APA
Neyt, L., & Vindas Diaz, J. (2020). A multidimensional Tauberian theorem for Laplace transforms of ultradistributions. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 31(5), 395–411. https://doi.org/10.1080/10652469.2019.1699556
Chicago author-date
Neyt, Lenny, and Jasson Vindas Diaz. 2020. “A Multidimensional Tauberian Theorem for Laplace Transforms of Ultradistributions.” INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 31 (5): 395–411. https://doi.org/10.1080/10652469.2019.1699556.
Chicago author-date (all authors)
Neyt, Lenny, and Jasson Vindas Diaz. 2020. “A Multidimensional Tauberian Theorem for Laplace Transforms of Ultradistributions.” INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 31 (5): 395–411. doi:10.1080/10652469.2019.1699556.
Vancouver
1.
Neyt L, Vindas Diaz J. A multidimensional Tauberian theorem for Laplace transforms of ultradistributions. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS. 2020;31(5):395–411.
IEEE
[1]
L. Neyt and J. Vindas Diaz, “A multidimensional Tauberian theorem for Laplace transforms of ultradistributions,” INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, vol. 31, no. 5, pp. 395–411, 2020.
@article{8675115,
  abstract     = {{We obtain a multidimensional Tauberian theorem for Laplace transforms of Gelfand-Shilov ultradistributions. The result is derived from a Laplace transform characterization of bounded sets in spaces of ultradistributions with supports in a convex acute cone of , also established here.}},
  author       = {{Neyt, Lenny and Vindas Diaz, Jasson}},
  issn         = {{1065-2469}},
  journal      = {{INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS}},
  keywords     = {{Laplace transforms,multidimensional Tauberian theorems,ultradistributions,Gelfand-Shilov spaces,quasiasymptotic behavior,ULTRADIFFERENTIABLE FUNCTIONS,SPACES,DISTRIBUTIONS}},
  language     = {{eng}},
  number       = {{5}},
  pages        = {{395--411}},
  title        = {{A multidimensional Tauberian theorem for Laplace transforms of ultradistributions}},
  url          = {{http://dx.doi.org/10.1080/10652469.2019.1699556}},
  volume       = {{31}},
  year         = {{2020}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: