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Abstract 

In flash thermography, the maximum inspectable defect depth is limited when only the raw 

thermographic sequence is analyzed. The introduction of pulsed phase thermography (PPT), in 

which phase (contrast) images at different thermal wave frequencies are obtained, significantly 

improved the maximum inspectable depth while reducing the effects of non-uniform heating 

and non-uniform surface properties. However, in a practical environment, the evaluation of 

many phase images per inspection is a cumbersome procedure.  

In this paper, a novel Adaptive Spectral Band Integration (ASBI) procedure is introduced for the 

post-processing of flash thermographic datasets, which yields a unique damage index map. 

ASBI integrates the most useful spectral information for each pixel individually, obtaining a 

maximized defect detectability and an almost zero-reference level. The performance of ASBI 

with respect to defect detectability as well as defect sizing and depth inversion is evaluated 

thoroughly with both experimentally and numerically generated datasets. The ASBI procedure 

is successfully applied on various composite coupons with flat bottom holes and barely visible 

impact damage, as well as on a stiffened aircraft composite panel with a complex cluster of 

production defects. The ASBI procedure is compared with existing data-processing techniques 

in literature, illustrating an enhanced performance.  

Keywords: Non-destructive testing (NDT), Flash thermography, Data processing, Fourier 

analysis, Composites, GFRP, CFRP, Barely visible impact damage (BVID) 

1. Introduction 

In recent years, composites have gained a lot of attention from industry due to their 

advantageous properties, such as a high stiffness-to-weight ratio and good corrosion resistance 

in comparison to traditional metals. However, these composite materials are susceptible to the 

formation of internal damage features due to their layered structure. These internal defects 

tend to grow over time and may jeopardize the structure’s mechanical integrity. Since 

composites are widely implemented in high-end applications (e.g. up to 50% of modern 

aircrafts consists of composites), advanced non-destructive testing (NDT) is required to provide 

early defect detection to guarantee their structural integrity.  

Flash thermography (FT) is a popular NDT technique in which defective regions are visualized by 

exploiting the local difference in the thermal properties between a defect and its surrounding 

sound material [1-5]. In FT, a short but intense flash excitation is used to induce a thermal 

imbalance throughout the sample’s thickness, causing thermal waves to diffuse into the 

material’s thickness. Meanwhile, the temporal evolution of the excited surface’s temperature is 
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recorded using an infrared (IR) camera. At internal defect boundaries, the heat diffusion is 

impeded, leading to a locally increased temperature in the recorded thermal sequence. 

However, flash thermography is inherently limited by the highly diffusive and strongly damped 

nature of the induced thermal waves, making the accurate detection of small and deep defects 

very challenging. Several image processing techniques, which only use the input of one single 

thermogram, have been developed to enhance the defect detectability by reducing noise and 

background non-uniformities [6-8]. Also many data post-processing techniques, which use the 

complete recorded thermographic sequence, have been implemented to further enhance the 

defect detectability [1, 9-12].  

Pulsed phase thermography (PPT) was introduced as one of the first advanced data processing 

techniques, in which each pixel’s thermal sequence is decomposed into its harmonic 

components by applying the fast Fourier transform (FFT) [13]. The output of the FFT procedure 

yields amplitude and phase images that govern a wide frequency range, which is dependent on 

the recording settings, i.e. total recording duration and sampling frequency [13, 14]. Typically, 

only the phase images are evaluated for NDT since they are emissivity-normalized, meaning 

that the adverse effects of background non-uniformity and non-uniform surface properties are 

reduced [14]. Thus, phase images have a more uniform background than the corresponding 

amplitude images. Additionally, the evaluation frequency is inversely proportional to the 

inspection depth, i.e. a thermal wave with a lower evaluation frequency has a higher diffusion 

length and provides a deeper probing into the material. Hence, a unique evaluation frequency 

that provides optimal detection for defects at different depths does not exist. As such, the 

required full-thickness inspection of a component calls for the assessment of multiple 

frequencies, which is a cumbersome evaluation procedure.  

Besides the well-known PPT technique, there exist several other well-known data processing 

techniques for FT in both time and frequency domain, such as Differential Absolute Contrast 

(DAC) [15, 16], Principal Component Thermography (PCT) [17], Thermographic Signal 

Reconstruction (TSR) [18-20] and Dynamic Thermal Tomography (DTT) [21]. In DAC, the 

behavior of each pixel in its sound state is estimated by applying an idealized 1D solution for 

the heat diffusion equation. By calculating the thermal contrast between the measured signal 

and the estimated sound behavior, a reference-free thermal contrast technique is thus 

obtained. In PCT, the recorded dataset size is significantly reduced by projecting it onto a 

statistical orthogonal base which provides the strongest projection. This leads to a set of 

principal components, which captures most of the observed variability (e.g. due to the presence 

of defects) in the recorded thermographic sequence. TSR fits a low-order polynomial function 

to each pixel’s cooling regime in loglog-space, for which then only the polynomial coefficients 

need to be stored. This technique therefore strongly reduces the data size and measurement 

noise. Alternatively, the first and second order derivatives of the polynomial fit may be used for 

improved defect detectability and for defect depth estimation. In DTT, each pixel is represented 

by the value and the time instance of its maximum thermal contrast, generating a ‘maxigram’ 

and ‘timegram’, respectively. Next, a correlation function can be constructed to convert the 

timegram values into quantitative depth information. More recently, Thermal Signal Area (TSA) 

[22] has been introduced which performs an integration of the raw surface temperature over a 

user-defined temporal range in order to obtain an improved defect detectability.  

Besides enhancing a defect’s detectability, it is also desired to obtain quantitative information 

on its size and depth location. Accurate defect sizing is significantly complicated in infrared 

thermography due to the lateral heat diffusion. Several approaches have been introduced for 

optical infrared thermography, such as full-width at half-height [23] and shearing-phase profiles 
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[24]. However, a consensus on the optimal approach has not yet been reached. On the other 

hand, in the field of ultrasonic NDT, the drop technique is a standard technique for defect size 

estimation, in which a defect is sized by applying a cut-off at a specific percentage of the 

defect’s maximum amplitude [25-27]. For FT, several procedures for defect depth estimation 

have been introduced [21, 28-34], most of which rely on the idealized 1D solution for the heat 

diffusion equation or on artificial neural networks. With respect to PPT, it is known that there 

does not exist an unambiguous relationship between the phase angle and the defect depth 

[30], which means that individual phase (contrast) images cannot be used for proper depth 

inversion. However, there does exist a well-known inverse relationship between the defect 

depth and the second blind frequency [9, 14, 35]. At this second blind frequency, a defect can 

typically no longer be distinguished from its surroundings based on the phase contrast because 

the signal has reached the noise level; the defect thus becomes ‘blind’ at this frequency [14, 

36]. However, for glass fiber reinforced polymers, there is often a positive phase contrast after 

the second blind frequency, and there thus even exists a third blind frequency. 

In this paper, we propose a novel data processing technique called Adaptive Spectral Band 

Integration (ASBI), in which relevant phase images are integrated in a pixel-wise manner in 

frequency domain, leading to a unique damage index map. This has particular advantages in 

terms of (i) emissivity normalization (reducing the effect of non-uniform heating and 

background reflections), (ii) signal-to-noise ratio (SNR) and (iii) probing depth. This damage 

index map can then further also be used for quantitative depth inversion by the use of a 

suitable correlation function. The structure of the remainder of this paper is as follows: section 

2 describes the samples that were tested and the experimental procedure for this research 

paper. Section 3 provides a background on PPT and elaborates on its advantages, limitations 

and challenges. Next, the ASBI algorithm is introduced in section 4, and its performance is 

compared with both PPT and TSA. In section 5, the performance of ASBI towards quantitative 

defect depth inversion is evaluated, and compared with the approach based on PPT’s second 

blind frequency (based on FE results). In section 6, ASBI is applied and demonstrated on two 

challenging inspection cases: (i) a composite coupon with barely visible impact damage, and (ii) 

a stiffened aerospace component with a complex cluster of production defects. Finally, section 

7 gathers the concluding remarks. 

2. Materials and methods 

A glass fiber reinforced polymer (GFRP; an often-used material in the wind industry) coupon 

with FBHs, a carbon fiber reinforced polymer (CFRP) coupon with barely visible impact damage 

(BVID), and a stiffened CFRP aircraft panel with production defects are investigated. 

The GFRP sample is a square 200x200 mm
2
 plate with a total thickness of 5 mm and a cross-ply 

[(0/90)5]s layup, and is used to introduce the different steps involved in the ASBI procedure. 

Circular flat bottom holes (FBHs) with a diameter of 15 mm were milled from the back side of 

the sample, with a spacing in between the FBHs of 20 mm. The remaining material thicknesses 

at the defect locations range from 0.25 to 4 mm. A picture of the sample is provided in Figure 

1(a). Additionally, two similar square GFRP samples (same size, thickness, stacking sequence 

and FBH depths) but with FBHs of diameter 10 mm (FBH spacing of 15 mm) and 5 mm (FBH 

spacing of 10 mm) are inspected. 

The CFRP sample with BVID has a quasi-isotropic layup of [(+45/0/-45/90)3]s, and measures 

140x90x5.5 mm
3
. The sample was impacted by dropping a 7.72 kg impactor from a height of 0.3 

m (measured impact energy of 18.5 J) using a calibrated drop tower, introducing barely visible 
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impact damage (BVID) [37]. A photograph of the impacted CFRP sample is provided in Figure 

1(b).  

The last sample is a CFRP panel with backside stiffeners that was manufactured for an Airbus 

A400M lower flap (see Figure 1(c)). It was scrapped based on the ultrasonic inspection 

performed by the manufacturer (inspection data is not available). The zone that contains 

production defects is hatched in the figure while the region indicated as ‘inspected area’ is 

investigated for the presence of defects. The panel consists of a skin plate of 500x1000x2.55 

mm
3
 with several backside stiffeners along the horizontal direction.  

The samples are excited by a Hensel linear flash lamp which generated a 5 ms optical excitation 

with an energy of 6 kJ. For the GFRP sample, the cooling down regime was recorded for 180 s at 

a sampling frequency of 10 Hz with a FLIR A6750sc infrared (IR) camera in reflection mode. For 

the CFRP sample with BVID, the recording duration and sampling frequency were 45 s and 50 

Hz, respectively. The aircraft panel was recorded for 40 s at 25 Hz. For the GFRP sample, a long 

recording time was adopted since this sample is used to introduce the ASBI algorithm and to 

compare it with PPT (where the frequency resolution is critical [14]). The CFRP samples were 

recorded with higher sampling frequencies, and for a shorter duration (i.e. until reaching the 

noise level) to limit the data size. The IR camera has a focal plane array of 640x512 cryo-cooled 

InSb detectors, which have a noise-equivalent differential temperature (NEDT) of � 20 mK, and 

is sensitive within the 3-5 μm range. The distance between the flash lamp and each inspected 

sample was ~300 mm, while the IR camera was placed ~900 mm away for the GFRP sample, ~500 mm for the CFRP sample with BVID and ~1000 mm for the aircraft panel. The 

synchronization between the excitation and data acquisition was guaranteed through hard- and 

software from Edevis GmbH. The recorded thermographic sequences were imported into an in-

house developed MATLAB toolbox for the post-processing. 
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Figure 1: Schematic drawing of the (a) GFRP coupon with FBHs; (b) CFRP coupon with BVID; and (c) CFRP aircraft 

panel with backside stiffeners and production defects.  

3. Background of pulsed phase thermography (PPT) 

In pulsed phase thermography (PPT), first, amplitude and phase images are calculated for a 

wide range of frequencies through the application of the Fourier transform [9, 13, 14]. Next, 

the phase contrast Δ�	
� is calculated for each frequency by subtracting the phase of a sound 

reference pixel. However, the selection of such a reference pixel is often non-trivial since it 

requires a priori information about the sample and its defects. As a practical alternative, the 

average phase value of the entire sample can also be used as reference value [28]. In this 

paper, the phase contrast is calculated according to the latter manner. This means that, if 

defects are present in the sample, the average phase angle of the entire sample will be more 

negative than the sound pixels’ phase angle itself (since defects have a more negative phase 

angle than sound pixels). This then results in an initially positive phase contrast for sound pixels 

and a negative phase contrast for defected pixels.  

Figure 2 presents the phase contrast curves for three FBHs at different defect depths and for a 

sound pixel. The four pixels are indicated with red dots in Figure 1(a). The sound pixel’s 

behavior is governed by an initially positive phase contrast (since the entire sample was used 

for the reference phase angle) and by noisy fluctuations around the zero phase contrast. For 

the defects, the range of frequencies that exhibit a negative phase contrast is wider for 

shallower defects than for deeper defects. Additionally, the most shallow defect (FBHB) exhibits 

the most negative phase contrast. This value gradually decreases with increasing defect depth. 

This is in accordance with the results in [4, 14, 20, 28]. For each defect, there exists a frequency 

of maximum negative phase contrast 
�,���, which is dependent on the defect’s depth and 

size (also observed in [4, 14, 20]). This entails that there does not exist one unique frequency 

that provides the optimal detection for all defects. Also, assessing only one frequency should be 

avoided since this evaluation frequency – while optimal for one defect – might correspond to a 

blind frequency of another defect, which would make that this particular defect remains 

undetected. As such, phase contrast images at multiple frequencies must be evaluated to 

obtain a through-depth inspection of the entire sample, which is often a cumbersome task. In 

the figure, the indicative phase contrast area of FBHB is highlighted in green, which is defined by 

the frequency range where the defect’s phase contrast is negative and by the maximum phase 

contrast Δ����.  

 

Figure 2: Phase contrast in function of frequency (the considered pixels are indicated by the red dots in Figure 

1(a)). 
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4. Adaptive spectral band integration (ASBI) 

The first part of this section is devoted to the introduction of the ASBI algorithm, after which 

ASBI is applied on the GFRP sample with FBHs (Figure 1(a)). Its performance is compared with 

the output of PPT and TSA.  

4.1. Algorithm 

Figure 3(a) provides a schematic overview of the phase contrast curve for a defected pixel, 

whereas Figure 3(b) plots the phase contrast curve for a sound pixel. Notice that for a shallow 

defected pixel, a positive phase contrast may arise at low evaluation frequencies due to 3D 

heat diffusion effects [36, 38]. In this case, the heat wave that is normally reflected from a 

(shallow) defect is predominantly dissipated through lateral heat diffusion at very low 

frequencies [38]. This thus introduces a first zero-crossing (ZC1) before the maximum phase 

contrast is reached, as depicted in Figure 3(a). In order to avoid possible confusion, we call the 

(first) zero-crossing introduced by the defect’s initial positive phase contrast ‘first blind 

frequency’ 
�����,�, and the (second) zero-crossing that corresponds to the frequency at which 

the defect’s phase contrast reaches the noise level (or crosses towards a positive phase 

contrast as in Figure 3(a)) ‘second blind frequency’ 
�����,� (see Figure 3(a)).  

The first step of the ASBI algorithm is to define appropriate limits for the integration of the 

spectral information for each pixel, such that a unique damage index map is obtained. 

Considering the typical high-frequency noise due to the low involved energy [20] (see Figure 

3(a,b)), integrating over the entire frequency range is not an effective option and would lead to 

erroneous results. As such, the proper range for the integration needs to be defined in a pixel-

wise manner. In ASBI, the integration limits are defined by the range of the frequency domain 

where the pixel’s phase contrast is negative (with the second blind frequency 
�����,� as upper 

limit), hatched in green in Figure 2 and Figure 3(a,b). The definition of this integration domain 

can be simplified by setting all occurrences of a positive phase contrast (Δ�	
� > 0) equal to 

zero, as schematically indicated in Figure 3, which would then allow to integrate from 0 Hz up 

to the second blind frequency 
�����,�. 

First, the second zero-crossing (ZC2), which is the highest frequency that will be considered for 

the respective pixel (see Figure 3(a,b)), is located. This will either correspond to 
�����,� or to a 

subsequent zero-crossing in the noisy regime. Following, the frequency bin at which the 

maximum negative phase contrast occurs, 
�,���, is determined in the range from 0 Hz up to 

ZC2. Sequentially, the second blind frequency 
�����,� is found by searching for the first zero-

crossing at a frequency higher than 
�,���. With this procedure the second blind frequency 
�����,� for ASBI is robustly extracted in an algorithmic manner. When there is no initial positive 

phase contrast, 
�����,� corresponds to the first zero-crossing ZC1. If there is an initial positive 

phase contrast, it will correspond to ZC2. For shallow defects, this procedure might slightly 

underestimate 
�����,� due to measurement noise since the slope of the phase contrast is very 

low in that region. Performing a polynomial fitting to reduce the measurement noise is, 

however, not recommended. The highly different phase contrast curves for different defect 

depths (see Figure 2) makes that performing an appropriate fitting for all pixel types at once is 

not feasible. Further, the added accuracy does not outweigh the added calculation costs. It is 

furthermore explicitly demonstrated in section 5.2 that this underestimation has no significant 

influence on the outcome of ASBI. 
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With the determined frequency range of interest for each pixel �	�,��, i.e. �0	Hz…
�����,�	�,�� !, the 

following step is to integrate the useful phase spectral information inside this range. The 

damage index map "# at pixel �	�,�� is thus calculated as: 

"#	$, %� & ' Δ�	$, %, 
�|�	�,�,)�*+
),-./0,1	.,2�

)3+	45  (1) 

This corresponds to the integration of the green area in Figure 2 and Figure 3. Naturally, when 

inspecting a sound sample, ASBI provides a noisy image in which all pixels are governed by low 

phase angles, span a small integration range, and occur at random locations. 

 

Figure 3: Schematic illustration of the ASBI algorithm: (a) phase contrast of a (shallow) defected pixel with initial 

positive phase contrast; (b) phase contrast of a sound pixel. 

4.2. Comparison of PPT and ASBI 

Figure 4 presents a comprehensive comparison for the GFRP coupon sample between individual 

phase contrast images obtained through the PPT algorithm and the damage index map 

calculated by ASBI. For better presentation of the results, a logarithmic scale has been 

employed.  

In Figure 4(a), the phase contrast map is displayed for the frequency of maximum negative 

phase contrast for FBHB (
�,���6 & 	0.03 Hz). Notice that a logarithmic scale is used to 

represent the results. First, the sign of the phase contrast map is flipped, after which all phase 

contrast values are made positive by adding the minimal value of this resulting phase contrast 

map. Next, the decimal logarithm is taken. At this frequency, many of the deeper defects are 

not detected, and there is a significant amount of noise [20]. Additionally, a cross-section S-S’ 

through the second row of FBHs (B, F, J and N in Figure 1(a)) is investigated, which is plotted in 
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Figure 4(b). The signal-to-noise ratio (SNR) of each of these FBHs is calculated based on the 

formula [39-41]: 

9:; & 20 log�+ ?@AB0 − ABDEF@GBDEF H											dB� (2) 

where AB0  and ABDEF  are the average	values of the defected and reference sound areas 

(respectively Ad and Aref in Figure 4(a)), and GBDEF  is the standard deviation of the reference 

sound area Aref. The area for Ad measures 21x21 pixels and 25x364 pixels for Aref. The obtained 

SNR values of the FBHs are indicated on the cross-sectional plot. The two shallowest defects of 

S-S’ are clearly detected with high SNR levels, while the third defect shows a reduced contrast 

and the deepest defect exhibits a slightly positive phase contrast (i.e. the frequency is higher 

than the second blind frequency for this defect). Also, the background in between the defects is 

non-uniform and noisy.  

Lowering the evaluation frequency to the frequency of maximum phase contrast for FBHF 

(
�,���K & 	0.01 Hz) provides detection of deeper defects, but the signatures of the (shallower) 

defects are enlarged due to the increased effect of lateral heat diffusion at this lower frequency 

(see Figure 4(c)). The background of the phase contrast map is less uniform at this lower 

frequency, while the phase contrast of the shallow defects has decreased in comparison to 
�,���6  (see also Figure 2). The detectability of all FBHs is high, which is evidenced by the high 

corresponding SNR values in Figure 4(d).  

Figure 4(e) displays the output from the proposed ASBI algorithm, which is also presented in a 

logarithmic scale (calculated in a similar manner as the phase contrast images). In this figure, all 

defects are consistently detected and an almost zero-reference background is obtained. The 

highest damage index is obtained for the most shallow defect FBHA, which is logical since the 

frequency range of interest M0	Hz…
�����,�B N is wider and the phase contrast is higher (in 

absolute values) for shallower defects. Additionally, ASBI effectively enhances the defect 

contrast and reduces the background non-uniformity and noise level in comparison to the 

individual phase contrast images. Lastly, Figure 4(f) illustrates the cross-section S-S’ for the 

output from ASBI, in which it is clear that the SNR of each defect is significantly higher than for 

any of the individual phase contrast maps at 
�,���6  and 
�,���K  (Figure 4(b,d)). 
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Figure 4: (a-d) phase contrast map and cross-section S-S’ at the frequency of maximum phase contrast for FBHB 

and FBHF , 
�,���6  and 
�,���K , respectively; (e,f) damage index map of ASBI and cross-section S-S’. The plots of 

the cross-section S-S’ (b,d,f) contain indications of the defects’ SNR values (in dB). 

An overview of the SNR values of all FBHs is presented in Table 1, in which the reference area 

Aref (see Figure 4) was used for each FBH. The SNR for both PPT (at 
�,���) and ASBI decreases 

steadily with increasing defect depth. The results also suggest that, independent of the defect 

depth, ASBI provides an enhanced defect detectability over PPT’s maximum phase contrast 
�,���.  

Table 1: SNR values for all FBHs of the GFRP sample with diameter of 15 mm (see Figure 1(a)) for PPT (at 
�,���), 

TSA and ASBI. 

SNR of all FBHs [dB]  

(O & 15	mm) 

 
Depth 

[mm] 

PPT 

(at 
�,���) 

TSA  

(0-50 s) 
ASBI  

Depth 

[mm] 

PPT 

(at 
�,���) 

TSA  

(0-50 s) 
ASBI 

FBHA 0.25 22.60 17.81 28.13 FBHI 2.25 15.45 6.38 22.44 

FBHB 0.5 22.06 15.61 27.32 FBHJ 2.5 15.44 5.85 22.37 

FBHC 0.75 21.31 14.95 26.37 FBHK 2.75 15.02 3.81 21.78 

FBHD 1 18.28 13.90 25.51 FBHL 3 13.79 2.48 21.10 

FBHE 1.25 18.15 16.85 24.88 FBHM 3.25 13.56 -13.43 20.00 

FBHF 1.5 16.53 16.15 24.61 FBHN 3.5 13.49 -6.91 19.93 

FBHG 1.75 16.38 14.62 23.88 FBHO 3.75 13.04 -1.00 19.12 

FBHH 2 16.06 12.95 23.25 FBHP 4 12.29 1.05 18.08 

An overview of the estimated lateral sizes of FBHB and FBHF (actual diameter of O &	15 mm) in 

function of the frequency is presented in Figure 5(a) for the -3 dB drop technique (i.e. cut-off at 

50% of a defect’s maximum amplitude). It was found earlier that the -3 dB drop technique often 

underestimates a defect’s size in infrared thermography [24], which is also illustrated in the 

figure. The estimation for the shallow FBHB is quite stable over the evaluated frequencies 

(except at the lowest frequency bin), having an error in defect sizing of about -11% at its 

optimal evaluation frequency 
�,���6 . The deeper FBHF has a defect sizing error of -8% at its 
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optimal evaluation frequency 
�,���K . The defect size estimation with ASBI is in the same 

range, having an error of about -6% for FBHB and -8% for FBHF.  

Additionally, the estimated lateral sizes of FBHB and FBHF (actual diameter of O &	15 mm) 

through the -6 dB drop technique (i.e. cut-off at 25% of a defect’s maximum amplitude) are 

presented in Figure 5(b). Notice that in this case, the defect sizes are generally overestimated. 

The estimation of the size of the shallow FBHB from the phase contrast images is quite accurate 

at relatively high frequencies and becomes worse with decreasing evaluation frequency (+25% 

error in defect sizing at 
�,���K , and about +8% error at its optimal 
�,���6 ). The deeper FBHF 

on the other hand is sized more accurately for all presented evaluation frequencies, but also 

significantly deviates from the real value (O &	15 mm) at its frequency of maximal phase 

contrast 
�,���K  (+17% error at its optimal 
�,���K  and +3% error at 
�,���6 ). Hence, the 

optimal frequency for defect detectability does not necessarily correspond to the frequency 

that provides the most accurate size estimation (for both the -3 dB and -6 dB drop technique). 

This further complicates the evaluation procedure through different phase contrast images in 

PPT. In contrast, estimating the defect size based on ASBI’s damage index with the -6 dB drop 

technique provides improved results, with only a minimal overestimation for the deepest FBHF 

(0% error for FBHB and about +8% error for FBHF). For ASBI, the frequency range of [
�,���, 
�����,�] provides the main contribution to the damage index since it covers considerably more 

frequency bins than the frequency range [0 Hz, 
�,���] (see Figure 2). Since the main 

contributors are those frequencies that are less affected by lateral heat diffusion (i.e. the higher 

frequencies, see Figure 5), the defect sizing by ASBI is therefore more accurate than by 
�,���.  

 

Figure 5: Estimation of the lateral size of FBHB and FBHF (see Figure 1(a)) in function of frequency based on the (a) -

3 dB rule; and (b) -6 dB drop rule. 

Since the -3 dB drop technique typically underestimated the defect sizes and the -6 dB drop 

technique overestimates them (see Figure 5), a more suitable threshold can be found 

somewhere between both values. Therefore, the amplitude drop is set to -4.5 dB (i.e. cut-off at 

35% of the defect’s maximum amplitude), for which the resulting defect size estimations are 

listed in Table 2. For this threshold, both PPT’s optimal evaluation frequency 
�,��� and ASBI 

provide accurate defect size estimations. The estimated defect size through ASBI shows low 

variations (error ranging between -6% and +3%) in comparison to those obtained by PPT’s 

optimal evaluation frequency 
�,��� (error ranging between -6% and +19%). These results 

suggest that the -4.5 dB drop technique is more appropriate for the inspected GFRP material 

than -3 dB or -6 dB, and that ASBI provides a more precise defect sizing than PPT’s optimal 

evaluation frequency 
�,���.  
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Table 2: Estimated defect sizes with the -4.5 dB drop technique for all FBHs of the GFRP sample with diameter of 

15 mm (see Figure 1(a)) for PPT (at 
�,���) and ASBI. 

Estimated defect size with -4.5 dB rule [mm]  

(O & 15	mm) 

 
Depth 

[mm] 

PPT 

(at 
�,���) 
ASBI  

Depth 

[mm] 

PPT 

(at 
�,���) 
ASBI 

FBHA 0.25 15.42 (+3%) 14.58 (-3%) FBHI 2.25 14.17 (-6%) 15 (0%) 

FBHB 0.5 15 (0%) 14.58 (-3%) FBHJ 2.5 14.58 (-3%) 14.58 (-3%) 

FBHC 0.75 15.42 (+3%) 15 (0%) FBHK 2.75 14.17 (-6%) 14.17 (-6%) 

FBHD 1 15 (0%) 15 (0%) FBHL 3 16.25 (+8%) 14.58 (-3%) 

FBHE 1.25 15.42 (+3%) 15.42 (+3%) FBHM 3.25 17.92 (+19%) 15.42 (+3%) 

FBHF 1.5 16.25 (+8%) 15.42 (+3%) FBHN 3.5 17.08 (+14%) 15 (0%) 

FBHG 1.75 15.42 (+3%) 15 (0%) FBHO 3.75 15.83 (+6%) 15 (0%) 

FBHH 2 15 (0%) 15 (0%) FBHP 4 16.25 (+8%) 14.58 (-3%) 

4.3. Performance comparison with thermal signal area 

This section compares the performance of the proposed ASBI approach to a recently introduced 

technique called Thermal Signal Area (TSA) [22]. The TSA technique is similar to ASBI, but it 

performs an integration procedure in the temperature- time domain (instead of frequency-

phase domain). Though, the integration limits for TSA ought to be treated with care in order to 

reduce the influence of noise and to have sufficient depth probing and accurate defect sizing. 

Indeed, a long evaluation period in TSA is needed to assess defects at different depths. Though, 

it will induce blurry edges for the shallow defects, due to an increased effect of lateral heat 

diffusion. A short evaluation time will mark shallow defects more clearly, but the detectability 

of deeper defects is then significantly reduced. Thus, there exists a tradeoff between shallow 

defect sharpness, and deep defect detectability. A proper choice of the temporal evaluation 

range is not straightforward without prior knowledge on the sample and its defects.  

Different temporal ranges for the TSA have been evaluated, and for this specific GFRP sample 

with FBHs it was found that the temporal range of 0-50 s provides good TSA results (see Figure 

6(a-b)). However, notice also that the non-uniform background (concentrated above the 

second column of FBHs from the left) is not removed by this technique due to the fact that it 

relies on evaluating temperature values in time domain. The ASBI approach, on the other hand, 

integrates the negative phase contrast within a suitable spectral range, which results in a 

strongly reduced background non-uniformity and noise level, and a significantly increased 

detectability of deep defects (see Figure 4(e)). This can also be observed in Figure 6(b), which 

displays a cross-sectional plot along line S-S’ for both TSA and ASBI. The SNR values are 

indicated in Figure 6(b) for cross-section S-S’ and in Table 1 for all FBHs, and are consistently 

higher for ASBI. Further, note that the proposed ASBI algorithm automatically determines the 

optimal frequency range for each pixel individually, thus making it user-independent.  

The errors on the estimated defects sizes for TSA have not been added to Table 2 since the 

drop rule cannot effectively be applied due to the significant background non-uniformity. 
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Figure 6: (a) Result of TSA for the temporal range 0-50 s; (b) Cross-section S-S’ for TSA (0-50 s) and ASBI, with 

indications of the defects’ SNR values (in dB). 

5. ASBI and defect depth 

In this section, it is first demonstrated for the experimental case on the GFRP sample that a 

trend can be observed between ASBI’s damage index value and the defect depth. Next, the 

possibility for defect depth inversion is investigated through Finite Element (FE). 

5.1. Defect depth quantification through ASBI 

A careful evaluation of Figure 4(f) shows a trend between the damage index and the defect 

depth, which suggests the opportunity of defect depth quantification. 

Additional experiments were performed for cross-ply [(0/90)5]s GFRP samples with FBHs of 

diameter 5, 10 and 15 mm (see Section 2). In Figure 7, the calculated damage index by ASBI at 

the center of the FBHs (averaged over an area of 3x3 pixels) is plotted against the defect depth. 

The three deepest FBHs remained undetected for the diameter of 5 mm, while for the diameter 

of 10 mm only the deepest FBH at 4 mm depth was undetected. It is noteworthy that ASBI 

achieves at least the same minimum diameter-to-depth ratio for the GFRP with FBHs (i.e. 5 mm 

/ 3.25 mm = 1.5) as what is reported in literature [4, 5, 29, 42, 43]. However, it should be noted 

that comparing different studies in terms of detectable diameter-to-depth ratio is not 

straightforward due to different measurement conditions. For each FBH diameter, a quadratic 

curve is fitted and the R
2
 value of the fitted curve is calculated to assess the fitting quality. The 

R
2
 value is a measure for the quality of the fit, and a value closer to 1.0 generally indicates a 

better fit. Since the R
2
 value of each fitting is higher than 0.98, the quadratic relationship 
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represents the experimentally obtained data well. Figure 7 further indicates that the 

relationship between the defect depth and the damage index is affected by the size of the 

defect. With increasing defect depth, the smaller defects are more affected by lateral heat 

diffusion. This causes the slope of the damage index values to be higher for the smaller defects. 

There is of course an expected upper value on the FBH diameter, after which increasing the 

defect size further will no longer affect the damage index values. In the following section, the 

correlation between the damage index and the defect depth is further studied through FE 

simulations. 

 

Figure 7: Damage index in function of FBH depth and diameter. A regression is performed on the experimental 

data points, the R
2
 values are indicated in the figure.  

5.2. FE and defect depth 

In order to further study the depth inversion possibilities of ASBI, 3D finite element models 

(Abaqus/CAE) are set up in order to simulate the flash thermographic inspection of the GFRP 

samples with FBHs having a diameter of 5, 10 and 15 mm (see Figure 1(a) for a photograph of 

the sample with FBH diameter 15 mm). Care was taken to model each GFRP sample in an 

identical way to the experimentally inspected GFRP samples. The samples are modelled using 

1.9Q10
5
, 1.2Q10

5
 and 2.6Q10

5
 brick elements, respectively, with temperature degree of 

freedom. The elements in the top two plies have quadratic shape functions (DC3D20) whereas 

the other plies have linear shape functions (DC3D8) [44], which provides accurate results for 

fast thermal events of the top surface while maintaining the calculation time within reasonable 

limits (2.5 hours on a cluster with 10 CPU’s and 256 GB RAM). In order to obtain comparable 

results between FE and experiment, the thermal diffusivities of the GFRP sample were 

experimentally determined with the Hot Disk method (ISO 22007-2:2015, Ref. [45]). The 

following anisotropic thermal diffusivities were retrieved for a unidirectional lamina with the 

fibers along its X-direction: RS & 4.11 Q 10UVW�/Y, RZ & 2.93 Q 10UVW�/Y and R\ & 2.93 Q10UVW�/Y. The optical excitation is modelled according to the actual flash lamp’s parameters, 

i.e. 5 ms flash and 6 kJ energy. The modeled excitation provides a Gaussian-shaped heat flux, 

introducing a non-uniform surface heating [38]. The excitation is located at the center of the 

second row of defects (i.e. FBHs E, F, G and H), at a vertical elevation of 200 mm. 

Next, white noise with different noise equivalent differential temperatures (NEDT) was added 

to the FE solution. The considered NEDT levels were defined based on typically used IR 
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cameras: 15 mK for cooled IR camera (used in this study), 45 mK for microbolometric IR camera, 

150 mK for FLIR One Pro. The addition of each artificial noise level was iterated 10 times, after 

which the average values and standard deviations were calculated for the further discussions.  

Figure 8(a) presents the output of ASBI for both the experimental case and the FE solution. It 

can be observed that there is a good match between the experiment (see also Figure 7) and the 

FE results for each FBH diameter and depth. Additionally, quadratic fits were calculated also for 

the FE results. The obtained R
2
 values are 0.992, 0.987 and 0.992 for the FBHs of diameter 5, 10 

and 15 mm, respectively. Thus, accurate calibration curves between ASBI’s damage index and 

the defect depth can be constructed through the use of a straightforward FE model.  

Figure 8(b) plots the effect of all considered NEDT levels (0 mK up to 150 mK) on the ASBI 

damage index in function of the defect depth for the FBH diameter of 15 mm (similar results 

were obtained for the FBHs with diameter of 5 and 10 mm). The calculated ASBI damage 

indices remain very stable for different levels of artificially added white noise. Only for the 

deepest defect at 4 mm depth, the damage index is somewhat affected for the high NEDT levels 

(> 100 mK). Hence, these results indicate that ASBI provides a promising means for robust 

depth inversion, even under noisy conditions.  

Alternatively, it was also verified how the depth inversion through the evaluation of the 

defect’s second blind frequency 
�����,� behaves for different noise levels (see Figure 8(c) for 

the FBH diameter of 15 mm). The results suggest that 
�����,� is much more affected by 

measurement noise. Especially for shallow defects, an increase in noise significantly 

complicates the estimation of 
�����,�. Deeper defects are less influenced by the measurement 

noise, but still significantly more than ASBI’s damage index. Remark that ASBI’s damage index is 

dependent on the estimated 
�����,� (see Eq. (1)), however, while the noise level strongly 

affects the estimated second blind frequency (see Figure 8(c)) for shallow defects, its 

underestimation does not contribute to any significant effect for ASBI’s damage index (see 

Figure 8(b)). Notice also that the second blind frequencies 
�����,� become stacked closer 

together with increasing defect depth (there are even repeating 
�����,� values for the deep 

FBHs). This suggests that this indicator has a more limited depth estimation range than ASBI 

(for which deep defects still exhibit significantly different damage index values). The limiting 

factor is the frequency resolution Δ
, which is inversely proportional to the recording duration ]� (Δ
 & 1/]�). This was also observed in [14]. The used recording duration of 180 s can be 

considered quite long in flash thermography, but is still not sufficient for the second blind 

frequency approach to unambiguously distinguish between the deepest defects. Although a 

longer measurement increases the frequency resolution, it may not improve the defect 

detectability and may even worsen it by lateral heat diffusion. This is an inherent limitation of 
�����,� which relies on a single frequency bin instead of the wideband information. 

Additionally, it should be remarked that the second blind frequency 
�����,�, which is used for 

depth inversion, shifts in function of the defect size (e.g. a smaller defect has a higher 
�����,�) 

[20]. This thus means that the defect’s size affects PPT’s depth estimation, like it also does in 

ASBI. 
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Figure 8: (a) Damage index in function of FBH depth and size for experiment and FE; (b,c) effect of measurement 

noise on ASBI’s damage index and on the second blind frequency 
�����,� for FBH diameter O &	15mm. 

Next, the defect depths were estimated for the FBH diameters of 5, 10 and 15 mm by both 

PPT’s second blind frequency 
�����,� and for ASBI’s damage index. For 
�����,�, the defect depth ^ is typically estimated based on its inverse relationship with the defect depth [9, 14, 35]: 

^ & _�` Ra ∙ 
�����,� (3) 

where _� is a calibration variable typically set equal to 1.8 [9, 35] (as is done here) and R the 

through-thickness thermal diffusivity. For ASBI, calibration curves were constructed based on 

the FE solutions (see Figure 8(a)). An overview of all estimated defect depths of the 

experimentally investigated samples is provided in Table 3. For almost all combinations of the 

evaluated defect sizes and defect depths, ASBI provides a more precise defect depth estimation 

than 
�����,�. These results thus suggest that, for the presented GFRP samples, ASBI’s damage 

index provides a more robust metric to perform quantitative defect depth inversion than PPT’s 

second blind frequency 
�����,�. In order to perform defect depth inversion for other materials, 

an appropriate calibration should be constructed for this material based on FE results. 

Table 3: Overview of the estimated defect depths for FBHs of 5, 10 and 15 mm diameter by PPT’s second blind 

frequency 
�����,� and ASBI’s damage index (experimental results). 

Estimated defect depth [mm]  

 
Depth 

[mm] 

PPT 

(at 
�����,�) 
ASBI 

 
Depth 

[mm] 

PPT 

(at 
�����,�) 
ASBI 

Oc O�+ O�c Oc O�+ O�c Oc O�+ O�c Oc O�+ O�c 

FBHA 0.25 
0.43 

(+72%) 

0.57 

(+128%) 

0.53 

(+112%) 

0.01 

(-96%) 

0.17 

(-32%) 

0.13 

(-48%) 
FBHI 2.25 

3.01 

(+34%) 

2.66 

(+18%) 

2.79 

(+24%) 

2.66 

(+18%) 

2.14 

(-5%) 

2.28 

(+1%) 

FBHB 0.5 
0.68 

(+36%) 

0.82 

(+64%) 

0.68 

(+36%) 

0.39 

(-22%) 

0.54 

(+8%) 

0.44 

(-12%) 
FBHJ 2.5 

2.57 

(+3%) 

3.01 

(+20%) 

2.74 

(+10%) 

2.37 

(-5%) 

2.31 

(-8%) 

2.31 

(-8%) 

FBHC 0.75 
0.95 

(+27%) 
1.20 

(+60%) 

0.99 
(+32%) 

0.71 
(-5%) 

0.94 
(+25%) 

0.88 
(+17%) 

FBHK 2.75 
2.95 
(+7%) 

3.30 
(+20%) 

3.01 
(+9%) 

2.67 
(-3%) 

2.60 
(-5%) 

2.52 
(-8%) 

FBHD 1 
1.20 

(+20%) 
1.37 

(+37%) 
1.23 

(+23%) 
0.98 
(-2%) 

1.16 
(+16%) 

1.18 
(+18%) 

FBHL 3 
2.95 
(-2%) 

3.69 
(+23%) 

3.30 
(+10%) 

2.65 
(-12%) 

2.96 
(-1%) 

2.71 
(-10%) 

FBHE 1.25 
1.44 

(+15%) 
1.63 

(+30%) 
1.56 

(+25%) 
1.28 
(+2%) 

1.35 
(+8%) 

1.44 
(+15%) 

FBHM 3.25 
3.79 

(+17%) 
3.69 

(+14%) 
3.69 

(+14%) 
3.53 
(+9%) 

3.02 
(-7%) 

3.07 
(-6%) 

FBHF 1.5 
1.80 

(+20%) 

1.94 

(+29%) 

1.64 

(+9%) 

1.54 

(+3%) 

1.54 

(+3%) 

1.53 

(+2%) 
FBHN 3.5 - 

3.74 

(+7%) 

3.69 

(+5%) 
- 

3.24 

(-7%) 

3.08 

(-12%) 

FBHG 1.75 
2.03 

(+16%) 

2.33 

(+33%) 

2.13 

(+22%) 

1.77 

(+1%) 

1.80 

(+3%) 

1.84 

(+5%) 
FBHO 3.75 - 

4.26 

(+14%) 

4.26 

(+14%) 
- 

4.00 

(+7%) 

3.38 

(-10%) 

FBHH 2 
2.22 

(+11%) 

2.52 

(+26%) 

2.29 

(+15%) 

1.97 

(-2%) 

2.00 

(0%) 

2.01 

(+1%) 
FBHP 4 - - 

4.26 

(+6%) 
- - 

3.66 

(-8%) 
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Finally, a depth map through ASBI is calculated for the entire GFRP sample with FBHs of 

diameter 15 mm, which is presented in Figure 9(a). Additionally, this depth map allows to make 

slices through the sample’s depth. The slice ranging from 2 to 3 mm depth (from the inspected 

surface) is displayed in Figure 9(b). All FBHs that are contained within this depth range (i.e. 

FBHs H, I, J, K and L) are clearly detected. Notice that artefacts from the outer parts of 

shallower defects are present. This is a result of the lateral heat diffusion that occurs 

predominantly at the lower evaluation frequencies, leading to a lower damage index value at 

the defects’ boundaries. These defect edges are therefore estimated to be deeper than the 

center of the defect. This also explains why the apparent size of the defects in the slice reduces 

with increasing depth. 

 

Figure 9: (a) Depth map through ASBI for the experimentally investigated GFRP sample with FBHs of diameter 15 

mm (see Figure 1(a)); (b) slice of the depth map corresponding to the depth range 2-3 mm. 

The accurate defect sizing by applying the -4.5 dB drop technique on ASBI’s damage index map 

(see section 4.2) can be exploited to obtain a cleaner depth slice than in Figure 9(b). First, the -

4.5 dB drop technique is applied on the damage index map in Figure 10(a), which results in the 

thresholded map presented in Figure 10(b). Next, for each FBH, the mean damage index area of 

the 5Q5 pixel area at its center is assigned to the entire defected area. Notice that this assumes 

that the entire defected area is located at a single depth. This is a valid assumption for most 

defect types in the case of composites due to the layered structure (e.g. delaminations or 

inserts are located in between plies). However, for more complicated defect types that cover 

multiple plies (e.g. for a barely visible impact damage), this assumption would not be valid. 

Next, the defect sizes of the detected defects are extracted. Following, an enhanced depth map 

(see Figure 10(c)) can be constructed by applying an appropriate calibration for the defect 

(established through FE). For the selection of the appropriate calibration, it would be beneficial 

to priorly establish a calibration library of different defect shapes for the tested material. Lastly, 

enhanced depth slices can be made (see Figure 10(d) for the enhanced depth slice of 2 to 3 mm 
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depth). The defect size in this enhanced depth slice is significantly improved over the depth 

slice in Figure 9(b), and there are no artefacts from shallower defects. 

 

Figure 10: Procedure for enhanced depth slicing (applied on experimental results): (a) ASBI’s damage index map; 

(b) thresholded map by applying the -4.5 dB drop technique; (c) enhanced depth map; and (d) enhanced depth 

slice corresponding to the depth range 2-3 mm. 

6. Application of ASBI on complex defect cases 

6.1. CFRP coupon with Barely Visible Impact Damage 

The performance of ASBI is evaluated on the quasi-isotropic CFRP sample with BVID (see 

section 2 and Figure 1(b)). This is one of the typical defect types that may occur in composites, 

in which the defected region extends over several plies in the depth direction. In earlier studies 

by other researchers, impact damages have been investigated with infrared thermography both 

while the impact occurs [46, 47] and with lock-in thermography after their formation [46-48]. 

This is a particularly demanding inspection case considering the increased lateral heat diffusion 

in CFRP on the one hand, and the complex nature of BVID on the other hand. The results 

obtained with ASBI are benchmarked with the ultrasonic C-scan since this is currently the 

industrial standard. Both sides of the impacted sample were inspected with both techniques. 

The ultrasonic C-scans were performed with a focused 5 MHz transducer in reflection mode 

with dynamic time-gating, after which the obtained data was post-processed to obtain relative 

amplitude and time-of-flight (TOF) images (see Figure 11(a-d)). The impact induces a 

delamination cone [37] which resembles the shape of a winding staircase with steps every 45°. 

For the C-scan on the back side, also a second level of the winding staircase can be observed on 

the lower-left. The TOF images give quantitative information on the defect depth of the 

different delaminations that were introduced by the impact. It is clear that proper detection 

and assessment for this defect type is highly challenging. The defect edges are highlighted on 

the C-scan images in order to provide a means of comparison with the thermographic results.  

The sample was also inspected using flash thermography, with the experimental setup as 

described in section 2. Firstly, the raw thermographic sequences were carefully inspected, and 

it was observed that the raw datasets are insufficient for proper defect detection. Then, the 

recorded data sequences were post-processed by PPT, for which phase contrast maps at 0.51 

Hz and 0.13 Hz are presented in Figure 11(e-h). At a relatively high frequency (Figure 11(e,f)), 

only the first steps of the staircase are clearly detected, while the deeper steps are completely 

absent. At a lower frequency (see Figure 11(g,h)), the different steps of the delamination cone 

merge together due to the increased effect of the lateral heat diffusion. 

Next, the recorded flash thermographic sequences are fed to the ASBI algorithm, for which the 

damage index maps are displayed in Figure 11(i,j). For the impacted side, the first four steps are 

detected and compare well with the corresponding C-scan images, while deeper steps are less 
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distinguishable. Notice that the background is almost completely removed in the damage index 

map, providing a sharp edge of the defected area, which is comparable to the one highlighted 

by the C-scan results. For the back side, the first level of the winding staircase is clearly 

detected in a qualitative manner, and shows good correspondence with the results of the C-

scan images. Even the second level of the winding staircase can be observed, although the 

different steps are merged together for this level. In general, the ASBI damage index map 

separates the different steps up to a deeper depth than the individual PPT phase contrast 

images and strongly improves the background uniformity. Moreover, the transition area from 

one step to the next, and from the defect to the surrounding sound area, is smooth in the PPT 

phase images (due to 3D heat diffusion), while ASBI makes sharper edges for the shallow parts 

of this complex defect. For the back side, the second level of the winding staircase was not 

clearly detected by PPT (all frequencies have been carefully checked). ASBI on the other hand 

provided a clear detection of this deep second level of delaminations.  

While qualitative depth information is available in the damage index map, quantitative depth 

inversion through ASBI was not successful. This is attributed to three main reasons. Firstly, this 

is a result of the complexity of the BVID, where the delaminations are in close proximity of each 

other and their depths are very similar. This thus leads to thermal interactions between the 

different layers of the BVID, making quantitative depth retrieval very challenging. Secondly, the 

much higher in-plane thermal diffusivity of CFRP, compared to GFRP, leads to discrepancies 

with the established calibration. Thirdly, the FE depth calibration curves have only been 

computed for the simple FBH defects. Modelling such a complex defect like BVID, with 

delaminations and matrix cracks, is far from straightforward.  

 

Figure 11: Impacted side (top row) and back side (bottom row) of the impacted CFRP: (a-d) C-scan relative 

amplitude and TOF; (e-f) PPT phase contrast image at 0.51 Hz; (g-h) PPT phase contrast image at 0.13 Hz; and (i,j) 

ASBI damage index map. 

6.2. Stiffened CFRP aircraft component with a complex cluster of production defects 

Lastly, the performance of ASBI is evaluated on a CFRP aircraft panel (Airbus A400M lower flap) 

with backside stiffeners and production defects (see section 2 and Figure 1(c)). Due to the 

complexity of the production process of such components, a wide range of possible defects 

(porosities, resin rich areas, inclusions, fiber wrinkling, …) may be accidentally introduced into 

the specimen during manufacturing. Considering the criticality of these components, accurate 

non-destructive inspection is needed for all parts. This component provides an increased 

inspection challenge due to the non-uniform thickness at the backside stiffeners. As mentioned 

in section 2, only the region around the defected area (~200x160 mm
2
) is inspected due to the 
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availability of only one flash lamp. Firstly, the phase contrast maps at 0.13 Hz and 0.05 Hz are 

displayed in Figure 12(a,b), in which two backside stiffeners with several distortions in between 

them can be clearly observed. At 0.13 Hz, the background is quite non-uniform and noisy, and 

does not allow for straightforward extraction of all parts of the complex defect cluster. At 0.05 

Hz, the background noise is significantly reduced, but the detectability of the smaller defects 

remains unclear. The damage index map obtained by ASBI is displayed in Figure 12(c). Two 

bands of high damage indices are clearly observed, which correspond to the backside stiffeners 

(locally increased thickness). Apart from this, local increased damage index values are retrieved 

which provide clear indications of a complex cluster of manufacturing defects (see hatched area 

in Figure 1(c)). Both large defects and very small ones are highlighted with ASBI, and the 

background non-uniformity and noise level are strongly reduced. Two extra zones are also 

highlighted by ASBI (encircled in red in Figure 12(c)), however, these were intentionally 

introduced during manufacturing in order to aid the placement of the stiffeners, and are thus in 

principle no defects. The obtained damage index map showed good correspondence with other 

NDT techniques. These results indicate that the effectiveness of ASBI is not limited to the 

inspection of coupon samples, but that the technique is also applicable to more complex 

industrial samples. 

 

Figure 12: (a,b) Phase contrast map at 0.13 Hz and 0.05 Hz; and (c) Damage index map of ASBI for an aircraft 

component with backside stiffeners and production defects. 

7. Conclusions 

In this paper, a novel data post-processing technique for flash thermography, called Adaptive 

Spectral Band Integration (ASBI), is introduced. In this technique, the phase contrast is 

integrated over the relevant frequency range in a pixel-wise manner. The ASBI approach does 

not require any user input (or parameter selection), nor does it require a priori information on 

the sample or defect. The performance of ASBI has been demonstrated on a GFRP sample with 

FBHs of different diameters (5, 10 and 15 mm) and depths (0.25-4 mm). The results show that 

the ASBI approach significantly increases the SNR while effectively suppressing effects of non-

uniform heating, background reflections and surface non-uniformities. Its high robustness to 

measurement noise is illustrated, and ASBI obtains an almost zero-reference background. 

Additionally, with the support of FE simulations, it is shown that ASBI can be used for accurate 

defect sizing as well as for quantitative depth estimation. The performance of ASBI has been 

extensively compared to both Pulsed Phase Thermography and Thermal Signal Area, and it was 

found to provide a higher defect detectability and an improved metric for quantitative defect 

assessment (sizing and depth estimation).  

ASBI has also been applied on more challenging inspection cases. The results on a CFRP coupon 

with Barely Visible Impact Damage showed its good performance in detecting and sizing the 
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complex structure of the BVID defect. Good agreement was found with the ultrasonic C-scan 

inspection. However, due to the increased lateral heat diffusion effects in CFRP and the 

complex structure of BVID, quantitative depth inversion was not successful. The performance of 

ASBI has been further demonstrated on an aircraft CFRP panel (Airbus A400M) with backside 

stiffeners and a complex cluster of production defects. Apart from highlighting the backside 

stiffeners, it was also successful in retrieving the cluster of production defects while reducing 

measurement noise and background non-uniformity. 

In conclusion, ASBI is a simple yet effective data post-processing method for flash 

thermography which can handle demanding inspection conditions (noise, complex defect, 

industrial part). The fact that it produces a single high-quality damage index map, makes it 

attractive as input for unsupervised automated defect detection algorithms.  
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