Advanced search
1 file | 2.98 MB Add to list

Do acute hepatopancreatic necrosis disease-causing PirABVP toxins aggravate vibriosis?

(2020) EMERGING MICROBES & INFECTIONS. 9(1). p.1919-1932
Author
Organization
Abstract
Gram-negative marine bacterium Vibrio parahaemolyticus is an important aquatic pathogen and has been demonstrated to be the causative agent of acute hepatopancreatic necrotic disease (AHPND) in shrimp aquaculture. The AHPND-causing V. parahaemolyticus strains contain a pVA1 plasmid encoding the binary PirAVP and PirBVP toxins, are the primary virulence factor that mediates AHPND and mortality in shrimp. Since PirABVP toxins are secreted extracellularly, one can hypothesize that PirABVP toxins would aggravate vibriosis in the aquatic environment. To address this, in vivo and in vitro experiments were conducted. Germ-free Artemia franciscana were co-challenged with PirABVP toxins and 10 Vibrio spp. The in vivo results showed that PirABVP toxin interact synergistically with MM30 (a quorum sensing AI-2 deficient mutant) and V. alginolyticus AQ13-91, aggravating vibriosis. However, co-challenge by PirABVP toxins and V. campbellii LMG21363, V. parahaemolyticus CAIM170, V. proteolyticus LMG10942, and V. anguillarum NB10 worked antagonistically, increasing the survival of Artemia larvae. The in vitro results showed that the addition of PirABVP toxins significantly modulated the production of the virulence factors of studied Vibrio spp. Yet these in vitro results did not help to explain the in vivo results. Hence it appears that PirABVP toxins can aggravate vibriosis. However, the dynamics of interaction is strain dependent.
Keywords
Immunology, Epidemiology, Microbiology, Drug Discovery, Parasitology, Virology, Infectious Diseases, General Medicine, PirABVP toxin, vibriosis, Artemia franciscana, synergistic effect, antagonistic effect, QUORUM-SENSING SYSTEMS, ARTEMIA-FRANCISCANA, HARVEYI INFECTION, PARAHAEMOLYTICUS, VIRULENCE, SHRIMP, HEAT, ANGUILLARUM, PROTECTS, LARVAE

Downloads

  • Do acute hepatopancreatic necrosis disease causing PirABVP toxins aggravate vibriosis.pdf
    • full text (Published version)
    • |
    • open access
    • |
    • PDF
    • |
    • 2.98 MB

Citation

Please use this url to cite or link to this publication:

MLA
Tran, Thi Ngoc Phuong, et al. “Do Acute Hepatopancreatic Necrosis Disease-Causing PirABVP Toxins Aggravate Vibriosis?” EMERGING MICROBES & INFECTIONS, vol. 9, no. 1, 2020, pp. 1919–32, doi:10.1080/22221751.2020.1811778.
APA
Tran, T. N. P., Kumar, V., & Bossier, P. (2020). Do acute hepatopancreatic necrosis disease-causing PirABVP toxins aggravate vibriosis? EMERGING MICROBES & INFECTIONS, 9(1), 1919–1932. https://doi.org/10.1080/22221751.2020.1811778
Chicago author-date
Tran, Thi Ngoc Phuong, Vikash Kumar, and Peter Bossier. 2020. “Do Acute Hepatopancreatic Necrosis Disease-Causing PirABVP Toxins Aggravate Vibriosis?” EMERGING MICROBES & INFECTIONS 9 (1): 1919–32. https://doi.org/10.1080/22221751.2020.1811778.
Chicago author-date (all authors)
Tran, Thi Ngoc Phuong, Vikash Kumar, and Peter Bossier. 2020. “Do Acute Hepatopancreatic Necrosis Disease-Causing PirABVP Toxins Aggravate Vibriosis?” EMERGING MICROBES & INFECTIONS 9 (1): 1919–1932. doi:10.1080/22221751.2020.1811778.
Vancouver
1.
Tran TNP, Kumar V, Bossier P. Do acute hepatopancreatic necrosis disease-causing PirABVP toxins aggravate vibriosis? EMERGING MICROBES & INFECTIONS. 2020;9(1):1919–32.
IEEE
[1]
T. N. P. Tran, V. Kumar, and P. Bossier, “Do acute hepatopancreatic necrosis disease-causing PirABVP toxins aggravate vibriosis?,” EMERGING MICROBES & INFECTIONS, vol. 9, no. 1, pp. 1919–1932, 2020.
@article{8672848,
  abstract     = {{Gram-negative marine bacterium Vibrio parahaemolyticus is an important aquatic pathogen and has been demonstrated to be the causative agent of acute hepatopancreatic necrotic disease (AHPND) in shrimp aquaculture. The AHPND-causing V. parahaemolyticus strains contain a pVA1 plasmid encoding the binary PirAVP and PirBVP toxins, are the primary virulence factor that mediates AHPND and mortality in shrimp. Since PirABVP toxins are secreted extracellularly, one can hypothesize that PirABVP toxins would aggravate vibriosis in the aquatic environment. To address this, in vivo and in vitro experiments were conducted. Germ-free Artemia franciscana were co-challenged with PirABVP toxins and 10 Vibrio spp. The in vivo results showed that PirABVP toxin interact synergistically with MM30 (a quorum sensing AI-2 deficient mutant) and V. alginolyticus AQ13-91, aggravating vibriosis. However, co-challenge by PirABVP toxins and V. campbellii LMG21363, V. parahaemolyticus CAIM170, V. proteolyticus LMG10942, and V. anguillarum NB10 worked antagonistically, increasing the survival of Artemia larvae. The in vitro results showed that the addition of PirABVP toxins significantly modulated the production of the virulence factors of studied Vibrio spp. Yet these in vitro results did not help to explain the in vivo results. Hence it appears that PirABVP toxins can aggravate vibriosis. However, the dynamics of interaction is strain dependent.}},
  author       = {{Tran, Thi Ngoc Phuong and Kumar, Vikash and Bossier, Peter}},
  issn         = {{2222-1751}},
  journal      = {{EMERGING MICROBES & INFECTIONS}},
  keywords     = {{Immunology,Epidemiology,Microbiology,Drug Discovery,Parasitology,Virology,Infectious Diseases,General Medicine,PirABVP toxin,vibriosis,Artemia franciscana,synergistic effect,antagonistic effect,QUORUM-SENSING SYSTEMS,ARTEMIA-FRANCISCANA,HARVEYI INFECTION,PARAHAEMOLYTICUS,VIRULENCE,SHRIMP,HEAT,ANGUILLARUM,PROTECTS,LARVAE}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{1919--1932}},
  title        = {{Do acute hepatopancreatic necrosis disease-causing PirABVP toxins aggravate vibriosis?}},
  url          = {{http://doi.org/10.1080/22221751.2020.1811778}},
  volume       = {{9}},
  year         = {{2020}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: