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Animal models are essential tools for addressing fundamental scientific questions about

skeletal diseases and for the development of new therapeutic approaches. Traditionally,

mice have been the most common model organism in biomedical research, but

their use is hampered by several limitations including complex generation, demanding

investigation of early developmental stages, regulatory restrictions on breeding, and high

maintenance cost. The zebrafish has been used as an efficient alternative vertebrate

model for the study of human skeletal diseases, thanks to its easy genetic manipulation,

high fecundity, external fertilization, transparency of rapidly developing embryos, and low

maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification

types with mammals. In the last decades, the use of both forward and new reverse

genetics techniques has resulted in the generation of many mutant lines carrying skeletal

phenotypes associated with human diseases. In addition, transgenic lines expressing

fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo

imaging of differentiation and signaling at the cellular level. Despite the small size of

the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and

microCT imaging and histological approaches, can be applied using the appropriate

equipment and custom protocols. The ability of adult zebrafish to remodel skeletal

tissues can be exploited as a unique tool to investigate bone formation and repair.

Finally, the permeability of embryos to chemicals dissolved in water, together with the

availability of large numbers of small-sized animals makes zebrafish a perfect model

for high-throughput bone anabolic drug screening. This review aims to discuss the

techniques that make zebrafish a powerful model to investigate the molecular and

physiological basis of skeletal disorders.

Keywords: zebrafish, skeletal system, x-ray, microCT analyses, imaging techniques, skeletal diseases

INTRODUCTION

Preclinical animal models can be used to elucidate gene and protein function in ways often
impossible in humans, by means of genome sequencing, advances in DNA manipulation and high
resolution live-imaging (1). Mammals such as mice and non-human primates are traditionally the
preferred models for biomedical research due to their close evolutionary relationship with humans.
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However, their use is costly and studies at early developmental
stages raise ethical concerns. Furthermore, in most countries the
adoption of the “Three R’s” principles: Replacement, Reduction,
and Refinement (2) for animal research is mandatory and
encourages the use of alternative models, such as Danio rerio
(zebrafish), Xenopus laevis/tropicalis (clawed toad), Drosophila
melanogaster (fruit fly), and Caenorhabditis elegans (nematode).
In these organisms in vivo techniques can be applied with the
simplicity and versatility of in vitro assays and therefore they
are frequently used in fundamental and biomedical research to
quickly define gene functions and to develop novel therapeutic
options (3). Zebrafish, the most frequently employed non-
mammalian vertebrate animal model, is a freshwater bony fish,
belonging to the Cyprinidae family and to the Teleostei infraclass

FIGURE 1 | Advantages of the zebrafish model. Zebrafish has several advantages compared to mammal models. High fecundity and external fertilization and

development allow easy genomic manipulation, transparent early life stages guarantee in vivo imaging and skin permeability makes them suitable for high throughput

drug screening (top). Adult zebrafish reaches a maximum size of 3–4 cm and this make it easy and cheap to keep it in large numbers, reducing the husbandry cost

(bottom left). Finally, zebrafish is used as a vertebrate model to study regeneration, due to its ability to regenerate different organs, such as the caudal fin, which is

completely regenerated 14 days post amputation (bottom right). hpf, hours post fertilization.

of ray-finned fish which arose ∼340 million years ago (4).
This species was initially described by the Scottish physician
and naturalist Hamilton (5) in a survey on South Asian flora
and fauna. Starting from the pioneering research of George
Streisinger in the 70s−80s, who was the first to clone a zebrafish
and in this way demonstrated the easy genetic manipulation of
this species (6), zebrafish became a powerful model organism
for developmental studies, genetic research, drug and toxicology
screenings and for understanding tissue regeneration and repair
(7–9). In contrast to other vertebrate models such as mice,
fertilization occurs externally, which together with transparency
and rapid embryo to larval transition permits easy access and
visualization of development (10) (Figure 1). Moreover, due to
its rapid growth, a recognizable and complete vertebrate body
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plan is already in place by 1 day post fertilization (dpf) and
embryogenesis is complete by 3 dpf (11). In contrast to other
vertebrate models such as rodents, the small size and large
number of offspring of zebrafish allow for increased sample
numbers, thereby increasing the statistical power of experiments
(3). Finally, the relatively low husbandry cost further contributed
to the increasing popularity of the zebrafish as a model for
research (11).

Besides developmental studies, the zebrafish is an established
research model in many other research fields. During the last
20 years, the zebrafish has proven itself as a useful model to
study disease mechanisms (1). This is due to its physiological
relevance and genetic tractability to model genetic variation
in humans. Compared to mammalian model organisms, the
zebrafish genome underwent an extra (third) whole duplication
about 350 million years ago, with the result that for many genes
in humans, there may be two copies (paralogues) in zebrafish.
Despite this there is a relatively high level of genome conservation
between zebrafish and humans with more than 70% of human
protein-coding genes having at least one zebrafish ortholog.
The haploid zebrafish genome has 25 chromosomes containing
1.7 billion base pairs (4). Various forward and reverse genetic
approaches have been applied to generate mutant lines that
mimic many different human diseases, including skeletal diseases
ranging from secondary osteoporosis (OP) to rare disorders such
as osteogenesis imperfecta (OI) (12–20). A major benefit of
zebrafish is the simplicity of combining mutant and transgenic
lines that express fluorescent reporter proteins under the control
of responsive elements for signaling pathways or promoters
of cell-type-specific markers. This in turn allows for in vivo
investigation of the effect of a disease mutation on the spatio-
temporal expression of specific genes, and on cell differentiation
and signaling pathways.

Zebrafish larvae have been intensively used for
pharmacological and toxicological screens, because of their
small size (easy distribution in microtiter well plates), high
abundance and their ability to absorb small compounds from
the water through the skin and gills (21). Together with the
availability of many different disease models, the zebrafish
is a unique tool to develop novel targeted pharmacological
approaches (Figure 1) (21).

Finally, their ability to regenerate some cells and tissues,
such as fins and scales, makes the zebrafish a valuable model
for understanding organ repair mechanisms during healthy and
pathological conditions (Figure 1) (22).

This review, after providing a brief overview of zebrafish bone
biology, will focus on the description and use of the various
techniques and approaches which make Danio rerio a powerful
model organism to investigate the molecular and physiological
basis of skeletal disorders.

ZEBRAFISH BONE BIOLOGY

The Skeleton
Skeletal development and gene expression and the general
inventory of bone types are conserved between zebrafish and
mammals, nevertheless few differences need to be considered

when using this animal as model for skeletal study. Osteocytes
are not present in all bones and/or at all developmental stages,
endochondral ossification is rare in zebrafish and vertebral
body do not build on a cartilaginous anlage (23, 24). The
common perception of mammals being more complex than
“lower” organisms, such as teleosts, is false, especially concerning
the skeleton. Certain characteristics of the teleost skeleton are
more advanced and elaborate compared to mammals, such as
the zebrafish skull that contains at least twice the number of
bones (24). At the tissue level, the mammalian skeleton mostly
consists of cellular bone and hyaline cartilage. While other types
of bone, such as hyperostotic and acellular bone and cartilage
(i.e., fiber cartilage), can be present in mammalian skeletons,
they are often associated with pathological processes. However,
in teleosts many different bone and cartilage types with different
cellularity and matrix composition exist in wild type conditions
not related to disease (25). The zebrafish skeleton consists of a
dermal skeleton and an endoskeleton. Scales, polarized structures
of the exoskeleton, teeth, and fin rays are part of the dermal
skeleton and are distinctive as skeletal structures in their ability
to regenerate (25–27). In fish, teeth, scales, and fin rays can all be
traced back in evolution to a single structure, called the odontode
(28), and they arise at the epithelial-mesenchymal border (29, 30).
It has been shown that the mesenchymal tissues that engender
these skeletal elements have a neural crest origin (29, 31, 32).

The endoskeleton consists of cranial, axial, and appendicular
skeletal elements (33). As in all vertebrates, the zebrafish cranial
skeleton arises mostly from the cranial neural crest, while the
appendicular skeleton develops from somite-derived paraxial
mesoderm (31, 33). In contrast with tetrapods, in which vertebral
centrum formation is controlled by somites patterned along the
vertebral column, in teleosts the notochord has an instructive
role in vertebral centrum patterning as the centra start out as
mineralization foci in the notochord sheath (34, 35).

Skeletal Cells
The teleost and mammalian skeletal systems share similar cell
types (Figure 2A). In cartilage there are (i) chondroblasts as
the cartilage forming cells and (ii) chondrocytes maintaining
the cartilage matrix. In bone there are (i) osteoblasts as
the bone forming cells, (ii) osteocytes that act as the
mechanosensors regulating osteoblast and osteoclast activity and
(iii) osteoclasts which are the bone resorbing cells (24, 37).
Similar to mammals, teleost skeletal histogenesis involves the
differentiation of chondroblasts and osteoblasts, that secrete
the collagen extracellular matrix, from mesenchymal stem cells
(38, 39). Both in mammals and fish, skeletal cells are formed
by a complex interplay of intracellular molecular pathways and
secreted factors that regulate the timing, location, and pathway by
which bone cells differentiate (40–42). Although not investigated
inmammals before, in zebrafish osteoblasts are present in clusters
at the end of growing bones and can be classified in two different
groups (type I and type II) based on cell cluster size, location,
and nuclei shape, although they have overlapping functions
(36). Type I osteoblasts are located at the edges of growing flat
bones, such as the dentary, maxillary, and frontal bone, in large
clusters with more than 25 cells with a wide oval, round, or
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FIGURE 2 | Zebrafish bone cells and ossification types. (A) Bone is formed by osteoblasts and osteocytes, while cartilage is formed by chondroblasts and

chondrocytes, and both bone and cartilage are degraded by osteoclasts. All bone cell types develop from progenitors similar to the mammalian counterpart and share

similar gene expression profiles (genes are indicated above arrows). Note however that HSCs in zebrafish are not present in the bone marrow but in the head kidney.

In addition, the genes for collagen X, encoded by col10, and SRY-box transcription factor 9 (indicated by*), encoded by sox9, are expressed during osteoblasts

differentiation in zebrafish, but not in humans. (B) Three types of ossification are present in zebrafish: (i) intramembranous ossification, (ii) perichondral ossification,

(Continued)
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FIGURE 2 | present in teleosts but not in humans, and (iii) endochondral ossification. (i) During intramembranous ossification mesenchymal stem cells condensate

and differentiate into pre-osteoblasts and finally into mature osteoblasts that deposit bone matrix (osteoid) that subsequently mineralizes. (ii) Perichondral ossification

starts at the surface of a cartilaginous template where osteoblasts deposit bone matrix without replacing the cartilage. (iii) Endochondral ossification is the process by

which growing cartilage is replaced by bone to allow the skeleton to grow. For ossification to start, matrix surrounding the chondrocytes must calcify so that

osteoclasts can break down the cartilage. In teleost two types of endochondral ossification exist. Type I endochondral ossification, typical in the ceratohyal, resembles

the mammalian endochondral ossification process. This is characterized by a hypertrophic zone, where the cartilage matrix calcifies, followed by a degradation zone

where osteoclasts (also referred to as chondroclasts) degrade the cartilaginous matrix, and a bone formation zone. Type II ossification, in the hypurals, is characterized

by a lack of the calcification and ossification zones, leading to tubular concave bones filled with adipose tissue. Schematics based on detail description in Weigele and

Franz-Odendaal (36). A, adipose zone; C, calcification zone; CB, chondroblasts; CC, chondrocytes; D, degradation zone; H, hypertrophic zone; HSC, hematopoietic

stem cell; M, maturation zone; MSC, mesenchymal stem cell; O, ossification zone; OB, osteoblasts; OC, osteoclasts; OT, osteocytes; P, proliferation zone; R, rest

zone.

irregularly shaped nucleus. Laterally to these cells there is a zone
of differentiating osteoblasts where cells are smaller and more
elongated, assuming the typical spindle shape of osteoblast-like
cells, which cover all zebrafish bones with amonolayer at the level
of the perichondrium (36). Type II osteoblast clusters are smaller
(4–12 cells) and are distributed throughout the skeleton. These
osteoblasts have a reduced size, elongated nucleus and are present
throughout the bony trabecular network of spongy bones. Type
II osteoblast clusters can also be detected at the edges of cartilage
break down zones and lateral to the epiphysial growth plate, at
the outer surface of tubular bones (36).

Most skeletal elements in the adult zebrafish skeleton contain
osteocytes, but with a smaller volume and less canaliculi
compared to mice and humans (36). The mechanosensing ability
of osteocytes in zebrafish is not fully understood yet, but it
was shown that osteocytes have a preferred orientation in
adult zebrafish vertebrae (36). Acellular bone, without trapped
osteocytes, can be found in many zebrafish cranial bones.
Contrary to expectations, acellular bone does not appear to be
stiffer due to the lack of osteocyte lacunae, making the role of
acellular bone unclear (43). It is important to note that both
cellular and acellular bone can occur within the same bony
element. Osteon-like structures in zebrafish have been reported
(for the lateral ethmoid bone) but these structures, composed
of a central Haversian canal and bone lamella, do not have
osteocytes (36).

In mammals, bone resorbing cells are multinucleated
macrophages originating from the fusion and maturation of
peripheral blood monocytes differentiated from hematopoietic
bone marrow cells (44). Multinucleated osteoclasts can also
be found in teleosts, especially in basal teleosts, such as
salmonids and cyprinids (45). Nevertheless, in teleosts, smaller
and mononucleated osteoclasts are predominant, but they retain
the molecular regulators of mammalian osteoclast function
(37). Examples include receptor activator of nuclear factor
kappa-B (Rank) and Rank-ligand (Rankl) which are important
for osteoclast maturation. Mature osteoclasts become tartrate-
resistant acid phosphatase (Trap) and cathepsin K (CtsK)
positive, which are both required for the cells to be able
to degrade bone matrix components (37, 46). Zebrafish
are characterized by an ontogenic change at 30 dpf when
mononucleated osteoclasts evolve to multinucleated osteoclasts,
which perform lacunar resorption and bone remodeling (37).

Each cell type achieves and performs its function by involving
specific genes, acting as molecular fingerprints. All three bone

cell types develop from similar progenitors as their mammalian
counterpart and share similar profiles of gene expression
(Figure 2A) (36). Gene expression of zebrafish collagen and
transcription factor in skeletal cells of cartilage and bone are
not completely conserved with mammals. Unlike mammals,
zebrafish osteoblasts express collagen type X and various teleosts
have been shown to have collagen type II in their bone
matrix (47, 48). In addition, Sox9 expression, which is required
for differentiation of chondrocytes, but not of osteoblasts in
mammals, has been reported to be involved in bone development
in teleosts (49). Unlike tetrapods, zebrafish type I collagen, the
most abundant protein in bone, has three instead of two different
α chains, namely α1, α3, and α2 encoded by col1a1a, col1a1b,
and col1a2, respectively (50). Based on the amino acid sequence,
the α3 chain is phylogenetically similar to α1, supporting the
common origin of their coding genes, which derive from a
genome duplication that occurred at an early stage in teleost
evolution (51). Importantly, all amino acid residues involved
in human/mouse collagen type I cross-links are conserved
in zebrafish, suggesting the existence of similar extracellular
assembly (50).

Bone Ossification
Bone formation starts in zebrafish around 4–5 dpf. The bony
elements can have three modes of ossification: intramembranous,
perichondral, or endochondral. Intramembranous ossification
starts with mesenchymal cell condensation and differentiation
into osteoblasts, without the need of a cartilage template
(Figure 2Bi) (45). This type of ossification occurs in the skull, for
example in the cranial roof and opercular bones, in the vertebral
column, where most of the vertebral body is formed by this type
of ossification, in scales and in the fin rays (45). In mammals, this
ossification is mostly restricted to bones of the cranial vault and
the dentary (52).

Perichondral ossification, characterized by bone formation in
the perichondrium, is more common in the teleost compared
to the mammalian skeleton, where it has been considered
as a form of intramembranous ossification (45). In teleosts
perichondral ossification is present in the hyomandibula and
Meckel’s cartilage, where osteoblasts aggregate on the surface
of the cartilaginous template and deposit bone matrix into the
perichondrium (Figure 2Bii).

Endochondral ossification, which is the main type of
ossification in mammals, is uncommon in teleosts. In this type
of ossification, mesenchymal cells condense and differentiate
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into chondroblasts and chondrocytes, which then secrete an
extracellular cartilage matrix that functions as a template that
is replaced by bone matrix (Figure 2Biii). In teleosts, two
types of endochondral ossification exist. In a few bones, such
as the ceratohyal and the radials in the pectoral fin, type I
endochondral ossification takes place at the level of epiphysis
and of the epiphysial growth plate resembling the mammalian
endochondral ossification process. It is characterized by a
resting zone, a proliferation zone with columnar cartilage,
and a hypertrophic zone followed by a region in which
cartilage matrix calcifies (36). Finally, chondroclasts degrade the
cartilaginous matrix (degradation zone), allowing osteoblasts to
lay down bone matrix (ossification zone). In the hyomandibula,
branchial arches, ethmoid and hypuralia type II endochondral
ossification takes place. Here, the calcification and ossification
zones are absent and the cartilage template is replaced by
adipose cells, leading to tubular concave bones filled with adipose
tissue (36, 37).

Because the cranial skeleton is often too complex for screening
by high throughput methods, the zebrafish vertebral body is
the most investigated component of the skeleton both in early
and adult life stages. Although the vertebrae in both mammals
and teleosts consist of notochord and bone, there are a few key
differences. First, the notochord is the de facto vertebral column
in early teleost life stages and persists throughout life, while it
only forms the intervertebral disc in mammals (53, 54). The
notochord consists of a core of large and vacuolated chordocytes
which is surrounded by an epithelial layer of chordoblasts that
secrete the notochord sheath. This sheath is a stratified structure,
composed of a thin external membrane containing elastin,
covering a thicker layer of mainly collagen type II (54). Second,
while the vertebrae in mammals have a cartilaginous precursor
which endochondrally ossifies, zebrafish vertebrae form initially
through direct mineralization of the notochord sheath, called
chordacentra, in the absence of a cartilaginous precursor (55, 56).
To this day, the exact cellular involvement of this notochord
sheath mineralization remains unresolved. Third, the teleost
vertebra is subsequently built via intramembranous ossification
outside the notochord onto the chordacentrum, consisting of a
compact autocentrum and trabecular arcocentrum, which forms
the neural and haemal arches (56, 57). The osteoblasts produce
collagen type I bone matrix and start to ossify the autocentrum at
the level of the intervertebral disc, which acts as the growth center
of the vertebral centrum (34).

GENERATION OF KNOCK-OUT AND
KNOCK-IN ZEBRAFISH MODELS

Forward Genetic Approach
Different methods to generate zebrafish models of human
disorders have been explored over the last decades. Initially,
a number of large-scale forward genetic screens, based on
random mutagenesis with radiation, chemicals, or insertional
mutagenesis, revealed zebrafish mutants affecting different
aspects of embryonic development and biological processes
(58–60). This phenotype-driven approach was also applied

to screen for genes involved in skeletal development and
diseases (Table 1). Several mutants with defects in craniofacial
cartilage elements and with mineralized tissue phenotypes
(119), or with changes in the shape of the skeleton (96) were
identified in large scale forward genetic screens. Mapping of
the causative change established some of these mutants as
models for human skeletal disorders. For instance, in a study by
Gistelinck et al. (120), several type I collagen zebrafish mutants,
previously discovered in a forward genetic screen (96), were
established as representative models for the brittle bone disorder
osteogenesis imperfecta.

Reverse Genetic Approach: Morpholino
Knockdown and Gene Editing
Although forward genetics brought great progress to the field
of disease modeling, still, for many causal human disease
genes, this approach did not reveal corresponding zebrafish
mutants, as there is incomplete genome coverage of mutagenesis.
Consequently, the need to investigate the function of relevant
candidate genes for specific diseases or developmental pathways,
sparked the expansion of reverse genetic approaches in the
zebrafish field.

The assessment of candidate gene function was initially
enabled via knockdown through the use of antisense
morpholinos (MO). Their ease of use made this approach
increasingly popular for gene function analysis, and several
early studies demonstrated that MO-mediated knockdown
(“morphants”) recapitulated known mutant phenotypes
(121, 122). Over the past years, MOs have also been used in
zebrafish modeling of skeletal disorders (Table 1). An example
includes the monogenetic form of X-linked osteoporosis, caused
by loss-of-function variants in PLS3 encoding for plastin 3, a
cytoskeletal protein involved in bone homeostasis. MO-mediated
knockdown of pls3 in zebrafish (18) induced malformations
of the developing craniofacial bone structure, which could be
reversed by the administration of human PLS3 mRNA. Another
example by Flores et al. (68) shows that depletion of runx2b
by MO injection severely compromised craniofacial cartilage
formation, phenocopying the human dominantly inherited
disorder cleidocranial dysplasia, a condition characterized by
impaired ossification and multiple skeletal abnormalities (68).
Nevertheless, problems with the application of MOs in zebrafish
emerged, such as the frequent occurrence of p53-dependent
apoptosis (123–125), and off-target effects resulting in so-
called “pseudophenotypes” (126, 127), but also MO-induced
phenotypes that cannot be recapitulated in existing mutants
(128). The latter issue has recently been studied in more detail
leading to the insight that, at least for some genes, the phenotypic
differences between morphants and mutants can be due to
genetic compensation in the latter, but not in the former (129).

Definitive reverse genetic approaches in zebrafish recently
became available in the form of site-specific nucleases enabling
targeted gene modification. Initial work utilized zinc finger
nucleases (ZFNs) (130, 131), and transcription activator-like
effector nucleases (TALENs) (132). However, CRISPR/Cas9
genome editing is currently the most versatile and frequently
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TABLE 1 | Zebrafish models for skeletal disorders.

Disorder Gene Type Origin References

Acrocapitofemoral

dysplasia

Ihh KO ENU (40)

Alagille syndrome jagd1b KO ENU (61)

Amelogenesis

imperfecta

slc10a7 KD MO (62)

Auriculocondylar

syndrome

mef2ca KO ENU (63)

Bruck syndrome Plod2 KO ENU (16)

Campomelic dysplasia sox9a, sox9b KO ENU (64)

Cartilage-Hair

Hypoplasia

rmrp KO CR (65)

Cenani-Lenz

syndactyly

lrp4 KD MO (66)

Chordoma HRASV12 OE Tol2 (67)

Cleidocranial dysplasia runx2b KD MO (68)

Craniofacial defects tgfb2 KD MO (69)

Craniofacial defects fgf10a KD MO (69)

Craniosynostosis tcf12 Tol2 (70)

Craniosynostosis cyp26b1 KO ENU (71)

Craniosynostosis cyp26b1 KO ENU (72)

Culler-jones syndrome gli2 KO Tol2 (73)

Delayed mineralization Pth4 (74)

Delayed mineralization TR (75)

Ehlers-Danlos

syndrome

b4galt7 KD MO/CR (76)

Fibrodysplasia

Ossificans Progressiva

acvr1 CE Tol2 (77)

Gaucher disease gba1 KO ENU (78)

Holoprosencephaly ptch1 KO ENU (40)

Hyperosteogeny n1aIcd OE Tol2 (79)

Hyperthyroidism tshr KO ENU (80)

Hypohidrotic

ectodermal dysplasia

eda, edar KO ENU (81)

Joint disease scxa KO CR (82)

Klippel Feil syndrome meox1 ENU (83)

Multiple hereditary

exostoses

ext2, papst1 KO ENU (84)

No mineralization entpd5 KO ENU (85)

Oculodentodigital

dysplasia

cx43 KO ENU (86)

Orofacial cleft tgfβ3 KD MO (87)

Orofacial cleft mir140 KD MO (88)

Orofacial cleft faf1 KD MO (89)

Orofacial cleft wnt9a, irf6 KO Tol2 (90)

Osteoarthritis col11a2 KO ENU (91)

Osteoarthritis prg4a, prg4b KO TA (92)

Osteogenesis

imperfecta

col1a1a MM ENU (14, 15, 93)

Osteogenesis

imperfecta

bmp1 KO ENU (94)

Osteogenesis

imperfecta

sp7/osx KO ENU (95)

Osteogenesis

imperfecta

col1a1a, col1a1b,

col1a2

MM ENU (96)

(Continued)

TABLE 1 | Continued

Disorder Gene Type Origin References

Osteopetrosis m-csf KO ENU (97)

Osteoporosis TR (98)

Osteoporosis TR (99)

Osteoporosis gpr137b KO CR (100)

Osteoporosis TR (101)

Osteoporosis TR (102)

Osteoporosis atp6v1h KO CR (20)

Osteoporosis lgmn KO TA (103)

Osteoporosis lrp5 KD MO (19)

Osteoporosis pls3 KD MO (18)

Osteoporosis TR (104)

Pseudoxanthoma

elasticum

enpp1 KO ENU (105)

Pseudoxanthoma

elasticum

abcc6a KO ENU (106)

Saethre-Chotzen

syndrome

twist, tfc12 KO TA (107)

Saul-Wilson syndrome cog4 KO CR (108)

Spine curvature

disorders

kif6 KO TA (109)

Spine curvature

disorders

ptk7 KO ZFC (110)

Spine curvature

disorders

slc39a8 KO CR (111)

Spine curvature

disorders

col8a1a KO ENU (112)

Spine curvature

disorders

tbx6, her1, her7,

hes6

KO TA (35)

Spine curvature

disorders

uts2ra KO TA (113)

Spine curvature

disorders

TR (114)

Sponastrime dysplasia tonsl KO CR (115)

Stickler/Marshall

syndrome

col11a1a,

col11a1b

KD MO (116)

Tumoral calcinosis golgb1 KO TA (117)

Vertebral fractures TR (118)

KO, Knockout; KD, knockdown; MO, morpholino; CE, cell ablation; MM, missense

mutation; ENU, N-ethyl-N-nitrosourea; CR, CRISPR; Tol2, transposon-mediated

integration; TR, treatment, meaning OP models induced by microgravity, drugs, aging,

physical exercise, iron stress, microRNA, mechanical loading; TA, talen; ZFN, zinc

finger nuclease.

employed reverse genetic technology for the creation of both
knock-out and knock-in disease models. The CRISPR/Cas9
system induces a double-stranded DNA break (DSB), carried
out by the Cas9 nuclease, at a specific target site, recognized
by the binding of a single-guide RNA (sgRNA) molecule.
Following DSB, different endogenous repair mechanisms can
be initiated. On one hand, the error-prone non-homologous
end joining (NHEJ) pathway can be activated, often leading
to the introduction of indel mutations due to imprecise repair,
resulting in gene knock-out. The generation of gene knock-outs
in zebrafish is relatively straightforward and efficient. In a study
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by Zhang et al. (20) for instance, mutations in the ATP6V1H,
coding for vacuolar ATPase, were identified in patients with short
stature and osteoporosis. Loss-of-function mutants in atp6v1h
were generated in zebrafish through CRISPR/Cas9-mediated
gene knock-out (20). These mutants demonstrated loss of bone
mass and increased expression of matrix metalloproteasesmmp9
and mmp13. Indeed, pharmacological inhibition of mmp9 and
mmp13 rescued the bone phenotype, suggesting that blockade
of collagen degradation can be a valid therapeutic target.
CRISPR/Cas9 gene editing has been recently used to generate
knock-out zebrafish for crtap and p3h1, two genes that are part
of a protein complex which is involved in prolyl 3-hydroxylation
and proper folding of collagen type I. Loss-of-function mutations
in the human ortholog genes cause recessive forms of OI. These
zebrafish models faithfully mimic the human disease and support
the defective chaperone role of the 3-hydroxylation complex as
the primary cause of the skeletal phenotype (17).

In general, reverse genetic approaches are limited by the
time required to generate mutant lines, where stable knock-
out zebrafish are mostly obtained and analyzed from the F2
generation on. Therefore, an approach for rapid CRISPR-based
reverse genetic screens was developed in which phenotyping is
performed directly in F0 (mosaic) founders, which are called
“crispants” (133, 134). This enablesmoderate to rapid throughput
reverse genetic screens of candidate genes, contributing to
skeletal disease. In a study by Watson et al. (133), the
comparison between somatic, CRISPR-generated F0mutants and
homozygous germline mutants for plod2 and bmp1, two genes
implicated in recessive OI, revealed phenotypic convergence,
suggesting that CRISPR screens of F0 animals may faithfully
recapitulate the phenotype of skeletal disease models (133).

As an alternative to NHEJ-mediated repair of CRISPR/Cas9-
induced DSB, the homology-directed repair (HDR) pathway can
be initiated, but only in the presence of a homologous repair
template. In physiological circumstances, HDR occurs between
sister chromatids during the G2 and S phase of the cell cycle.
The knock-in modeling procedure exploits this mechanism by
supplying the CRISPR/Cas9 system with an artificial repair
template, homologous to the target sequence and containing
a specific variant of interest. For the generation of knock-in
models, mostly single-stranded oligodeoxynucleotide (ssODN)
repair templates are used (135) mainly because the design and
production of ssODNs is easier, cheaper and results in higher
HDR efficiencies compared to double-stranded templates such
as plasmids (136, 137). The need to complement knock-out
models with these more precise knock-in disease models is
growing, for various reasons. Firstly, specific point mutations
may cause a highly divergent pathobiology compared to loss-
of-function mutations modeled by knock-out models. More
specifically, certain missense mutations may cause a gain-of-
function rather than a loss-of-function, while missensemutations
in genes encoding proteins included in protein complexes may
exercise a dominant negative effect and change the function
of the whole protein complex. For instance, in dominant
types of OI caused by mutations in the genes encoding the
type I collagen α chains, depending on the type of mutation,
either the quantity or the structure of type I procollagen is

altered (138). The “quantitative” mutations, mostly resulting in
a null COL1A1 allele, typically cause mild forms of OI, while
“qualitative or structural” defects, frequently associated with
glycine substitutions, can be responsible for lethal, severe or
moderate forms of the disease.

Also, missense mutations in vital developmental genes may be
hypomorphic while their loss-of-function counterparts result in
early lethality, as reported in the cdc6 zebrafishmutant for Meier-
Gorlin syndrome. Hypomorphic mutations in the cdc6 gene
recapitulate the patient’s phenotype, while the knock-outmutants
are embryonically lethal. In these cases, the introduction of
such point mutations is a prerequisite to faithfully recapitulating
human disease. Secondly, as mentioned before, several zebrafish
knock-out models failed to generate a phenotype, which can
be due to mRNA decay-induced genetic compensation (139), a
phenomenon that is not expected to occur in knock-in models.

Nevertheless, several drawbacks mitigate the straightforward
use of HDR knock-in zebrafish models. Firstly, HDR pathways
have proved highly inefficient for genome editing (140)
even despite proposed modifications, such as repair template
modification (141, 142), cell cycle arrest (143) and chemical
compound administration (144–151). Secondly, CRISPR/Cas9-
mediated HDR mechanisms have been shown to be error-prone
(152, 153). These issues hindered the development of knock-
in zebrafish models and only a limited number have been
reported, in contrast to numerous knock-outs. For instance,
CRISPR/Cas9-mediated point mutation knock-ins have been
generated for genetic variants implicated in inherited cardiac
diseases (154–156), although to our knowledge none have been
described so far for skeletal diseases. Different recently developed
DSB-free alternatives for precise base pair substitution, such
as programmable base editing (157–159) and prime editing
(160) promise to be more efficient and versatile approaches, but
more research is needed to further improve these methods for
application to the zebrafish model system.

TRANSGENIC LINES

Transgenic Zebrafish to Trace Bone Cells
and Pathways
Despite the development of new approaches in large-scale
and more recently single-cell transcriptomics, genomics,
epigenomics, and proteomics (161), these techniques are
time consuming, expensive and only available in specialized
laboratories (162–164). Furthermore, retrospective -omic
analyses exclude cells that do not survive to the point of
cell harvest, a common and necessary event in growth and
regeneration. Therefore, to be able to understand the dynamic
nature of tissue development and regeneration, in vivo time-lapse
imaging is essential.

The recent evolution of genetic engineering has allowed the
generation of transgenic animal models, expressing fluorescent
proteins under cell- or pathway- specific promoters, enabling
in vivo imaging of differentiation and signaling (165). However,
the generation of transgenic murine models remains technically
demanding, time consuming and expensive (166). In addition,
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since mice develop in utero, it is almost impossible to investigate
early developmental processes in real time and the visualization
at cellular level usually requires post-mortem analyses (167).

Zebrafish, with its fast external development, transparent early
life stages and relative easy genetic manipulation, is rapidly
becoming the model of choice for examining developmental
processes via time-lapse microscopy. The introduction of
reporter genes downstream of a specific promoter makes it
possible to produce site-directed indicators in different organs,
tissues or cells and permits real time imaging in developing
embryos or post-hatch stages; or even in mature zebrafish by
fluorescent microscopy on whole mount specimens (168, 169).
A variety of transgenic reporter lines have been generated to
mark skeletal cell lineages at different stages of differentiation and
signal transduction pathways, by using the conserved regulators
of skeletal development (Table 2). The availability of fluorescent
reporter lines, together with the use of powerful techniques such
as two or multi-photon or light sheet microscopy, has allowed
imaging of tissues and organs at a cellular and subcellular level,
especially by exploiting the transparency of early life stages (218).

Transgenic Lines to Trace Bone Cells
The most frequently used lines expressing fluorophores
in chondrocytes include Tg(−4.9sox10:egfp)ba2

and Tg(Col2a1aBAC:mcherry)hu5910 (Table 2). The
Tg(−4.9sox10:egfp)ba2 was employed to detect sox10 expression
in head cartilage during embryo development and to follow
migration of neural crest cells during cranium morphogenesis
(175). The Tg(Col2a1aBAC:mcherry)hu5910 reporter line
allowed impaired cartilage patterning and loss of chondrocyte
organization to be shown in a zebrafish model of a recessive
form of Ehlers-Danlos syndrome with partial loss of B4galt7,
a transmembrane Golgi enzyme that plays a pivotal role in
proteoglycan biosynthesis (76).

In order to trace the differentiation of bone forming
cells, transgenic lines for both early and late osteoblast
markers, expressing fluorophores under the osterix/sp7 and
osteocalcin/bglap promoters, have been generated (Table 2).
The Tg(sp7:EGFP)b1212 line allowed osteoblast behavior to
be studied during both intramembranous and endochondral
ossification. Moreover, this line was used to investigate the
abnormal perichondral ossification in the RNA component
of the mitochondrial RNA-processing endoribonuclease (rmrp)
knock-out zebrafish model of cartilage hair hypoplasia (65).
Tg(Ola.sp7:mCherry)zf 131 was crossed with the OI type XIII
zebrafish model frilly fins to elucidate the role of the bone
morphogenic protein 1, encoded by bmp1a gene, in osteoblast
differentiation and localization (94).

The Tg(Ola.bglap.1:EGFP)hu4008 line was used to understand
the fundamental role of osteoblast dedifferentiation during bone
healing in response to traumatic injury, and to show that
adult zebrafish osteoblasts display an elevated cellular plasticity
compared to their mammalian counterpart (195).

Despite the conservation of most of the osteoblastogenic
markers, in zebrafish the expression of col10a is not limited to
chondrocytes as in mammals, but is also present in osteoblasts
(203). The transgenic line Tg(-2.2col10a1a:GFP)ck3, expressing
GFP under col10a1 promoter, has therefore been used to

investigate molecular events driving both chondrocyte and
osteoblast development (203).

An interesting application of the transgenic reporter lines
is their use in combination with a mineral stain, imaged at
different fluorescent wavelengths, enabling the combined
study of osteoblast dynamics and bone mineralization
(196). For instance, alizarin red staining of the transgenic
zebrafish Tg(Ola.sp7:NLS-GFP)zf 132 localized osterix/sp7 positive
osteoblasts in the mineralized bone and revealed the absence
of osterix/sp7 expression in the anterior notochord region
at 8 dpf (104). Similarly, mineral staining in combination
with Tg(osx:Kaede)pd64 confirmed the osteoblast independent
mineralisation of the notochord (196).

Most of the available osteoclast reporter lines express
fluorophores under control of the promoter of cathepsin K
(Ctsk), the osteoclast collagenase that mediates bone resorption
(Table 2) (46). Chatani et al. (97) proved the absence of
osteoclasts in the panther mutant, which lacks a functional
receptor for the macrophage colony stimulator factor, taking
advantage of the Tg(ctsk:mEGFP) transgenic line. A significantly
reduced number of GFP-positive osteoclasts was found in
the neural and haemal arches in panther larvae, indicating
a crucial role of the protein in osteoclast proliferation and
differentiation. Additionally, the medaka, another well-
characterized teleost bony fish used for developmental and
biomedical studies, was used to study osteoclasts by placing
the gene encoding for the receptor activator of nuclear factor
kappa-B ligand, rankl, a key osteoclast differentiation factor,
under the control of a heat shock element (23). Increased
osteoclast differentiation induced upon Rankl activation
in this Tg(rankl:HSE:CFP) line resulted in an osteoporotic
phenotype (46).

Transgenic Lines to Trace Signal
Transduction Pathways
Zebrafish transgenic lines expressing in vivo reporter proteins
under the control of signaling pathway responsive elements are
a powerful tool to dissect dynamically the in vivo activation
or repression of endogenous signaling pathways in real time
(210, 219–221). Calcium, Bmp and Wnt pathways are crucial
players during bone formation (222–224). Transgenic lines
to further investigate these pathways have been generated
(Table 2). The Tg(hsp70:bmp2b-GFP) line was used to analyze
the role of the Bmp2 signaling pathway in an enteric disease,
but the transgenic model could be employed to dissect
BMP2b signaling in bone (225). To investigate Wnt pathway
activation the Tg(7xTCF-Xla.Siam:GFP)ia4 and Tg(7xTCF-
Xla.Siam:nlsmCherry)ia5 transgenic lines, which contain
multimerized tcf/lef binding sites for the transcription factor
activated by β-catenin upstream to a siamois minimal promoter,
were generated allowing the dynamics of neural crest-derived
cell migration to be traced during development (211). Using
the Tg(7xTCF-Xla.Siam:nlsmCherry)ia5 transgenic line it
was also possible to elucidate important regulatory steps in
the osteogenic differentiation process of mesenchymal stem
cells (73).

Finally, the unfolded protein response (UPR) was shown to
play an important role in themodulation of the phenotype in rare
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TABLE 2 | Transgenic lines employed to study zebrafish skeleton.

Cell type Gene/pathway Transgenic line References Applications

Neural crest-derived skeletal

cells

sox10 Tg(sox10:GFP)ba5 (170) (170)#, (19)*

sox10 Tg(sox10:kaede)zf393 (171) (90, 171)#

sox10 Tg(sox10:mRFP)vu234 (172) (78, 172)*

sox10 Tg(-4725sox10:Cre)ba74 (173) (173, 174)#

sox10 Tg(−4.9sox10:egfp)ba2 (175) (175–177)#

fli1 Tg(fli1:EGFP)y1 (178) (19, 78, 89, 178, 179)*

Cartilaginous cells foxp2 Tg(foxp2-enhancerA:EGFP)zc42 (180) (180, 181)#

col2a1a Tg(Col2a1aBAC:mcherry)hu5910 (40) (78, 91, 105)*, (40, 182)#,

(76)*

col2a1a Tg(-1.7col2a1a:EGFP-CAAX)nu12 (183) (183, 184)#, (112)*

col18a1 Tg(16Hsa.COL18A1-

Mmu.Fos:EGFP)zf215
(185) (185)#

Preosteoblasts cyp26b1 Tg(cyp26b1:YFP)hu5786 (72) (72)#

cyp26b1 Tg(cyp26b1:YFP)hu7426 (186) (186)#

Branchial arches and notochord

cells

cyp26a1 Tg(cyp26a1:eYFP)nju1/+ (187) (187, 188)#

Intervertebral disc cells shhb Tg(-5.2shhb:GFP)mb1 (189) (189)#

twist Tg(Ola.twist1:EGFP)ca104 (190) (190)#

Early osteoblasts osx/sp7 Tg(sp7:EGFP)b1212 (181) (73, 181)#,

(112, 179, 191, 192)*,

(193)§, (65)*

osx/sp7 Tg(Ola.sp7:mCherry)zf131 (72) (94)*, (72)#

osx/sp7 Tg (Ola.sp7:NLS-GFP)zf132 (72) (194)§, (72, 195)#, (78, 85)*,

(196)#

osx/sp7 Tg(osterix:mCherry-NTRo)pd46 (197) (197, 198)§

osx/sp7 Tg(osx:Kaede)pd64 (198) (196, 199)#, (198)§

osx/sp7 Tg(osx:CFP-NTR) (200) (200)#

osx/sp7 Tg(osx:H2A-mCherry)pd310 (198) (198)§

osx/sp7 Tg(osterix:Lifeact-mCherry)◦u2032 (201) (201)§

col10a1 Tg(Col10a1BAC:mCitrine)hu7050 (202) (78, 91, 105)*, (202)#

col10a1 Tg(-2.2col10a1a:GFP)ck3 (203) (203, 204)#

runx2 Tg(Hsa.RUNX2-

Mmu.Fos:EGFP)zf259
(205) (95, 195)#, (205)§

runx2 Tg(RUNX2:egfp) (31) (31)#, (182)*

Mature osteoblasts osc/bglap Tg(Ola.bglap.1:EGFP)hu4008 (205) (105, 195)*, (205)§

entpd5a TgBAC(entpd5a:YFP)hu5939 (85) (35)#, (85)*

entpd5a TgBAC(entpd5a:Kaede)hu6867 (195) (195)*, (35)#

col1a1 Tg(col1a1:EGFP)zf195 (31) (31)#, (18)*

rankl Tg(rankl:HSE:CFP) (46) (46)*

notch1a Tg(Ola.sp7:N1aICD)cy31 (79) (79)#

Osteoclasts ctsk TgBAC(ctsk:Citrine)zf336 (206) (105)*

ctsk Tg(ctsk:YFP) (206) (105)*

ctsk Tg(ctsk:DsRed) (207) (207)#

ctsk Tg(CTSK-DsRed) (97) (97)#

ctsk Tg(Ola.ctsk:EGFP)zf305 (97) (97)#

ctsk Tg(ctsk:mEGFP) (46) (46, 208)*

trap Tg(TRAP:GFP) (97) (97)#

trap Tg(trap:GFP-CAAX)◦u2031 (201) (201)§

Bmp responsive cells Bmp pathway Tg(Bre:GFP)p77 (209) (209)#

(Continued)
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TABLE 2 | Continued

Cell type Gene/pathway Transgenic line References Applications

Bmp pathway Tg(bre:egfp)pt510 (210) (177, 210)#

Bmp pathway Tg(BMPRE:EGFP)ia18 (169) (169)#, (78)*

β-catenin activated cells Wnt pathway Tg(7xTCF-Xla.Siam:GFP)ia4 (211) (211)#, (78)*

Wnt pathway Tg(7xTCFXla.Siam:nlsmCherry)ia5 (211) (73, 211)#

Wnt pathway Tg(hsp70l:wnt8a-GFP)w34 (212) (213)#

Wnt pathway Tg(hsp70l:dkk1-GFP)w32 (214) (73)#, (214)§

Wnt pathway Tg(myl7:EGFP)twu34 (215)

Stress responsive cells UPR pathway Tg(ef1α:xbp1δ-gfp)mb10 (216) (216)#

UPR pathway Tg(Hsa.ATF6RE:d2GFP)mw85 (217) (217)

UPR pathway Tg(Hsa.ATF6RE:eGFP)mw84 (217) (217)

*Transgenic lines used to characterize mutants with skeletal pathologies, #transgenic lines used to analyse skeletal development and molecular pathways, §transgenic lines used to

study skeletal regeneration, Medaka transgenic lines are reported in bold.

skeletal diseases (226, 227). Interestingly, transgenic zebrafish
lines allowing different branches of this pathway to be followed
are already available (216, 217, 228, 229). For instance, the
transgenic zebrafishmodel Tg(ef1α:xbp1δ-gfp)mb10 has been used
to trace in vivo the splicing of xbp1, one of the terminal effectors
of the UPR (216).

Live Imaging of Bone Regeneration
Tracing bone cells in vivo using transgenic lines in adult zebrafish
is challenging due to tissue depth and complexity, but is possible
in external structures such as fin rays or scales, which are
easily accessible and suitable for regeneration studies (198, 230,
231). Indeed, the available panel of transgenic lines expressing
fluorescent and photo-switchable reporter genes in bone cells
is useful to trace regeneration in vivo (198). This strategy has
clarified important biological aspects such as the cellular basis
of integumentary bone regeneration. In vivo imaging of the
Tg(sp7:EGFP)b1212 transgenic line during caudal fin regeneration
showed the presence of GFP positive cells at the amputation
plane starting from 2 days post amputation (dpa) and their
association with the formation of newly mineralized matrix by
5 dpa (181). Osteoblast lineage tracing in the Tg(osx:Kaede)pd64

clarifiedmigration and dedifferentiation of scleroblasts during fin
regeneration (196).

However, the slow rates of regeneration require long-term
live imaging to capture dynamic cellular events to improve the
understanding of development, homeostasis, and regeneration
by stem cell populations (232). Thus, to enable up to 24 h
of continuous live imaging, specific protocols for long-term
anesthesia of adult zebrafish have been optimized (198). Indeed,
the transgenic line Tg(osx:H2A-mCherry)pd310 allowed spatio-
temporally distinct cell division, motility, and death dynamic
within a founder osteoblast pool to be imaged as bone
regenerates (198).

Transgenic Lines as Tool for Drug
Screening
Transgenesis is not only used to analyze bone development over
time, to assess a mutant phenotype or track cell signaling, but also

to evaluate drug screening effects (98, 104). Huang and colleagues
employed the transgenic line Tg(Ola.sp7:NLS-GFP)zf132 to test
anti-osteoporosis chemical drugs. This line, that expresses GFP
under control of osterix/sp7, allowed for a faster in vivo evaluation
of drug effects on bone mass and density compared to traditional
stainingmethods. In another study, the osteocalcin/bglap reporter
transgenic line Tg(Ola.Bglap:EGFP)hu4008 was employed to test
chlorpropamide effects on the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB). The drug negatively
regulated osteoblast-like cell dedifferentiation, thus helping to
maintain bone forming cells in an active state promoting caudal
fin ray regeneration (233).

Tips for Transgenic Lines Selection
For the proper selection of transgenic lines there are some
aspects that require consideration. First, the choice of the
reporter protein is influenced by differences such as color,
brightness, toxicity, tissue penetration, subcellular localization,
as well as the stability of the fluorescent protein. For instance,
in order to study cell signaling dynamics or when performing
prolonged cell lineage tracing, the use of long half-life fluorescent
proteins is recommended. Furthermore, differences in signal
pattern and intensity can be found among transgenic progeny
possibly due to multiple insertions in the same founder,
thus complicating the analysis (169). This aspect can be
ameliorated by diluting the number of transgenic copies through
subsequent generations.

Finally, in order to verify the localization of the reporter
protein, the use of dual color analysis in the same transgenic
line is recommended (196, 199) by for example complementary
secondary techniques such as immunohistochemistry or in situ
hybridization (169, 199).

X-RAY IMAGING

One of the more frequently used techniques to visualize the
human skeleton is x-ray imaging. Classic x-ray systems for
human and veterinary purposes need to limit radiation exposure
to the patient, and therefore have limited exposure settings, that
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is their range of tube accelerating voltage (kV), current (mA),
and time of exposure. These parameters are set to optimize the
image of the skeleton while keeping the radiation exposure to
the patient as low as possible and cannot be easily changed.
Consequently, these medical appliances are not appropriate to
image the small zebrafish skeletons. Examples of x-ray sources
that have a wide range of possible x-ray output settings are small
manual units used to scan museum artifacts and fossils, a small
animal radiation research platform (SARRP; Xstrahl, Surrey,

UK) and the Faxitron© x-ray cabinets. Specifically, these sources
can be set to low power but long exposure time parameters,
and can be used in combination with high resolution technical
film such as mammography film or x-ray film (e.g., AGFA
D2) used in aerospace and petroleum factory applications. A
Faxitron x-ray cabinet in combination with mammography film
was used by Fisher et al. (93) to image the skeleton of WT and
chihuahua mutant zebrafish to screen for skeletal abnormalities
(Table 2).

With the revolution of digital sensors capturing the x-ray
signal, it has become straightforward to take an x-ray image
of a small or large part of the human skeleton. The use of
digital x-ray sensors is however more challenging when using
zebrafish (24, 234) as the resolution is too low in most cases
to capture a quality image of the small zebrafish skeleton. A
modern system such as a Faxitron Ultrafocus x-ray cabinet can
provide digital x-ray images up to a 5µm spatial resolution

which can be geometrically magnified (Faxitron©) (Figure 3A).
This technique was used to screen for deformed and fragile
bones in chihuahua mutant zebrafish (15) and to assess the
gross skeletal anatomy of prg4a−/−; prg4b−/− mutant zebrafish
(92). Although these digital images may look clean and sharp,
the thinner less mineralized bones may not be present in
the image, which represents a loss of information about the
zebrafish skeleton (234). In contrast, technical film such as
AGFA D2 can theoretically capture extremely high-resolution
images. Such technical film works well in combination with
low energy settings needed for optimal imaging of the zebrafish
skeleton. Moreover, this film is able to capture an image of
smaller bones, which is not always possible when using a
digital sensor.

The main advantage of using x-rays to image the zebrafish
skeleton is that it is a cheap and quick methodology.
Furthermore, x-ray imaging can be repeated on live organisms
and can be used as a preliminary diagnostic tool for skeletal
imaging before applying a more specialized method such as
micro computed tomography (microCT) or mineral staining
(Figures 3B,C). For instance, x-ray imaging is frequently used
in aquaculture related research where it is a first line tool to
assess skeletal deformities (235, 236). Although x-ray imaging
can be employed to assess skeletal deformities in adult zebrafish,
its use for juvenile zebrafish, where the skeleton is too
small to be captured on film or digitally, is not feasible.
In addition, x-ray images of zebrafish are not suitable for
quantification of tissue or bone mineral densities. MicroCT
currently provides a better solution to estimate these bone
parameters (80, 120).

FIGURE 3 | Imaging techniques in zebrafish. (A) Lateral x-ray image of a wild

type zebrafish acquired with a Faxitron tabletop X-ray cabinet. Notice the

outline of the major bones in the skull and vertebral column and the outline of

the double chambered swim bladder (indicated by asterisks) in the abdominal

cavity. The tissue inside the vertebrae (indicated by block arrows) and

intervertebral spaces (indicated by line arrows), i.e., the notochord, can be

easily assessed for the presence of mineral. (B) Lateral view of a 3D

reconstructed microCT scanned adult zebrafish at 21µm. More details are

visible in the skull and especially the vertebral column compared to the x-ray

image (neural and haemal arch are indicated by arrow heads and the ribs with

a small arrows). (C) Lateral image in the fluorescent channel of a zebrafish

whole mount cleared and stained with alizarin red for mineralized tissues.

Compared to the images above, more details of the skeleton can be observed,

especially in the vertebral column where all individual bones and their outlines

can be noticed. The alizarin red image also allows to assess the presence of

mineral in the intervertebral space (indicated by arrows). All images were taken

of wild type zebrafish.

MICRO COMPUTED TOMOGRAPHY

Computed tomography (CT) is a non-invasive technology based
on x-ray analysis that allows detailed 3D reconstructions of
large specimens. The generation of CT images involves the
capturing and recording of x-rays that pass through the sample
onto a detector. This process is repeated several times for
multiple angles, followed by the virtual reconstruction into a
3D image (237). The required resolution for zebrafish imaging
is beyond the capabilities of medical CT machines (≥70µm),
requiring higher resolutions, which can be obtained by microCT
(Figure 3B) (237). The resolutions that can be achieved with
modern microCT scanners vary from relatively low resolutions
(≥20µm), with quick scan times and large sample size, to higher
resolutions (≤10µm), with longer scanning durations and
smaller sample size. It is important to note that themagnification,
often described as the size of the voxels (3D pixels) is not
identical to spatial resolution, which is roughly 2–3 times larger
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(238). MicroCT is less time consuming and provides excellent 3D
resolution compared to optical microscopy/histology. Although
mainly mineralized tissues are recorded, resulting in a loss of
information on aspects such as cells and non-mineralized tissues,
the use of contrast agents allows visualization of different tissues
such as adipose or epithelial tissue and can even enhance the
signal of poorly mineralized bone (239, 240). For example,
scanning of juvenile stages can be performed by staining the
samples with silver nitrate beforehand, allowing for visualization
of early bone development where only low amounts of mineral
are present (241). However, with this approach only relative
mineralization densities can be determined, and not absolute
hydroxyapatite levels, which is an important parameter when
modeling skeletal disorders. The amount of hydroxyapatite
present in samples can be determined by performing a calibration
microCT scan of a reference object (phantom) with a known
hydroxyapatite concentration. This approach was used in a study
of the effect of aging on bonemineral density (BMD) in zebrafish,
revealing progressively increased BMD with age, in contrast
to humans (101). When interpreting skeletal phenotypes, it
is important not to rely on a single method, because certain
phenotypes can be better detected using other methods. For
example, a mineralized notochord leading to completely solid
centra is easier to assess using microCT compared to mineral
staining (72). In addition to 3D renderings, microCT data allows
the creation and viewing of individual slices throughout the
sample, similar to histological sections. Histology of mineralized
tissues is notoriously difficult and requires special protocols
because samples cannot be demineralized for sectioning. As an
example, a complementary approach of both histology and high
resolution microCT (6µm) was used in a zebrafish model for
craniosynostosis revealing fusion of the coronal suture (107).

Although low resolution microCT (≥20µm) does not allow
the detection of subtle skeletal changes, such as fusions
between adjacent bones, it is perfectly suitable for whole-
body scanning and phenotyping of adult zebrafish with a
moderate throughput (Figure 3B). Such a procedure was applied
by Gistelink et al. (120), where individual vertebral bodies
(neural/haemal arches and centrum) of different OI zebrafish
models were manually segmented. Subsequently, tissue mineral
density (TMD), vertebral length, bone volume, and thickness
were determined for each component (80). Manual segmentation
is a laborious process and possibly introduces human bias
into the analysis, which can be overcome by semi-automated
segmentation algorithms such as FishCut (80). FishCut enables
the measuring of a large number of parameters in the vertebral
column, and is supplemented by a statistical approach for analysis
(80). Models for Bruck syndrome, osteogenesis imperfecta and
hyperthyroidism have been successfully analyzed by this high-
throughput pipeline, thereby standardizing zebrafish skeletal
analyses (80, 120). High resolution microCT (≤10µm) on
the other hand, allows for more detailed analysis, but is
very time consuming and limits the scanning to only small
segments of the skeleton (Figure 4). MicroCT scans of a vertebral
body at 1µm voxel size revealed osteocyte lacunae, which is
beyond the resolution range of whole body microCT scans
(Figures 4B,D) (242). In a study by Newham et al. (118), high

FIGURE 4 | Comparison between low- and high-resolution microCT. (A) Image

of parasagittal microCT plane at 21µm. (B) Similar structure as in (A) but

scanned at 0.75µm. Comparison between low-resolution and high-resolution

microCT clearly demonstrates the ability to distinguish separate vertebrae and

compact bone only using high-resolution microCT. (C) Anterior and lateral view

of a 3D maximal projection surface render of a vertebrae scanned at 21µm.

(D) Similar structure as in (C) but scanned at 0.75µm. Notice the difference in

detail where the growth rings (black circle) are visible in the vertebral endplate

on the anterior view. The lateral view of high-resolution microCT shows the

outline of the vertebra with the pre- and post-zygapophyses (white arrows),

and an antero-posterior running medial vertebral trabecula (white arrowheads).

resolution scans of vertebral bodies before and after mechanical
compression were analyzed via geometric morphometrics. The
obtained measurements were successfully used to determine
the deformation zones and subsequently used to predict the
deformation and strain during loading (118).

BONE HISTOLOGY: FROM WHOLE MOUNT
TO SECTIONS

Whole mount staining and high-resolution section analysis
of the zebrafish skeleton represent complementary techniques,
commonly used to describe bone development and structure at
tissue and cellular levels.

Whole Mount Mineral and Cartilage
Staining
In biomedical research, where the zebrafish is used as a model
organism, whole mount staining is generally used to study the
morphology of the skeleton (Table 3). The most commonly used
techniques are staining of mineralized tissues with alizarin red
S (ARS), staining of cartilage matrix with alcian blue (AB) or
staining both tissues with a combination of both ARS and AB
(Figure 5). These staining methods are based on well-established
protocols, where a specimen is made translucent to transparent
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TABLE 3 | Techniques applied to evaluate bone phenotype in zebrafish models.

Disorder Stage AR AB Dual stain Calcein Morphology Histology TEM SEM ISH Transgenics MicroCT X-Ray AFM qBei Nanoindentation FTIR References

Acrocapitofemoral

dysplasia

L x x (40)

Alagille

syndrome

L x x x (61)

Amelogenesis

imperfecta

L x x (62)

Auriculocondylar

syndrome

L x x (63)

Bruck syndrome L-J-A x x x x x x (16)

Campomelic

dysplasia

L x x x x (64)

Cartilage-Hair

Hypoplasia

L x x x x x (65)

Cenani-Lenz

syndactyly

L x x x (66)

Chordoma L x x x (67)

Cleidocranial

dysplasia

L x x x (68)

Craniofacial

defects

L x x (69)

Craniofacial

defects

L x x (69)

Craniosynostosis L-A x x x (70)

Craniosynostosis L x x x (71)

Craniosynostosis L-A x x x x x x (72)

Culler-jones

syndrome

A x x x (73)

Delayed

mineralization

L x x x x (74)

Delayed

mineralization

L-A x x x (75)

Ehlers-Danlos

syndrome

L x x x (76)

Fibrodysplasia

ossificans

progressiva

L-A x x x x (77)

Gaucher disease L x x x x (78)

Holoprosencephaly L x x (40)

Hyperosteogeny L-A x x x x x x (79)

Hyperthyroidism A x (80)
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TABLE 3 | Continued

Disorder Stage AR AB Dual stain Calcein Morphology Histology TEM SEM ISH Transgenics MicroCT X-Ray AFM qBei Nanoindentation FTIR References

Hypohidrotic

ectodermal

dysplasia

A x x x x x (81)

Joint disease L-A x x x x x x x (82)

Klippel Feil

syndrome

L A x (83)

Multiple

hereditary

exostoses

L x x x (84)

No

mineralization

L-A x x x x x x (85)

Oculodentodigital

dysplasia

A x x (86)

Orofacial cleft L x x x x (87)

Orofacial cleft L x (88)

Orofacial cleft L x x x x (89)

Orofacial cleft L x x x (90)

Osteoarthritis L-A x x x x x (91)

Osteoarthritis L-A x x x x x x (92)

Osteogenesis

imperfecta

L-A x x x (93)

Osteogenesis

imperfecta

L-A x x x x x x (94)

Osteogenesis

imperfecta

L-A x x x x x (95)

Osteogenesis

imperfecta

L-A x x x (96)

Osteogenesis

imperfecta

L-A x x x x x (15)

Osteogenesis

imperfecta

L-A x x x x x x (14)

Osteopetrosis L-A x x x x x (97)

Osteoporosis L x x (98)

Osteoporosis L x (99)

Osteoporosis A x x x (100)

Osteoporosis A x x (101)

Osteoporosis L x x x x x (102)

Osteoporosis L-A x x x x x x (20)

Osteoporosis L x x (103)

(Continued)
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TABLE 3 | Continued

Disorder Stage AR AB Dual stain Calcein Morphology Histology TEM SEM ISH Transgenics MicroCT X-Ray AFM qBei Nanoindentation FTIR References

Osteoporosis L x x x x (19)

Osteoporosis L x (18)

Osteoporosis L x x x (104)

Pseudoxanthoma

elasticum

L-J x x x x x (105)

Pseudoxanthoma

elasticum

L-J x x x x (106)

Saethre-Chotzen

syndrome

A x x x x (107)

Saul-Wilson

Syndrome

L x (108)

Spine curvature

disorders

L-J-A x x x x (109)

Spine curvature

disorders

L-J-A x x x (110)

Spine curvature

disorders

J-A x (111)

Spine curvature

disorders

L-A x x x x x x (112)

Spine curvature

disorders

L-A x x x x (35)

Spine curvature

disorders

L-A x x x (113)

Spine curvature

disorders

A x x x (114)

Sponastrime

dysplasia

L x (115)

Stickler/Marshall

syndrome

L x x x x (116)

Tumoral

calcinosis

A x x (117)

Vertebral

fractures

A x x (118)

L, Larval stage; J, Juvenile stage; A, Adult stage; AR, Alizarin red; AB, Alcian blue; TEM, Transmission electron microscopy; SEM, Scanning electron microscopy; AFM, Atomic force microscopy; qBei, Quantitative backscattered electron

imaging; FTIR, Fourier-transform infrared spectroscopy.
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FIGURE 5 | Whole mount staining in early stages and applications of visualization techniques in adult zebrafish. Schematic representation of whole mount cleared and

stained early stage zebrafish for cartilage with alcian blue, mineralized tissues (bone) with alizarin red and dual stained for both cartilage and mineralized tissues.

Notice that only part of the skull, the basiventrals [for definition see Gadow and Abbott (243)] of the abdominal vertebrae and the fins endoskeleton are pre-formed in

cartilage. Many bones in the skull and especially in the vertebral column are formed by direct intramembranous ossification. Images of adult skeletons taken by x-ray

can be used to score for skeletal abnormalities, while microCT data can be used in an analysis program such as FishCuT to obtain quantitative data of bone

measurements such as size, volume, thickness, and bone mineral density (80, 120). Bright field images or fluorescent images of whole mount cleared and stained

zebrafish for mineralized tissues with alizarin red can be used to study skeletal abnormalities in detail. The three techniques are mostly used on euthanized and fixed

specimens and thus can be applied on the same specimen sequentially. Moreover, the data procured by these visualization techniques can be integrated into a large

data matrix and allows detailed phenotypic descriptions of zebrafish disease models.

and cartilage matrix or mineralized tissues are stained with a dye.
Images of whole mount cleared and stained animals, taken with a
modern stereo microscope, have an even higher resolution than
standard microCT images (Figures 3B,C). Therefore, the whole
mount clearing and staining technique can be considered as the
gold standard for observing the whole zebrafish skeleton in detail.

Alizarin Red S
Many different protocols exist for ARS staining of mineralized
tissues, however the main steps are based on (i) removing the
pigmentation of the tissue with a bleaching solution (basic pH),

(ii) neutralization of depigmentation, (iii) staining the animal
with ARS, and (iv) clearing the animal of excess stain (244).
The ARS molecule is a dihydroxyanthraquinone, likely binding
the Ca2+ on the hydroxyapatite surface to form either a salt
or a chelate form (245), thus it specifically stains mineralized
tissue. In disease models ARS will stain ectopic mineralization
in soft tissues. For example, ectopic mineralization was shown
surrounding the eye, in the wall of the bulbus arteriosus of the
heart and in the ventral skin of the dragon fish (dgf−/−), a
knock-out zebrafish model for the gene that encodes Enpp1, and
modeled for generalized arterial calcification of infancy (GACI)
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and pseudoxanthoma elasticum (PXE) (105, 106). Bone collagen
in teleosts can also be deposited without being mineralized,
as was shown in salmon vertebral bone (246, 247) and in the
dentine of replacement teeth of the African bichir (248). It is
important to underline that the unmineralized collagen cannot
be visualized with ARS, however, mineralization usually quickly
follows collagen deposition. Finally, there is also one mineralized
collagenous tissue that does not stain with alizarin red S, the
hypermineralized enameloid of the tooth cusps (248, 249).

ARS staining for mineralized tissues is frequently used to
assess the development of skeletal elements in the head, axial
skeleton, and fins at early life stages (Figure 5). In addition,
investigating the early skeletal phenotype can be focused on
a delay or advance in the development or specifically on the
mineralization status of early skeletal elements. Because ARS
is autofluorescent in the rhodamine channel (red), it can be
used in combination with skeletal transgenic zebrafish reporter
lines in which the fluorescent signal of the skeletal cells is in
a different light spectrum. Alternatively, a Kaede reporter line,
where the spectrum of the fluorescent protein can be changed
by exposing the specimen to UV-light, can be used in a more
flexible way (196). While most studies using ARS for mineralized
tissue examined fixed specimens, ARS can also be used as a
live stain especially in early stages where pigmentation does not
obscure the underlying skeleton yet [reviewed in (250)]. Staining
with ARS can also be employed to assess the juvenile and adult
skeleton (Figure 5) because mineralized bone is the main skeletal
tissue present at these life stages and is easy to observe with
this technique.

Alcian Blue
Staining cartilage whole mounts with AB 8GX, similar to ARS
staining, is based on several basic steps including (i) removing
the pigmentation of the tissue with a bleaching solution (basic
pH), (ii) staining the specimens with AB (acid pH), (iii)
rehydration and clearing the specimens of excess stain, and (iv)
dehydration and storing the specimens. The AB molecule is
part of the phthalocyanine dyes with most often copper (Cu2+)
as the central metallic ion which results in a blue stain. AB
has specifically four tetramethylisothiouronium solubility groups
with S=C bonds that are easily broken to bind an insoluble AB
molecule to the tissue (251). The stain binds as a salt to sulfated
and carboxylated acid mucopolysaccharides and glycoproteins
present in the cartilage matrix (251). Alcian blue is in most
cases dissolved in a dehydrating ethanol/acetic acid solution and
brought to a specific low pH. This low pH (1.5–2.5) causes AB to
stain very specifically to the cartilage matrix (Figure 5).

Cartilage is the main skeletal tissue in early life stages of
zebrafish, particularly in the skull (chondrocranium) and fins
(252). Therefore, AB staining has been largely used in early
life stages, i.e., 2–20 dpf, to study the morphology of the
chondrocranium in different skeletal zebrafish models (62, 68)
(Figure 5). Developing malformations are mainly defined as the
irregular shape of skeletal elements, but can also be defined by the
absence of skeletal elements or the incorrect morphogenesis of a
single skeletal element (66, 84). Relative to the entire skeleton, not
much cartilage is present in later life stages (late juveniles, adults)

of zebrafish, yet AB staining can be used to assess for example
cartilaginous joints (92).

Alcian Blue/Alizarin Red S Double Stain
Staining of cartilage andmineralized tissues can also be combined
in a single specimen, as described in several papers by Kimmel
et al. (253, 254). In this protocol tissues are stained first with
AB followed by ARS staining (Figure 5). The dual staining for
cartilage and mineralized tissues is similar to the single stain
methods, except that AB can also be dissolved in a salt/ethanol
solution, where the salts can be sodium acetate or the more
commonly used magnesium chloride (244, 255).

The dual staining protocol is mostly used to assess
development of malformations of the early skeleton but
can also be used to investigate the normal development
and developmental sequence of the skeleton (69). More
specifically, dual staining has been used to assess ossification and
mineralization status of cartilaginous bones (40, 87) and shape
morphology of skeletal elements (61, 166).

The main advantage of this staining technique is the
visualization of both cartilage and bone in an individual
specimen, so that both connective tissues can be studied
at the same time. However, this approach has also several
disadvantages. First, when an acid/ethanol solution is used for
AB staining, this acidic staining solution demineralizes the tissues
that are subsequently visualized with ARS. This results in a
reduced staining of mineralized tissues compromising the correct
phenotypic assessment. This issue was reviewed by Witten et al.
(24). Therefore, it is advisable to always use single staining
protocols, either as an alternative or as a validation method in
parallel to the double staining protocol. Second, dissolving AB in
a non-acidic salt/ethanol solution is however challenging because
pH higher then 6 decreases the specificity of the staining solution
for mucopolysaccharides and glycoproteins (251).

ARS and AB Whole Mount Staining Advantages and

Pitfalls
Considering the simplicity and above all the extensive use of the
ARS and AB whole mount staining, a brief overview of its general
advantages and disadvantages may be useful.

Both the single staining and double staining approaches
are cheap and generally fast to use. Specimens that have not
developed scales yet, can often be stained in a single day, with
observations made the same day or the day after. In contrast,
adult specimens can take up to 2 weeks to stain (244). Indeed,
staining protocols need to be adapted to the size of the specimens.
Therefore, a thorough description of the staining protocol
is indispensable for the interpretation and reproducibility of
results (251, 256).

Detailed observations of cartilaginous and mineralized
connective tissues can be made owing to the high sensitivity and
specificity of both the ARS and AB stains. In particular, small
mineralized structures such as the initial mineralizations in early
life stages and small intermuscular bones or tendons in adult
life stages can be visualized by ARS with high fidelity (24, 234),
especially when using fluorescent light which greatly enhances
the visibility of these small structures (55, 250). Importantly,
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ARS stain disappears over time especially in small mineralized
structures requiring immediate observation and imaging once
the staining procedure is finished. In contrast, when specimens
are stored correctly in 100% glycerol, AB staining will remain
specific for a longer time (256).

Although AB stains cartilage matrix specifically when the
correct pH is used, AB solutions with a pH that is too high or
solutions that have a too high or too low salt concentration can
result in non-specific staining of non-cartilaginous connective
tissue, i.e., collagen type I bone matrix. Non-specific staining
can lead to incorrect interpretations of results. Finally, careful
interpretation is needed of single AB stained connective tissues
in specimens of 15 dpf and older. During the perichondral
ossification of cartilaginous bones in zebrafish (Figure 2Bii),
when a collagenous sheath forms around cartilaginous bone,
the AB solution fails to stain the cartilage, and therefore the
cartilaginous connective tissue appears absent. The presence of
cartilage beneath the collagen can however still be confirmed
using oblique light settings.

Histological Stains
Bone histology is often necessary to complement other imaging
techniques, such as whole mount imaging, and remains one of
the methods of choice to investigate the skeletal phenotype and
bone mineralization during developmental stages (Table 3). The
small size of zebrafish has forced researchers to adapt existing,
standard histological procedures performed on human and
murine skeletal tissues. High quality histological preparations
and extensive knowledge about the zebrafish skeletal anatomy
and development are indispensable for a correct skeletal
evaluation (36, 45). Since zebrafish share similar bone cell types
and cellular markers with mammals, it is possible to apply the
standard histological and histomorphometric staining protocols
available for mammalian bone, although with some technical
optimization. In zebrafish in particular, the cellular composition
analysis requires high-magnification imaging because skeletal
elements may consist of a very limited number of cells, that are
smaller in comparison with mammalian cells (24).

Unlike humans and mice, histology on zebrafish can easily
be performed on a whole specimen in different developmental
stages. Skeletal development can be followed in early juvenile
stages looking at the mineralization of the notochord sheath
and of cranial bones, while in adult zebrafish histology is most
often performed on the abdominal vertebra (the first 10 vertebrae
articulated with ribs, although this number is variable), the scales
and the caudal fin rays.

Histological Specimen Preparation
In general, the histological procedure for both whole adult
zebrafish and dissected bone samples, involves fixation in 4%
paraformaldehyde in phosphate buffer saline (PBS) pH 7.2
overnight at 4◦C, decalcification in 10% EDTA pH 7.2 for 7
days at 4◦C and dehydration according to standard histological
protocols or in a gradient series of acetone solutions (199).
Importantly, while no decalcification is required up to 20 dpf,
for juvenile to adult life stages the time of decalcification varies
and depends on the developmental stage and size. Juveniles from

21 dpf till adulthood are normally decalcified for 4 up to 7
days (257).

According to Oralova et al. (199), paraffin embedding does not
provide high quality histological details of zebrafish embryos and
of early juvenile stages. In these cases, epoxy, or methacrylate
resin embedding media are recommended (258). From epoxy
blocks, semi, and ultrathin sections can be obtained for
light and transmission electron microscopy, respectively, while
methacrylate is more suitable for histochemical reactions (24).
When using transgenic zebrafish lines expressing fluorescent
reporters, fluorescence is generally lost in paraffin embedded
samples. Cryosections preserve fluorescence, but significantly
decreases the quality of the morphological structure due to
processing artifacts. For this reason, Orolova and colleagues
developed a new protocol using glycol methacrylate (GMA)
embedding, which preserves both fluorescent labeling, epitopes
for immunostaining and morphology, making it a more suitable
choice (199).

Staining of Skeletal Sections
Different stains can be applied to histological sections of the
zebrafish skeleton. Masson’s trichrome and toluidine blue are
commonly used and generally allow visualization of collagen and
particular aspects of bone. Masson’s trichrome, which usually
stains muscle fibers red, collagen and bone in blue/green,
cytoplasm in light red/pink, and cell nuclei in dark brown to
black, reveals much thinner layers of collagen fibrils in a mutant
zebrafish model for type I collagenopathies, a heterogenous
group of connective tissue disorders caused by genetic defects
in type I collagen (120). Toluidine blue is often used to detect
bone cells, but is also a powerful dye to visualize proteoglycans,
elastin and, when using birefringent light—collagen type I and
type II fiber organization. Toluidine blue was used to detect
abnormalities in glycosaminoglycan pattern in the pharyngeal
skeleton of a zebrafish model for a recessive OI knock-out of
sec24C/sec24D, two components of the COPII vesicle complex
required for collagen secretion (259). Moreover, sections stained
with toluidine blue showed compressed and deformed vertebrae,
and excessive bone formation and remodeling at the vertebral
endplates in the Bruck syndrome plod2mutant, characterized by
the loss of type I collagen telopeptide lysyl hydroxylation (16).

The most widely used mineral staining assays include ARS,
calcein and von Kossa staining, which specifically bind to calcium
in the mineralized bone. In a study by Pasqualetti et al. (260),
successive staining with ARS and calcein allowed evaluation of
bone formation at the level of the circuli of growing scales in
wild-type animals (260). In the panther fish, characterized by
impaired osteoclast proliferation and differentiation, von Kossa
staining enabled detection of altered mineralization of the neural
arches (97).

Finally, collagen fiber maturation can be investigated
by sirius red staining under polarized light, as performed
to study the actinotrichia and lepidotrichia pattern in the
chihuahua zebrafish, carrying a mutation in collagen type I α1
chain (15, 93, 261).
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Transmission Electron Microscopy Analysis
Transmission electron microscopy (TEM) has also been used
to investigate zebrafish bone. TEM represents a powerful
method to analyze ultrastructural features of tissues since it
provides much higher magnification and resolution compared
to light microscopy, allowing visualization of cellular and
matrix structures at a subnanometer scale. For instance, an
altered distribution of bone collagen fiber diameter, a frequently
described feature in various skeletal pathological conditions, was
detected in the crtap and p3h1 knock-out models of OI type VII
and VIII by TEM, revealing the crucial role of the collagen post
translational modification complex in bone organization (17).
TEM was also used to show enlarged endoplasmic reticulum
cisterna in these models, reinforcing ER stress as a key element
in the OI phenotype and a potential target for new therapeutic
approaches (17, 226, 227).

Immunohistochemistry
Immunohistochemistry (IHC) on zebrafish sections is also
possible but limited, compared to mammal specimens, given the
reduced availability of specific zebrafish antibodies. Nonetheless,
with IHC, the spatiotemporal pattern of distribution of several
proteins, a key prerequisite for understanding development,
have been elucidated in embryos both in physiological and
pathological conditions (199). For example, a structural defect
in the extracellular matrix (ECM) has been detected in
the fndc3awue1/wue1 zebrafish where IHC of type II collagen
showed a loss of mature actinotrichia in 52 h post fertilization
(hpf) embryos and β-catenin staining revealed divergent ECM
assembly in the regenerated adult fin (262).

Determining the exact spatial localization of the protein
of interest in immunostained whole mount larvae is difficult,
especially for more deeply located tissues. To overcome this
limitation, it is possible to perform whole-mount IHC followed
by GMA embedding and sectioning, as was shown by Oralova
et al. (199). In this way, the distribution of labeled cells was
mapped and quantified allowing for close investigation of the
cellular behavior during tissue development, cell migration, and
adhesion events, as well as growth and differentiation. As an
example, the use of a pan cytokeratin antibody on Tg(sox17:egfp)
embryos allowed the authors to localize the protein of interest,
Sox17, and the epidermis in the same section (199).

Finally, alkaline phosphatase (Alp), expressed by osteoblasts
and required for the mineralization of extracellular matrix,
and Trap, expressed by osteoclasts, and important for bone
resorption, can both be immunostained to detect active
osteoblasts and osteoclasts, respectively, and have been used for
example to follow cell differentiation in scales (260).

Histological Analysis of Tissue
Regeneration
Zebrafish’s ability to repair caudal fin rays and scales has led to
the optimization of specific histological protocols for these tissues
involving both tissue sectioning as well as whole organ analysis
(263). The analysis of histological sections has made clear that
during regeneration in the caudal fin rays, cells near the site of
injury can dedifferentiate, proliferate and replace the damaged

or missing cells (196, 264). Furthermore, histological studies
have identified a population of Runx2/Sp7 positive chondrocytes
involved in bone repair, and have helped to elucidate the ability
of periosteal cells to generate cartilage in response to injury in
indian hedgehog homolog a (Ihha) mutants (265).

To study mineralization and cellular compositions of caudal
fin rays and scales, the tissue can also be isolated and directly
stained without the need for dehydration and sectioning. For
instance, by using ARS and calcein double staining and ALP
immunohistochemistry, the specific mineralization pattern of
bone forming cells in different areas of a scale was elucidated
(260). Masson’s trichrome staining of regenerating ray collagen
proved that multiple amputations do not affect the regenerative
bone capacity (266).

IS THE MEDAKA AN ALTERNATIVE TOOL
IN SKELETAL RESEARCH?

Together with zebrafish, medaka (Oryzias latipes) is the other
most frequently used small teleost in biomedical research. This
species native to East Asia, belongs to the Adrianichthyidae
family (order Beloniformes) and had an ancestor living in
saltwater (267).

Evolutionarily, zebrafish and medaka are distantly related
(268), with the last common ancestor dating back 110–200
million years ago (269). Being a small fish, medaka shares all
the advantages already described for zebrafish, although it has
a faster generation time, 2 vs. 3 months, shortening genetic
experiments (23).

Similar to zebrafish, the medaka shares common skeletal
developmental schemes as well as the presence of most of skeletal
cells, chondrocytes, osteoblasts, and osteoclasts with tetrapods,
but notably is missing osteocytes (23, 24).

The medaka genome, that underwent a whole duplication like
that of the zebrafish, is available and easy to manipulate using the
same techniques as in zebrafish research allowing easy generation
of skeletal disease models and transgenic lines (46, 208, 270–273).

The almost completely conserved phenotypic features
between zebrafish and medaka allow researchers to exploit the
same imaging techniques to analyze skeletal components in both
physiological and pathological conditions, either in terms of
x-ray imaging or more specialized methods, such as microCT,
whole mount or histological staining methods (23).

LIMITATIONS OF THE ZEBRAFISH MODEL

To take full advantage of the zebrafish as a model of human
diseases it is important to be aware of existing drawbacks. Due
to the extra whole genome duplication compared to mammals,
as mentioned above, about 20% of the zebrafish genes have
two functional copies, complicating the generation of knock-out
disease models (274). Furthermore, some of the duplicated genes
have functionally diverged, thus limiting the use of zebrafish
in accurately modeling human diseases (11, 24). Additionally,
the limited availability of antibodies against zebrafish proteins
and the difficulty in establishing tissue specific primary cell
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lines impairs zebrafish use in research. Finally, the generation of
conditional knock-outs and knock-ins is still difficult in zebrafish.
Although recently a method to integrate loxP sequences at
specific sites in the zebrafish genome using the CRISPR/Cas9
technology has been developed, and conditional mutants of
tbx20 and fleer have been generated employing Cre recombinase
technology (275, 276).

CONCLUSIONS

In the last decade the zebrafish has emerged as a unique model
to investigate common and rare human skeletal disorders. The
advances in gene editing techniques, from the initial insertion
of random genomic mutations by exposure to mutagenic
substances, to the knockdown expression of specific genes by
antisense morpholino oligonucleotides, to the change of the
genome at a specific site by nuclease technologies and their
simple use in zebrafish, have all allowed research groups to
generate new bone disease models. In particular, the versatile
and cheap CRISPR/Cas9 system has found a wide use in many
laboratories and undergone a series of optimizations allowing an
increasingly specific and error-free gene editing. Nevertheless, its
use for knock-in mutations still requires further optimization.
The combining of zebrafish skeletal disease models with already
available or newly generated transgenic lines, has contributed
tremendously to the advances made in in vivo analysis of bone
cells. The advances in confocal microscopy and the emergence

of light sheet microcopy allows for better visualization and

characterization of larval phenotypes in skeletal disease models,
taking advantage of larvae transparency. X-ray and microCT
have been optimized for small adult zebrafish bones, allowing
analysis of the whole skeleton or small elements at high
resolution. On the other hand, traditional skeletal specific dyes,
such as alizarin red and alcian blue remain a valuable tool to study
bone in larvae and adults. Finally, biomedical research has an
urgent need for high throughput drug screening platforms and
zebrafish models of skeletal diseases represent a bridge from in
vitro to in vivo approaches.

In conclusion, ongoing technological advances in analytical
techniques are making the zebrafish emerge as a unique
and powerful model for the investigation and understanding
of human skeletal disorders, and additionally as an efficient
platform for compound discovery.
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