
Received: 31 January, 2020 Revised: 19 May, 2020 Accepted: 04 June, 2020

DOI: 10.1002/nem.2127

SPECIAL ISSUE PAPER

Towards Distributed Emergency Flow Prioritization in SDN
Networks

Jerico Moeyersons*1 | Behrooz Farkiani2 | Tim Wauters1 | Bruno Volckaert1 | Filip De Turck1

1Department of Information Technology,
Internet Technology and Data Science Lab
(IDLab), Ghent University - imec, Gent,
Oost-Vlaanderen, Belgium

2Computer Engineering Department,
Amirkabir University of Technology,
Tehran, Iran

Correspondence
*Jerico Moeyersons, iGent,
Technologiepark-Zwijnaarde 126, B-9052
Gent, Belgium. Email:
jerico.moeyersons@ugent.be

Abstract

Emergency services must be able to transfer data with high priority over different
networks. With 5G, slicing concepts at mobile network connections are introduced,
allowing operators to divide portions of their network for specific use cases. In
addition, Software-Defined Networking (SDN) principles allow to assign different
Quality-of-Service (QoS) levels to different network slices.
This paper proposes a microservices-based framework, able to run both centralized
and distributed, that guarantees the required bandwidth for the emergency flows and
maximizes the best-effort flows over the remaining bandwidth based on their priority.
The proposed framework consists of an offline linear model, allowing to optimize the
problem for a batch of flow requests. For dynamic situations, an online approach is
also required in the framework to handle new incoming flows by calculating the path
with a shortest path algorithm and utilising a greedy approach in assigning bandwidth
to the intermediate flows.
In this article, the linear model is evaluated through simulation, the distributed archi-
tecture is evaluated through emulation while the online approach is validated through
physical experiments with SDN switches. The results show that the linear model is
able to guarantee the resource allocation for the emergency flows while optimizing
the best-effort flows with a sub-second execution time. The distributed architecture
is able to split up the managed network into different parts, allowing division of
work between controllers. As a proof-of-concept, a prototype with Zodiac switches
validates the feasibility of the centralized framework.

KEYWORDS:
Network Management, SDN, Linear Programming, Emergency Response

1 INTRODUCTION

During an emergency event, it is required to prioritize the network traffic that is coming from and going to the emergency services
in the presence of large civilian crowds in order to coordinate the relief and response. The enabler for this statement were the
terror attacks at Brussels airport and themetro station inMaalbeek onMarch 22, 20161. Right after the two explosions, the phone
networks in Belgium had broken down and saturated as a lot of people were looking to contact the emergency services, friends
and family. This also caused communication problems within the emergency services itself. To avoid similar cases in the near
future, ASTRID, the specialist telecoms operator for Belgium’s emergency and security services, launched priority SIM cards

2 MOEYERSONS J. ET AL

for specific persons. This will allow these persons (such as the minister of defense, first aid commanders, etc) to have secure and
priority access to the mobile network2. However, these priority SIM cards cannot be shared with other persons that may need
it during a specific emergency situation, because every situation can be different and will require other capabilities. Therefore,
a more generalized solution is required that can guarantee the bandwidth of emergency network traffic and can optimize the
other, non-priority traffic, over the remaining bandwidth in the network. The solution can be found by first looking into the next
generation mobile networks, called 5G.
Since Release Document 15 of the 3GPP (3rd Generation Partnership Project)3, the 5G system is introduced and explained.

In Release 16, expected to be formally released in June 2020, the completion of the 5G specifications as well as enhancements
to many early capabilities for 5G standalone mode, including URLLC (Ultra-Reliable and Low Latency Communication), V2X
Phase 3 and more are described. While some parts are thus already implemented and rolled out by the industry, the formal
release of 5G is expected be sometime in 20214. One of the future aspects of 5G systems is to cater a wide range of services
differing in their requirements and types of devices, going further than the traditional human-type communications and thus
includes machine-type communications. In that case, the network must be able to take different forms depending on the required
service, leading to the slicing of the network on a per-service basis. Technologies such as SDN (Software-Defined Networking)
and NFV (Network Function Virtualization) can be used to provide these network slicing concepts, simultaneously providing a
multitude of diverse services over a common underlying physical infrastructure5. This will allow network operators to provide
portions of their networks for specific use cases such as Iot (Internet-of-Things), streaming videos and smart energy grids.
There are three layers needed that enable network slicing in the future 5G networks, namely the infrastructure layer, the

network function layer and a service layer5, all containing the necessary tools for the operators, enterprises, etc. These three
layers are managed by a management and orchestration (MANO) controller. The architecture is illustrated in Figure 1 and
the infrastructure and network function layer will be further explained. The infrastructure layer refers to the physical network
infrastructure including both the RAN (Radio Access Network) and the Core Network (CN) but also the deployment, control
and management of the infrastructure. The allocation of resources to slices will also happen in this layer where the resources of
each slice can be revealed and managed by the network function layer and eventual extra layers such as the service layer. The
network function layer encapsulates the operations that are related to the configuration and life cycle management of the network
functions that offer end-to-end service in the network slice. These network functions must however be placed optimally over
the virtual infrastructure and chained together to work optimally. In this layer, the industry and researches have already found
a consensus about the role of SDN and NFV.6,7,8 NFV separates network functions from the underlying proprietary hardware
appliances,9 enabling the life cycle management and orchestration of the network functions. The network functions running on
dedicated hardware are thus transferred to software-based applications running in datacenters, network nodes, end-user premises
etc. SDN on the other hand is an important technology to implement dynamic and flexible network management by separating
the data plane from the control plane in networks10. Every SDN switch (further called switch) within an SDN network operates
as a simple packet forwarding device that is controlled by a logically centralized software program, the SDN controller. An SDN
controller performs all complex functions such as routing, naming and security checks. The controller defines the data flows
that occur in the network, considering that e.g. the communication is permissible by the network policy. If the controller allows
a flow, it computes a route for the flow and adds an entry for that flow in each of the switches along the path. Switches are now
responsible for managing their own flow tables whose entries are thus populated by the controller. The switch also performs
certain functions in an SDN network. When a new packet of a flow arrives at the switch, the switch forwards and encapsulates
it to the controller. The controller can thus decide to add the flow to the flow table of the switch or always drop the packets in
that flow. Other packets are forwarded to the specific output port of the switch, based on the entries in the flow table. Some
flow tables may include priority information set by the controller. The controller can also decide to drop specific packets, apply
bandwidth meters to limit the maximum bandwidth available to certain flows, etc. The communication between the controller
and the switches uses a standardized protocol API, most commonly with the OpenFlow specification.11 In this article we will
focus on the network function layer within the network slicing concept in order to provide a generalized solution for the above
described problem.
Therefore, this article presents a generalized and containerized framework to guarantee the bandwidth of emergency network

traffic by generating SDN high-priority flows while other, non-priority traffic, will receive best-effort resources. The proposed
framework is thus a use case within the slicing concept of 5G networks. Because different operators can collaborate in one net-
work topology or because multiple controllers canmanage the SDN-based network topology, a distributed approach is necessary.
This allows for better management of the topology while guaranteeing the emergency flows and optimizing the best-effort flows.
Fog computing and smart cities are other use cases that can benefit from the proposed framework.12 A simulation, emulation

MOEYERSONS J. ET AL 3

FIGURE 1 Generic framework representing various 5G architectural proposals5.

and prototype has been implemented in order to evaluate our proposed framework in terms of speed, scalability and accuracy.
In real cases, network operators deploying software-defined technologies can allow emergency flows to reserve specific slices
of bandwidth for a specific amount of time.
This article contributes to four main topics: (i) design of models for guaranteed bandwidth allocation for emergency flows

while optimizing best-effort flows over the remaining network resources, (ii) design of a joint online-offline approach to prac-
tically implement the model, (iii) design and implementation of a centralized and distributed microservices-based framework
and (iv) the validation of the model through simulations, emulations and practical evaluation. The remainder of this paper is
organized as follows: Section 2 presents related work. In Section 3, the problem description is given followed by the problem
formulation as linear model. Section 4 presents the architectural design and implementation of our framework followed by the
evaluation methods and the corresponding result in Section 5. Finally, Section 6 discusses conclusions and future avenues of
research.

2 RELATED WORK

The network slicing concept introduces the possibility to enable new features such as more fine-grained Quality-of-Service
(QoS), and a lot of research is done on SDN over the past few years.13,14 Different algorithms to provide QoS, but without
considering bandwidth guarantees, are presented.15,16 Yan et al.15 proposed a QoS solution based on SDN technology. They
first defined a cost function which assigns a positive value to each link based on bandwidth, length and congestion of the link.
Afterwards, they utilized a weighted shortest path algorithm17 to find multiple paths for each source and destination pair in
the network. When a new flow arrives, the path with the lowest cost is selected as the routing path for the flow. Zhang et al.16
proposed a QoS framework based on the OpenFlow protocol which dynamically calculates a path for each flow. If the flow is a
QoS-required flow, an algorithm based on Dijkstra is used to find the path with minimum delay and cost values.
Akella et al.18 presented an approach to allocate bandwidth and satisfy QoS requirements. They categorized flows into QoS

and best effort flows and defined a metric, used in path selection, that considers the requested rates. Shaohua et al.19 categorized
cloud applications into three levels based on the sensitivity to delay and bandwidth. A flow-based adaptive routing algorithm

4 MOEYERSONS J. ET AL

which utilizes Dijkstra and K-shortest path20 algorithms with the aim of maximizing the utilization of network resources is
proposed and evaluated through simulation by Tomovic et al.21 Pinto et al.22 defined four service classes including best effort
and bandwidth guaranteed classes. Each new flow is first assigned to the probing class and its behavior is monitored. After some
time, if the network can support its bandwidth along the path it will be reassigned to the bandwidth guaranteed class or otherwise
the best effort class. A method to provide bandwidth guarantees by using OpenFlow meters and queues is presented by Krishna
et al.23 The authors categorized flows into QoS flows which have minimum guaranteed bandwidth and best effort flows with no
requirements. For each QoS flow, first, an admission control process checks whether there is a path that can accommodate the
flow rate. After that, by using a meter at the ingress switch, the input rate of the flow is monitored and if it exceeds the defined
rate, the packets will be marked. Using three different queues at the egress port of each switch along the path for marked and
unmarked QoS and best effort flows, traffic prioritization is made possible. Morin et al.24 used MPLS tunnels to provide end-
to-end bandwidth guarantees, which is similar to the work of Krishna et al.23 where they used OpenFlow meters at the ingress
switches. For each flow the input rate of the flow ismonitored and based on that, a priority value is set in the header of each packet.
Then, an MPLS tunnel is used to route the packets toward the egress switch and the priority of each packet specifies its output
queue. Lu et al.25 utilized preplanned network slices to both satisfy QoS requirements andmaximize the overall throughput of the
network. The authors used the traffic history to create network slices which have fixed configurations during the network lifetime.
When a flow arrives, it is assigned to a slice by using the VLAN ID of the slice. The MaxStream framework26 is proposed in
order to maximize the number of streaming sessions and bandwidth provisioning. The authors formulated two Integer-Linear
Programming (ILP) problems. The first problem maximizes the number of accepted flows by considering the requested rate of
the flows. Then, the set of accepted flows is used in the second problem to maximize the total rate of the accepted flows. Since
the authors focused on multimedia streams, they ignored best effort flows with no QoS requirements.
More recent work proposes auction-based resource allocation in multi-tenant networks27 and an SDN-based architecture for

providing QoS to high-performance distributed applications.28 The auction-based resource management scheme provides an
online approach by means of a non-cooperative game theory. It achieves gains of up to 5 x reduction in transmission delays, but it
does not focus on cases where different types of flows are active in the network. The architecture to develop a QoS provisioning,
presented by Oliveira et al.,28 assumes that network operators implement specific QoS levels in the network topology whereby in
our case, we optimize the existing best-effort flows (and the corresponding QoS levels) over the network without pre-configured
QoS levels.
The most relevant studies are summarized in Table 1. In our previous article,29 we have utilized both online and offline

approaches to provide bandwidth guarantees for emergency flows and maximize the total rate of best effort flows. The offline
approach optimized all existing emergency and best-effort flows while the online approach routed, based on a weighted shortest
path algorithm, and allocated sub-optimally new incoming flows through a greedy heuristic in between offline batches. In this
article however, we recreated the previous solution as a containerized framework, allowing us to also evaluate the distributed
behaviour of our framework in different network topologies. As in the previous solution, only drop meter policies are used in this
article because the current OpenFlow versions30 do not support other policies such as 2-color-marking31 and 3-color-marking.32.

3 PROBLEM DESCRIPTION AND FORMULATION

In this section, the problem described in Section 1 is analyzed in detail. Afterwards, a linear model to solve this problem is
presented, aiming to guarantee emergency flows while the best-effort flows are optimized over the remaining bandwidth in
the network. This approach is designed for topologies where all the network flows are gathered based on prior knowledge or
predictions and no new flows will be created. In a more realistic case, where new flows arrive dynamically, a second approach,
further called the online approach, is described. It combines the solutions from the linear model, further called the offline
approach, with a sub-optimal solution to handle new incoming flows.

3.1 Problem description
Within an SDN network, OpenFlow-enabled switches are connected to one or more SDN controllers and different best-effort
flows in each of the switch flow tables are responsible for the correct routing of the network traffic. A flow is described using a
tuple <source, destination, class> whereby the class describes the traffic class of the flow based on a priority value and
the corresponding lower and upper bound bandwidth rates. In an emergency situation where e.g. a video feed must be transferred

MOEYERSONS J. ET AL 5

TABLE 1 Summary of related research

Reference Offline/Online Objective Path Selection Evaluation

Akella et al.18 Online Satisfy the QoS requirements
of the QoS flows Greedy Geni Testbed33

Pinto et al.22 Online Admission control and
traffic management Sink tree Mininet34

Krishna et al.23 Online Satisfy the minimum bandwidth
requirements of QoS flows Widest shortest path Open vSwitch35

and physical switches

Morin et al.24 Online Guarantee bandwidth of QoS flows SAMCRA36

and Dijkstra
Mininet and physical

switches

Samani et al.26 Online
Maximize the number of

streaming sessions
and bandwidth provisioning

Two ILP problems Mininet

Previous Paper29 Online &
Offline

Maximize the total rate of
the best effort flows and guarantee
bandwidth of high priority flows

Dijkstra (online), ILP
problem (offline)

Mininet &
Physical switches

This Paper Online &
Offline

Maximize the total rate of
the best effort flows and guarantee
bandwidth of high priority flows

in a distributed manner

Dijkstra (online), ILP
problem (offline) Mininet

over the network, emergency flows will be requested for prioritizing this traffic. These emergency flows need to be satisfied by
guaranteeing the requested bandwidth while the remaining bandwidth of the network should be allocated to the other best-effort
flows. The priority of the traffic classes will be used to optimize the best-effort flows where a higher priority requires a larger
share of the available network bandwidth.
This article proposes a solution to maximize the total input rate of the best-effort flows in the network while the requested

rates of the emergency flows are satisfied and the bandwidth capacity constraints of the network are respected. The assumption
is made that the requested rate for the emergency flows is not higher than the total available rate in the network. A linear
model, LP, is defined aiming to solve this problem. This LP formulation uses the principles of flow splitting, allowing flows
to be separated over different links which optimize the bandwidth resource allocation.37 The packet reordering effect that can
occur when using flow splitting, can be mitigated using hash-based splitting and packet tagging.38 However, flow splitting is not
supported by every OpenFlow-enabled switch, and a more generalized linear model is needed. Therefore, a second formulation,
ILP, is defined where flows cannot be split up and each flow needs to be assigned to a single path from source to destination.
Both offline models are evaluated afterwards.
The formulations of these two offline models are provided in Section 3.2 and Section 3.3. Notations used in the formulations

are summarized in Table 2. Some described constraints contain amultiplication of a continuous and a binary variable and because
this cannot be directly solved by state-of-the-art solvers, they need to be linearized first. These formulations will optimize the
best-effort flows over the remaining bandwidth that is not used by emergency flows. In case the offline models are not able to run
in real-time, the online approach manages new incoming flows in between offline batches, providing the shortest (but possible
sub-optimal) path with a greedy-based solution to allocate bandwidth to these new flows.

3.2 The ILP formulation
The ILP formulation will maximize the sum of the traffic rates of the best-effort flows, multiplied by their assigned weights over
the remaining bandwidth after allocating the emergency flows. This is illustrated in (1), subjected to the constraints [(2) - (5)]

6 MOEYERSONS J. ET AL

TABLE 2 Notations summary

Variables
yiu,v Equals 1 if the traffic for flow i passes through link (u, v)

Ri The rate assigned to best effort flow i

Parameters
F ≡M ∪ B Set of all flows

M Set of all emergency flows

B Set of all best effort flows

G = (V ,E) The graph of the network. V is the set of nodes and E is the set of physical links.
All links are bidirectional with different capacity in each direction

Z i
u,v The rate of flow i on link (u, v)

Cap(u,v) The bandwidth of the link between u and v, in the direction from u to v

Wi The weight assigned to flow i based on the traffic class it belongs to

�i The requested rate for emergency flow i

minRatei

maxRatei
The lower bound and upper bound for the rate of flow i based on the traffic class it belongs to.

Source (i)
Destination (i)

The source and the destination of flow i

and explained further below.
max

∑

i∈B|{u=Source(i),(u,v)∈E}
Wi ×Z i

u,v (1)

Subject to:

∑

(u,v)∈E
yiu,v −

∑

(v,u)∈E
yiv,u =

⎧

⎪

⎨

⎪

⎩

1 u = Source (i)
0 otherwise
-1 u = Destination (i)

∀u ∈ V , i ∈ F

(2)

∑

i∈B
yiu,v × R

i +
∑

i∈M
yiu,v × �i ⩽ Cap(u,v) (3)

∑

(u,v)∈E
yiu,v ⩽ 1 ∀u ∈ V , i ∈ F (4)

∑

(v,u)∈E
yiv,u ⩽ 1 ∀u ∈ V , i ∈ F (5)

Ri ∈
[

minRatei, maxRatei
]

(6)

yiu,v ∈ {0, 1} (7)

Cap (u, v) ⩾ �i ∀i ∈M (8)
(2) is the flow conservation constraint, guaranteeing a path from source to destination. (3) enforces the capacity limit of each

physical link and (4) and (5) are used to prevent loops as much as possible. (6) and (7) specify the bounds for the assigned rate
and whether traffic is passing through link (u, v). Finally in (8), the assumption is made that the network is at least able to
handle all requested emergency flows.

MOEYERSONS J. ET AL 7

The second constraint contains a multiplication of a continuous and a binary variable as in
∑

i∈B
yiu,v × R

i. The constraint can
be linearized as follows:

Z i
u,v ⩽ Cap(u,v) × yiu,v (9)

Z i
u,v ⩽ Ri (10)

Ri + Cap (u, v) × yiu,v −Z
i
u,v ⩽ Cap(u,v) (11)

Z i
u,v ∈

[

0, maxRatei
]

(12)

3.3 The LP formulation
The LP formulation will use the principles of flow splitting to solve the described problem. The main objective is again to
maximize the sum of the traffic rates of the best-effort flows multiplied by their assigned weights over the remaining bandwidth
after allocating the emergency flows. This is illustrated in (13), subjected to constraints [(14) - (16)] and explained further below.

max
∑

i∈B
Wi × Ri (13)

Subject to:

∑

(u,v)∈E
yiu,v −

∑

(v,u)∈E
yiv,u =

⎧

⎪

⎨

⎪

⎩

−Ri u = Source (i)
0 otherwise
−Ri u = Destination (i)

∀u ∈ V , i ∈ B

(14)

∑

(u,v)∈E
yiu,v −

∑

(v,u)∈E
yiv,u =

⎧

⎪

⎨

⎪

⎩

� u = Source (i)
0 otherwise
−�i u = Destination (i)

∀u ∈ V , i ∈M

(15)

∑

i∈F
yiu,v ⩽ Cap(u,v) (16)

Ri ∈
[

minRatei, maxRatei
]

(17)

yiu,v ∈ ℝ⩾0 (18)

Cap (u, v) ⩾ �i ∀i ∈M (19)
(14) and (15) are the flow conservation constraints for the best effort and emergency flows respectively. (16) enforces the

bandwidth capacity limits of physical links. The LP formulation is solvable in polynomial time.39,40

3.4 Online approach
In a realistic scenario, the LP or ILP model runs in batches in order to continuously optimize the network topology. When a
new flow arrives in between this batch of the linear model, it should be handled appropriately in order to avoid long delays in
assigning this new flow. Therefore, the online approach handles new incoming flows through a sub-optimal solution in between
the offline batches. The shortest path between source and destination is determined by using a weighted shortest path algorithm
based on Dijkstra’s algorithm.17 A new incoming emergency flow will obtain its requested bandwidth while newly arriving
best-effort flows will be temporary assigned to the average best-effort traffic class. In case there is no bandwidth available for
the new flow, a greedy heuristic determines which other best-effort flows should be decreased in bandwidth until the offline
batches optimizes this again. This is illustrated in Algorithm 1 and the complete online approach is described in Algorithm 2.
Note that the solution from the online approach is only temporary because it will be replaced with the optimal results from the
linear model.

8 MOEYERSONS J. ET AL

Algorithm 1 Greedy heuristic
� ← requested bandwidth
C ← traffic classes sorted by priority (low to high)
for i in count(C) − 1 do

a← �∕2
� ← �∕2
band[i] ← a

end for
band[count(C) − 1] ← �
for each traffic_class in C do

i← index
s← number of meters in traffic_class
for each meter in traffic_class do

meter ← meter − band[i]∕s
end for

end for

Algorithm 2 Online approach
R← average best-effort traffic rate
B ← best-effort flows
while batch is running do

X ← new incoming flow
if X is emergency then

� ← requested bandwidth by X
else

� ← R
end if
if � is not available then

apply_greedy_heuristic()
end if
apply_flows()

end while
run_batch()

4 FRAMEWORK DESIGN

In this section, themicro-service based framework design is explained. First, the different architectural components are identified.
Afterwards the different components are prototyped in order to create the proposed framework.

4.1 Architectural components and tasks
To be able to identify themicroservices-based architecture of our proposed framework, different components need to be identified
based on the problem described in Section 1 and Section 3.1. The main goal is to manage SDN network topologies, so an SDN
controller is the first component of our architecture. Next, the offline and online problem should be able to manage existing and
new incoming flows, andwill be called the solver. The offline problem requires network topology information in order to calculate
the optimal solution for our problem, a data store is thus needed. Finally, a REST API is required in order to communicate with
and manage the different components. An overview of the different components is depicted in Figure 3.
Every component is responsible for a specific set of tasks. The controller component is responsible for the management of

the corresponding network topology. It will handle new incoming flows by forwarding them to the solver in order to receive

MOEYERSONS J. ET AL 9

FIGURE 2 Topology of the MySQL database. The tables devices, device_ports, meters, topology and traffic_classes are filled
in based on the network topology. The table flows contains the required flows in the topology and flow_rates and flow_routings
contain the optimized best-effort and emergency flows after solving the offline problem.

a correct path and traffic class. The controller will also update the database with the discovered topology and when the solver
notifies the controller that a new solution is available, the controller pulls this new information from the database. The main task
of the solver is thus to optimize the current flows in the current operational network topology, both with the online and offline
method described in Section 3. Finally, the REST API component creates an API in order to manage and retrieve information
from the solver and the controller components. It is also responsible for managing multiple instantiations of this architecture, as
will be explained in the next section.

4.2 Framework prototype
Now that the different architectural components are identified, each component has been prototyped. The different components
are containerized using Docker CE Version 19.03.41 The controller component is instantiated with a custom Ryu SDN Con-
troller42 and an API implemented with the Python Flask framework43 in order to communicate with the other components. The
solver component is split up into two containers, the online problem is responsible for the communication with the controller,
calculating the shortest path from source to destination for new incoming flows and allocating bandwidth based on the greedy
heuristic, both explained in Section 3.4, and finally it runs the offline model in batches. The offline model pulls the topology
information from the database and stores the results. The offline model is based on openJDK44 version 8 update 181 and IBM
ILOG CPLEX45 v12.7. The database component is instantiated as a MySQL version 8.0.18 database46 and the table design is
illustrated in Figure 2 and further explained.
The flows table contains the different flows in the network topology. Each flow is connected to a specific traffic class in the

traffic_classes table and a traffic class is connected to two bandwidth meters, one for specifying the minimum rate and one
for the maximum rate. Each flow is also twice connected to the devices table, one for specifying the source and one for the
destination. This devices table also contains the different switches in the network topology. Each device has one or more ports,
enlisted in the device_ports table and the links between the different devices, forming the actual network topology, is stored in
the topology table. The flow_routings table contains the different hops per flow and the flow_rates table contains the assigned

10 MOEYERSONS J. ET AL

FIGURE 3 The architectural components and the instantiation of our proposed framework. The dotted circle illustrates a cen-
tralized architecture while the whole figure illustrates a distributed approach where two network operators collaborate, both
having their own solvers, controllers and data stores.

meters per flow. These two tables are filled in by the offline model. The status table contains the practical information about the
different calculations performed during the processing of the offline model.
The proposed framework can be used both centrally and distributed. In case of a centralized architecture, illustrated in Figure 3

within the dotted circle, only one controller is responsible for the whole network and the network topology is thus added com-
pletely to the MySQL database. This approach is similar to the approach used in our previous paper29. A distributed approach
enables the network topology to be managed by different controllers and is also a more realistic case, as for example different
operators are responsible for the entire network. This is shown in Figure 3 and further explained. The two controllers will add a
special virtual switch called xx to connect it with the border switches1 of their part of the network. When the online or offline
problem calculates flow routes going over multiple network providers, the controllers detect that the xx switch is part of the
route, and ask the other controller(s) to check which of their border switches are connected with the xx switches in their part.
Once the next part is found, the controller constructs a path from the border switch under its’ control to the border switch in
the next part, allowing the network traffic to be sent over different parts in the topology. The connections between the border
switches in the different parts of the network topology are based on prior knowledge.
This distributed architecture allows to calculate optimal paths for best-effort flows after guaranteeing the bandwidth for emer-

gency flows. In case when the network topology is great, or the hardware resources to run the framework are limited, the
framework offers a division of the topology in several smaller parts in order to calculate the necessary results.

5 IMPLEMENTATION, SIMULATION AND EVALUATION

In this section, the proposed framework is evaluated in three ways. First, the offline models described in Section 3.2 and
Section 3.3 are evaluated by simulation. Next, the framework is implemented and deployed on different systems in order to eval-
uate the distributed behaviour on an emulated network topology. Finally, the framework is evaluated on a smaller scale together
with a practical environment.

5.1 Simulation Environment
The proposed offline models are first validated using simulations. The evaluated topology, as shown in Figure 4, consists of 16
ingress/egress points of traffic and 32 switches. Switches 16-30 are backbone switches and the backbone network has the same
topology as the Internet2 network.47 This topology is used to simulate a provider network catering to about 2050 flows. Switches

1A border switch is a switch in the current part of the topology that is connected to a switch in another part of the topology.

MOEYERSONS J. ET AL 11

FIGURE 4 The simulation topology based on the Internet2 network.

TABLE 3 Specification of the network scenario

Source/Destination of All Flows 0 - 15

Backbone Network (40 Gbps) 16 - 30

Source/Destination Emergency Flows {0, 2, 3, 5, 7, 8, 11, 13, 14}

DSL Network 39 - 46

Mobile Network 31 - 38

31-38 are mobile base stations and the ingress/egress points attached to them represent mobile users. Switches 39-46 are DSL
switches and the ingress/egress points attached to them represent DSL users. The bandwidth of each the backbone network link
is 40 Gbps bidirectional. The specifications of the network scenario are summarized in Table 3. IBM ILOG CPLEX v12.7 is
used to implement the models and the simulations are executed on a server with 2 Xeon E5-2690 v4 CPUs operating at 2.6GHz
with 16GB of memory.
We defined 3 traffic classes with ranges [0, 25000], [0, 10000] and [0, 5000] Kbps with priorities of 100, 50 and

10, respectively for best effort flows. Moreover, the requested rate of each emergency flow was randomly chosen from set
{25000, 10000, 5000} Kbps because of the variation in types of emergency network traffic. Each best effort flow was randomly
assigned to a class. Each evaluation result is the average of 30 simulation runs.

5.2 Simulation Evaluation - Results
The performance of the two models is compared in Figure 5. By increasing the number of best effort flows, the solving time
increases in both models. However, the increase rate of the ILP model is exponentially higher than for the LP model. For 2000
best effort flows along with 50 emergency flows, the ILP model solves the problem in almost two minutes. It is worthwhile to
mention that the solving time of the ILPmodel can further be decreased by up to one order of magnitude when using acceleration
methods such as the novel algorithm based on the Benders decomposition method as described in Behrooz et al.48

12 MOEYERSONS J. ET AL

TABLE 4 Comparison of the LP and ILP model simulation results

LP Model ILP Model
Solving Time-Before(ms) 484 18408

Solving Time-After(ms) 484 15210

FIGURE 5 The solving time of the ILP and LP models. Standard deviations are shown in the form of error bars

To investigate the operational details of the models, we first generated 500 best effort flows and solved both the ILP and LP
models. After that, we added 50 emergency flows and solved the problems again. Both models reported the same optimal values
before and after adding the emergency flows which means that the same result is achieved by both models and the LP model
solved the problem 30 times faster than the ILP model. After adding the emergency flows, the models decreased the rate of best
effort flows to allocate the requested bandwidth of the emergency flows which resulted in a lower optimal value. A summary of
the results is shown in Table 4.

5.3 Prototype Implementation
To implement the proposed framework, both an emulated network topology (as illustrated in Figure 4) and a practical network
topology consisting of Zodiac SDN switches,49,50 depicted in Figure 6 are used. The emulated network topology, used to evaluate
the distributed approach, is implemented using Mininet version 2.3.0d651 and contains 420 flows. The default installation of
Mininet only supports OpenFlow version 1.0, but because our framework will use OpenFlow meters to implement the different
traffic classes, OpenFlow version 1.3 or higher is required. In order to let Mininet use OF 1.3, the CPqD switch52 must be
installed together with Mininet.2 The distributed approach is evaluated using 2 systems, one with 24GB RAM and 2 CPUs, each
with 6 cores and hyper-threading enabled running at 2.4GHz3 and one with only 2GB RAM and 1 CPU and 1 core (without

2To install mininet with the CPqD switch, use the following command: mininet/util/install.sh -n3f
3The command nproc -all outputs 24 (2 CPUs x 6 cores x 2 threads per core). We will use 24 processing units in the remainder of this paper to refer to this server.

MOEYERSONS J. ET AL 13

SW1

SW2 SW3 SW4

SW5

SW6

SW7

SW8

SW9

d2

d3
d4

d5

d7

d8

d9

d10

d6

d1

FIGURE 6 Topology of the evaluation environment. Sw1 is a Zodiac GX switch, sw2 - sw9 are Zodiac FX switches and d1 -
d10 are Raspberry Pi’s 3.

TABLE 5 Traffic classes (all in kbps)

Id Name Minimum Rate Maximum Rate
1 High Priority 0 25000

2 Normal Priority 0 10000

3 Low Priority 0 5000

TABLE 6 Requested rates per flow based on the destination. Rates between 0 and 4999 kbps are part of traffic class 3, rates
between 5000 and 9999 kbps are part of traffic class 2 and rates higher dan 10000 kbps are part of traffic class 1.

Destination Traffic class Destination Traffic class Destination Traffic class
d1 3 d2 3 d3 3

d4 3 d5 3 d6 2

d7 2 d8 2 d9 2

d10 1

hyper-threading) running at 1.12GHz. The practical network topology is built with 1 Zodiac GX switch50 (sw1), 8 Zodiac FX
switches49 (sw2 - sw9) and 10 Raspberry Pi’s model 3B (d1 - d10). The Zodiac GX has an uplink of 1 gbps while the Zodiac
FX switches have an uplink of 100 mbps. The used traffic classes are illustrated in Table 5 and the requested bandwidth rates
based on destination are summarized in Table 6. OpenFlow v1.3 meters were used to specify the upper bound and lower bound
rates of each traffic class. Note that with the provided meters in this prototype, the offline model will rather assign the meter with
0 kbps bandwidth to flows with a lower priority in case there is a shortage. When more meters per traffic class are allocated,
a downgrade is possible, but this is currently not implemented. The used system to run the framework has 16GB RAM and 4
cores running at 2.8GHz. Because the same framework is used for both the emulated and the practical topology and because the
Zodiac switches do not support flow splitting, the offline model is implemented with the slower ILP model.
Assume

{

m1, m2,… , mn
}

are n defined meter rates and mi ⩽ mi+1 ∀i. The weight of best effort flow i is calculated by
⌈

Pi ×
mn
m1+1

⌉

in which Pi is the priority of the class that the flow belongs to and ⌈x⌉ is the ceiling function.

14 MOEYERSONS J. ET AL

FIGURE 7 The ILP execution time for the left part, right part and full part on a server with 24GB RAM and 24 processing
units, each running at 2.4GHz.

When a new flow arrives, it is added to the database by the controller. When the previous batch of the offline model is finished,
the online model runs it again after a certain specified amount of time or when the previous calculation is done. The ILP model
reads the database information, solves the problem and stores the results in the database. The output of the ILP is the assignment
of each flow to one meter and the routing of flows over the network. To assign a flow to a meter, whether it be best effort flows or
emergency flows, the implementation rounds down the calculated rate to the nearest defined meter rate. Based on the simulation
results summarized in Section 5.2, the ILP model provides optimal results with a high number of flows but not in real-time. To
combat this, we run the offline model consecutively while the online approach is used to route and to apply the corresponding
meter to new incoming flows. Best-effort flows will be assigned to the average meter with 10000 kbps while emergency traffic
will be assigned to their requested rate. To decrease the impact on the current best-effort and emergency flows, a greedy heuristic
is applied to reassign available bandwidth from other best-effort flows, based on their priority.

5.4 Distributed architecture - evaluation
The distributed architecture with the emulated network topology is first evaluated on the system with a lot of resources (24GB
RAM and 24 processing units in total). The network topology is split up into two parts, further called the left part and the right
part. The left part contains switches 16-21, 23, 24, 31-34, 39-42 and the right part contains switches 22, 25-30, 35-38, 43-46.
The ILP model is executed 10 times for both parts and the results are visualized in Figure 7. The ILP execution time for the
whole network topology (full part) is also added in this figure. It is clear that the division of the network results in a speed-up
of about 15%. However, the flow routing results of the two smaller parts differ from the full part but the objective from the ILP
model is the same. This means that there are different routes in both cases, and with the distributed architecture it is possible that
a flow is not routed along its shortest path, but this is without any noticeable delay. Because the objective from the ILP model
is the same, the same optimization is achieved in both cases, meaning that the flows received the same traffic classes.
Next, the distributed architecture is evaluated on a system with fewer resources (2GB RAM and 1 processing unit), whereby

the network topology is again split up into the same two parts. The results of this evaluation are illustrated in Figure 8. In
comparison with the other server, the results of the full part are not included in this figure, because the calculation was not

MOEYERSONS J. ET AL 15

FIGURE 8 The ILP execution time for the left part and right part on a server with 2GB RAM and 1 processing unit, running at
1.12GHz. Note that the ILP execution for the full part had not enough memory and is thus not visualized.

possible due to the lack of memory. This already illustrates the importance of the distributed architecture, because most SDN
controllers have limited resources in practice. Both parts achieve the same objective as in the evaluation on the other server, but
it takes about 51% more time to come to a solution.

5.5 Evaluation of the practical network topology - Example scenario
The framework with the centralized architecture is also evaluated on a practical network topology to study the behavior of the
online approach and the findings are illustrated in Figure 9. When the batch calculation is running, the online approach will
handle the new incoming flows. The flow responsible for the traffic going from d1 to d5, which is part of traffic class 3, is already
allocated together with 87 other flows. Next at time t1, a new incoming emergency flow going from d1 to d10 is added to the
network, with a requested bandwidth of 25,000 kbps. Because of its priority, the requested bandwidth is allocated and the greedy
heuristic reduced the bandwidth from the other best-effort flows. The flows part of traffic class 3 have an average decrease of 284
kbps. Afterwards at time t2, a flow going from d8 to d10 is added, which is part of traffic class 1. As this is a best-effort flow, the
average best-effort meter with a bandwidth of 10,000 kbps is allocated. The greedy heuristic again determines the bandwidth
for each best-effort flow without impacting the current emergency flows. Finally, the batch calculations (visualized by the gray
vertical line at time t3 in Figure 9) optimizes the flows of the whole network again.
It is clear that the online approach is guaranteeing the bandwidth of the emergency flows and creates a sub-optimal solution

for the new incoming best-effort flows. The sub-optimal solution has 2.76% difference per flow compared to the result of the
offline batches in the whole example scenario. In some cases, this difference is 100% because the online approach does not drop
any new incoming flows, while the offline batches can decide to drop a flow much faster as explained in Section 5.3. Afterwards,
the batch calculations optimize the best-effort flows over the remaining available bandwidth not used by emergency flows. The
solving time of the batch calculations before and after adding 50 emergency flows is illustrated in Table 7 and shows that the
proposed offline model can solve small-sized networks efficiently.

16 MOEYERSONS J. ET AL

FIGURE 9 Throughput of 2 best-effort flows and 1 one emergency flow. At time t1, the emergency flow is added and assigned
by the online approach. At time t2, another best-effort flow is added and assigned by the online approach. At time t3, the offline
batch has calculated and applied the optimal solution.

TABLE 7 The ILP model results

Before After
Solving Time (ms) 20520.234 17489.531

6 CONCLUSION

Emergency network traffic needs to have priority over best-effort traffic during emergency situations. With the expected release
of 5G, slicing concepts at network level will enable prioritization of the emergency network traffic over mobile connections. In
addition, SDN principles allow to assign different QoS levels to different network slices.
In this paper, we therefore first propose two mathematical linear models that guarantee the requested rate of emergency flows

and maximize the best-effort flows over the remaining available bandwidth. The LP model uses the principles of flow splitting,
which is not supported by every OpenFlow-enabled switch. Therefore, a second linear model, ILP, is proposed that is supported
by most of the OpenFlow-enabled switches running version 1.3 or higher. Afterwards, an online approach is explained, handling
new incoming flows in between batches of the linear model. The shortest path, based on Dijkstra’s algorithm, is calculated and
a greedy heuristic is applied to obtain bandwidth from the best-effort flows. When the new incoming flow is an emergency
flow, the requested bandwidth will be allocated by any means, a new incoming best effort flow will be allocated with the
average bandwidth of all the active best-effort flows. Finally, a microservices-based framework is discussed and prototyped.
This framework is able to run both in a centralized and a distributed manner, enabling scalability over larger network topologies.
The distributed approach is necessary as different network operators can collaborate in managing cross-operator flows in the
network topology or when the hardware resources are limited.

MOEYERSONS J. ET AL 17

The two offline models are first evaluated by simulations and the results show that both the ILP and LPmathematical problems
can be used with the ILP model exhibiting plus-second execution time while the LP model works 30 times faster for 500 best-
effort flows and 50 emergency flows. Next, the distributed approach is evaluated by using an emulated network. Results show
that the distributed architecture is a solution in case there is a lack of resources, allowing to split up the network topology in
multiple parts in order to calculate and optimize the emergency and best-effort flows. When enough resources are available, a
split up of the network in two parts results in speed up around 15%.When the results of the distributed architecture are compared
with the centralized architecture, it shows that different paths are chosen for some flows, but the allocation of resources remain
the same. Afterwards, the centralized framework is evaluated on an SDN network consisting of Zodiac Switches and Raspberry
pi’s. The Zodiac switches do not support flow splitting, so the use of the slower ILP model is obliged. The practical evaluation
shows that the online problem efficiently handles new incoming flows while guaranteeing the bandwidth for all the emergency
flows and providing a sub-optimal temporary solution for the best-effort flows.
Research concerning the distributed approach when three or more controllers are connected is envisaged as future work. This

is because the overhead of adding a virtual switch that will connect the border switches of a specific part can be greater, possibly
resulting in longer calculation times for the flow allocation. An improved network topology discovery service that is able to
optimally divide the network into different parts along with better handling of inter-part flows can offer a solution.

References

1. Griffin A. Brussels attacks: Phone networks down and saturated after explosions at Zaventem airport
and Metro station. Independent 2016. https://www.independent.co.uk/life-style/gadgets-and-tech/news/
brussels-attacks-phone-networks-zaventem-airport-explosion-maelbeek-metro-live-updates-a6945571.html.

2. Belgium: ASTRID launches the next generation of its Blue Light Mobile service - Critical Communications Today. 2017.
http://www.criticalcomms.com/news/belgium-astrid-launches-the-next-generation-of-its-blue-light-mobile-service.

3. Release 15 - 3GPP. https://www.3gpp.org/release-15.

4. O’Donnell B. The Evolution of 5G. Forbes 2019. https://www.forbes.com/sites/bobodonnell/2019/11/12/
the-evolution-of-5g.

5. Foukas X, Patounas G, Elmokashfi A, Marina MK. Network Slicing in 5G: Survey and Challenges. IEEE Communications
Magazine 2017; 55(5): 94–100. https://doi.org/10.1109/MCOM.2017.1600951doi: 10.1109/MCOM.2017.1600951

6. Rost P, Banchs A, Berberana I, et al. Mobile network architecture evolution toward 5G. IEEE Communications Magazine
2016; 54(5): 84–91.

7. Zhou X, Li R, Chen T, Zhang H. Network slicing as a service: enabling enterprises’ own software-defined cellular networks.
IEEE Communications Magazine 2016; 54(7): 146–153.

8. Banchs A, Breitbach M, Costa X, et al. A Novel Radio Multiservice adaptive network Architecture for 5G networks. 2015
IEEE 81st Vehicular Technology Conference (VTC Spring) 2015: 1–5.

9. Hawilo H, Shami A, Mirahmadi M, Asal R. NFV: State of the art, challenges, and implementation in next generation mobile
networks (vEPC). IEEE Network 2014; 28(6): 18–26. doi: 10.1109/MNET.2014.6963800

10. Kim H, Feamster N. Improving network management with software defined networking. IEEE Communications Magazine
2013; 51(2): 114–119. doi: 10.1109/MCOM.2013.6461195

11. Stallings W. The Internet Protocol Journal Software-Defined Networks and OpenFlow. The Internet Protocol Journal 2013;
16(1): 1–40. doi: 10.1097/00004583-201007000-00001

12. Santos J, Wauters T, Volckaert B, De Turck F. Fog computing: Enabling the management and orchestration of smart city
applications in 5g networks. Entropy 2018; 20(1): 4.

13. Karakus M, Durresi A. Quality of Service (QoS) in Software Defined Networking (SDN): A survey. Journal of Network
and Computer Applications 2017; 80: 200–218.

https://www.independent.co.uk/life-style/gadgets-and-tech/news/brussels-attacks-phone-networks-zaventem-airport-explosion-maelbeek-metro-live-updates-a6945571.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/brussels-attacks-phone-networks-zaventem-airport-explosion-maelbeek-metro-live-updates-a6945571.html
http://www.criticalcomms.com/news/belgium-astrid-launches-the-next-generation-of-its-blue-light-mobile-service
https://www.3gpp.org/release-15
https://www.forbes.com/sites/bobodonnell/2019/11/12/the-evolution-of-5g
https://www.forbes.com/sites/bobodonnell/2019/11/12/the-evolution-of-5g
https://doi.org/10.1109/MCOM.2017.1600951
http://dx.doi.org/ 10.1109/MCOM.2017.1600951
http://dx.doi.org/10.1109/MNET.2014.6963800
http://dx.doi.org/10.1109/MCOM.2013.6461195
http://dx.doi.org/10.1097/00004583-201007000-00001

18 MOEYERSONS J. ET AL

14. Oh B, Vural S, Wang N, Tafazolli R. Priority-Based Flow Control for Dynamic and Reliable Flow Management in SDN.
IEEE Transactions on Network and Service Management 2018; 15(4): 1720-1732. doi: 10.1109/TNSM.2018.2880517

15. Yan J, Zhang H, Shuai Q, Liu B, Guo X. HiQoS: An SDN-based multipath QoS solution. China Communications 2015;
12(5): 123–133.

16. Zhang Y, Tang Y, Tang D, Wang W. QOF: QoS Framework Based on OpenFlow. 2015 2nd International Conference on
Information Science and Control Engineering 2015: 380–387.

17. Dijkstra EW. A Note on Two Probles in Connexion with Graphs. Numerische Mathematik 1959; 1(1): 269–271. doi:
10.1007/BF01386390

18. Akella AV, Xiong K. Quality of Service (QoS)-Guaranteed Network Resource Allocation via Software Defined Networking
(SDN). 2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing 2014: 7–13.

19. Cao S, TongM, Lv Z, JiangD.A Study onApplication-Towards BandwidthGuarantee Based on SDN. 2016 IEEEGlobecom
Workshops (GC Wkshps) 2016: 1–6.

20. Yen JY. Finding the K Shortest Loopless Paths in a Network. Management Science 1971; 17(11): 712–716.

21. Tomovic S, Radusinovic I. Fast and efficient bandwidth-delay constrained routing algorithm for SDN networks. 2016 IEEE
NetSoft Conference and Workshops (NetSoft) 2016: 303–311.

22. Pinto P, Cardoso R, Amaral P, Bernardo L. Lightweight admission control and traffic management with SDN. 2016 IEEE
International Conference on Communications (ICC) 2016: 1–7.

23. Krishna H, Adrichem NLMv, Kuipers FA. Providing bandwidth guarantees with OpenFlow. 2016 Symposium on Commu-
nications and Vehicular Technologies (SCVT) 2016: 1–6.

24. Morin C, Texier G, Phan C. On demand QoS with a SDN traffic engineering management (STEM) module. 2017 13th
International Conference on Network and Service Management (CNSM) 2017: 1–6.

25. Lu Y, Fu B, Xi X, Zhang Z, Wu H. An SDN-Based Flow Control Mechanism for Guaranteeing QoS and Maximizing
Throughput. Wireless Pers Commun 2017; 97(1): 417–442.

26. Samani A, WangM. MaxStream: SDN-based FlowMaximization for Video Streaming with QoS Enhancement. 2018 IEEE
43rd Conference on Local Computer Networks (LCN) 2018: 287–290.

27. D’Oro S, Galluccio L, Mertikopoulos P, Morabito G, Palazzo S. Auction-based resource allocation in OpenFlow multi-
tenant networks. Computer Networks 2017; 115(318306): 29–41. http://dx.doi.org/10.1016/j.comnet.2017.01.010doi:
10.1016/j.comnet.2017.01.010

28. Oliveira AT, Martins BJC, Moreno MF, Gomes ATA, Ziviani A, Borges Vieira A. SDN-based architecture for pro-
viding quality of service to high-performance distributed applications. International Journal of Network Management
2019(March): 1–21. doi: 10.1002/nem.2078

29. Moeyersons J, Farkiani B, Bakhshi B, et al. Enabling emergency flow prioritization in SDN networks. CNSM2019, the 15th
International Conference on Network and Service Management 2019: 1–8.

30. Specifications OS. 1.5. 1. Open Networking Foundation 2015; 3.

31. Understanding CoS Two-Color Marking - TechLibrary - Juniper Networks. 2019. https://www.juniper.net/documentation/
en_US/junos/topics/concept/cos-ex-series-two-color-marking-understanding.html.

32. Haddock S. Frame Metering in 802.1 Q. 2013.

33. GENI. 2019. https://www.geni.net/.

34. Mininet Overview - Mininet. http://mininet.org/overview/.

http://dx.doi.org/10.1109/TNSM.2018.2880517
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1016/j.comnet.2017.01.010
http://dx.doi.org/ 10.1016/j.comnet.2017.01.010
http://dx.doi.org/ 10.1016/j.comnet.2017.01.010
http://dx.doi.org/10.1002/nem.2078
https://www.juniper.net/documentation/en_US/junos/topics/concept/cos-ex-series-two-color-marking-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/cos-ex-series-two-color-marking-understanding.html
https://www.geni.net/
http://mininet.org/overview/

MOEYERSONS J. ET AL 19

35. Open vSwitch. https://www.openvswitch.org/.

36. Mieghem PV, Kuipers FA. Concepts of exact QoS routing algorithms. IEEE/ACM Transactions on Networking 2004; 12(5):
851–864.

37. Tuncer D, Charalambides M, Clayman S, Pavlou G. Flexible Traffic Splitting in OpenFlow Networks. IEEE Transactions
on Network and Service Management 2016; 13(3): 407–420. doi: 10.1109/TNSM.2016.2580666

38. YuM, Yi Y, Rexford J, ChiangM. Rethinking virtual network embedding: substrate support for path splitting and migration.
ACM SIGCOMM Computer Communication Review 2008; 38(2): 17–29.

39. Khachiyan LG. Polynomial algorithms in linear programming. USSR Computational Mathematics and Mathematical
Physics 1980; 20(1): 53–72. doi: 10.1016/0041-5553(80)90061-0

40. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. MIT press . 2009.

41. Merkel D. Docker: lightweight linux containers for consistent development and deployment. Linux journal 2014; 2014(239):
2.

42. Tomonori F. Introduction to ryu sdn framework. Open Networking Summit 2013.

43. Grinberg M. Flask web development: developing web applications with python. O’Reilly Media, Inc. . 2018.

44. OpenJDK. https://openjdk.java.net/.

45. IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/be-en/marketplace/ibm-ilog-cplex.

46. DuBois P. MySQL. New riders publishing . 1999.

47. Internet2 Network Infrastructure Topology. 2018. https://www.internet2.edu/media/medialibrary/2019/04/10/
I2-Network-Infrastructure-Topology-All-legendtitle.pdf.

48. Farkiani B, Bakhshi B, Ali MirHassani S. Stochastic virtual network embedding via accelerated Benders decomposition.
Future Generation Computer Systems 2019; 94: 199–213.

49. Zanna P. Zodiac FX. 2019. https://northboundnetworks.com/collections/zodiac-fx/products/zodiac-fx.

50. Zanna P. Zodiac GX. 2019. https://northboundnetworks.com/collections/zodiac-gx.

51. De Oliveira RLS, Schweitzer CM, Shinoda AA, Prete LR. Using mininet for emulation and prototyping software-defined
networks. In: IEEE. ; 2014: 1–6.

52. Fernandes EL, Rojas E, Alvarez-Horcajo J, et al. The Road to BOFUSS: The Basic OpenFlow User-space Software Switch.
CoR 2019; abs/1901.06699. http://arxiv.org/abs/1901.06699.

https://www.openvswitch.org/
http://dx.doi.org/10.1109/TNSM.2016.2580666
http://dx.doi.org/10.1016/0041-5553(80)90061-0
https://openjdk.java.net/
https://www.ibm.com/be-en/marketplace/ibm-ilog-cplex
https://www.internet2.edu/media/medialibrary/2019/04/10/I2-Network-Infrastructure-Topology-All-legendtitle.pdf
https://www.internet2.edu/media/medialibrary/2019/04/10/I2-Network-Infrastructure-Topology-All-legendtitle.pdf
https://northboundnetworks.com/collections/zodiac-fx/products/zodiac-fx
https://northboundnetworks.com/collections/zodiac-gx
http://arxiv.org/abs/1901.06699

20 MOEYERSONS J. ET AL

How to cite this article: Moeyersons J, Behrooz F, Wauters T Volckaert B, and De Turck F (2020), Towards Distributed
Emergency Flow Prioritization in SDN Networks, Int J Network Mgmt., 2020;e2127. https://doi.org/10.1002/nem.2127

https://doi.org/10.1002/nem.2127

	Towards Distributed Emergency Flow Prioritization in SDN Networks
	Abstract
	Introduction
	Related Work
	Problem Description and Formulation
	Problem description
	The ILP formulation
	The LP formulation
	Online approach

	Framework Design
	Architectural components and tasks
	Framework prototype

	Implementation, Simulation and evaluation
	Simulation Environment
	Simulation Evaluation - Results
	Prototype Implementation
	Distributed architecture - evaluation
	Evaluation of the practical network topology - Example scenario

	Conclusion
	References

