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Abstract

This study jointly optimizes the production capacity and safety stocks in a serial production-

distribution system supplying multiple products under a guaranteed service approach (GSA). The

network comprises one manufacturer operating multiple workcenters, one warehouse with limited

storage capacity, and one retailer. The manufacturer must efficiently allocate capacity to the work-

centers under a limited budget, while the warehouse and retailer need to maintain safety stocks to

achieve a target service level. For a single workcenter processing a single product, the interaction

between the production lead time, storage capacity, inventory costs, and safety stock placement is

characterized. When the manufacturer has multiple workcenters, the integrated problem is formu-

lated as a non-convex program and is solved using a nested Lagrangian relaxation heuristic. The

algorithm dualizes the storage constraint in the first phase and the budget constraint in the second

phase. A simulation study is conducted to assess the value of the integration, and computational

experiments demonstrate that the nested Lagrangian relaxation heuristic can identify optimal or

near-optimal solutions in reasonable CPU times.

Keywords— Safety stocks, guaranteed service, multi-echelon model, Lagrangian method, supply

chain management

1 Introduction

A production-distribution network comprises manufacturers, wholesalers, and retailers, each of which

is a separate unit that typically acts independently (Kotler and Armstrong, 2010). In such a system,

production focuses on the allocation of resources to satisfy customer demand, while distribution man-

ages the inventory (Simchi-Levi et al., 2008). From a supply chain management perspective, there

are various reasons for which production and distribution decisions should be coordinated (Pyke and

Cohen, 1993). In particular, capacity planning at the manufacturer and safety stock placement in
∗
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the distribution part of the network must be coordinated. When the manufacturer operates multiple

workcenters under a limited budget, the capacity allocation affects utilization and production cycle

times (PCTs) owing to congestion effects. The assignment of low capacity to a workcenter results in

elongated PCTs and requires the distribution side to maintain a high inventory. The cost of holding

inventory and warehouse storage capacity should therefore be considered when setting the capacity at

the manufacturer. The present paper addresses the integrated capacity planning and safety stock place-

ment in a multi-product production-distribution network comprising one manufacturer, one warehouse

with storage capacity, and one retailer in series.

This work integrates capacity planning and safety stock placement. Capacity planning determines

the service rates or capacities (in units per time period) at each production stage (facility or work-

station) in the supply chain. The capacity can be controlled at the production stages via the number

of machines, modernizing or updating equipment, additional maintenance, the number of workers, the

number of shifts, the use of overtime, providing additional worker training, etc. (Bretthauer, 1995).

Capacity planning is considered at the strategic level when it pertains to assets, i.e. changes in the

facilities, over a period of several years. It is considered at the tactical level, dealing with the medium

term, which is typically one year, to modify the size of the staff and the amount of working time, but

not that of the equipment (Martínez-Costa et al., 2014). In addition, (Martínez-Costa et al., 2014)

report that capacity investment is typically not financed by equity without debt, and hence, capacity

planning decisions are typically constrained by a finite budget (Bitran and Tirupati, 1989a; Bretthauer

and Côté, 1997; Wang et al., 2007; Thomas and Bollapragada, 2010; Woerner et al., 2018). Safety stock

placement, which is a tactical supply chain decision, determines the optimal locations and quantities

of safety stock in the network to meet a target cycle service level (Graves and Willems, 2003). Safety

stock placement should consider storage capacity, which is a scarce resource owing to the increase in

land acquisition costs (Hariga, 2010).

Although the problems of capacity and safety stock planning are intimately related, they have been

largely treated independent of each other in the literature. Bitran and Tirupati (1989b,c) formulate

the manufacturer’s capacity planning problem, which determines the processing rate (or capacity) of

workcenters to minimize the total work in progress (WIP) holding cost subject to a budget constraint.

Based on the resulting capacity allocation, the production lead time (LT) for each workcenter is set.

Given these lead times, the strategic safety stock placement problem determines inventory levels at

potential inventory locations in order to cope with demand uncertainty (Graves and Willems, 2003).

In such a sequential approach, capacity planning does not consider safety stock-related costs or storage

capacity at the warehouse. When capacity levels and safety stocks are jointly optimized, which is

the approach taken in this paper, lead times become endogenous variables depending on capacity and

utilization (Hopp and Spearman, 2011). Setting a high capacity at a workcenter decreases its utilization

level as well as the mean and variability of its PCT (Hopp and Spearman, 2011). In turn, this results

in a lower average WIP inventory, shorter replenishment lead time (i.e. the time that elapses from the

moment an order is placed until it is received), and lower inventories on the distribution side.
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This work addresses the problem of jointly optimizing capacity planning and safety stock placement

for a production-distribution system supplying multiple products and consisting of one manufacturer,

one warehouse with limited storage capacity, and one retailer. The system operates according to

the guaranteed service approach (GSA) (Graves and Willems, 2000), where each facility quotes a

guaranteed outgoing service time to its downstream customer within which all orders must be satisfied.

The warehouse and retailer are considered to be potential safety stock holding locations, and they follow

a periodic review base stock policy with a common review period to replenish their inventory. Base

stock levels are set to guarantee a target service level and demands exceeding the base stock level are

expedited using countermeasures, such as overtime. The manufacturer sets the capacity (or processing

rate) of multiple workcenters under a limited budget, and each workcenter sets a deterministic lead

time, i.e. the time from when an order arrives at the workcenter until it is shipped to the warehouse.

Delayed items at workcenters are expedited using overtime.

For a production-distribution system with a single-workcenter and a single-product, the interaction

between the manufacturer’s lead time, storage capacity at the warehouse, inventory holding costs,

and safety stock placement is analytically characterized. For systems with multiple workcenters and

products, the integrated capacity planning and safety stock placement problem is formulated and then

solved using a nested Lagrangian relaxation heuristic. The algorithm dualizes the storage constraint in

the first phase and the budget constraint in the second phase. This approach decomposes the integrated

problem into subproblems, each corresponding to a single-workcenter, which are easy to solve. In

both phases, lower bounds are computed by iteratively solving relaxed problems, and efficient greedy

heuristics find tight upper bounds. Subgradient procedures update the Lagrangian multipliers until

an acceptable optimality gap is reached. Computational experiments show that the nested Lagrangian

relaxation heuristic outperforms BARON, a commercial nonlinear optimization solver, in terms of

solution quality and run time. In addition, a simulation study is conducted to evaluate the accuracy

of the proposed mathematical model and to compare the solution of the integrated approach with a

sequential approach for setting capacity and safety stocks. Experiments show that there is a great value

in integrating capacity planning and safety stock placement for the considered production-distribution

system.

The following section briefly reviews related literature. Section 3 presents the integrated problem

formulation and Section 4 analyzes a supply chain with a single workcenter and a single product.

Section 5 details the nested Lagrangian relaxation heuristic for solving the integrated problem. Section

6 discusses a simulation study to assess the value of the integration. Computational experiments are

presented in Section 7, and Section 8 concludes the paper.

2 Literature review

There are two alternative approaches for optimizing supply chain safety stocks: the GSA and the

stochastic service approach (Graves and Willems, 2003). While replenishment lead times are guaran-

teed or deterministic in GSA, they are stochastic in the stochastic service approach. Simpson Jr (1958)
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was the first to present GSA for a serial supply chain, and his work was then extended by Graves and

Willems (2000) to supply chains with a spanning tree structure. They assume that each stage operates

according to a base stock policy, and quotes a guaranteed outgoing service time to satisfy a bounded

demand. When the demand exceeds the demand bound, managers resort to special measures such

as expediting, overtime, or subcontracting in order to satisfy excess demand. In this way, replenish-

ment lead times are guaranteed. In contrast, under the stochastic service approach, when the demand

exceeds the base stock level, a stockout occurs and replenishment lead times are stochastic (Clark

and Scarf, 1960). We refer the readers to Graves and Willems (2003) for a comparison between GSA

and the stochastic service approach. The GSA can model large supply chains with general network

topologies, and corresponding safety stock placement problems can be efficiently solved using either

dynamic programming (Graves et al., 1988; Graves and Willems, 2000) or mixed-integer programming

(MIP) techniques (Magnanti et al., 2006). For this reason, GSA has been applied to many industrial

cases such as Eastman Kodak (Graves and Willems, 2000), Hewlett-Packard (Billington et al., 2004),

Intel (Hsieh, 2011; Wieland et al., 2012), and Nike (Polak, 2014).

There are few studies that propose GSA models with capacitated stages. Graves and Schoenmeyr

(2016) considered stages with a fixed capacity, and modified the base stock policy in a way that a stage

never places an order to its upstream stage, which is greater than the available capacity. They show

that the dynamic programming algorithm proposed by Graves and Willems (2000) can be modified

to solve the capacitated case. Graves and Schoenmeyr (2016) made the assumption that lead times

are fixed, independent of utilization, which is restrictive in the presence of congestion effects due

to variability (Hopp and Spearman, 2011). Lemmens et al. (2016) and Kumar and Aouam (2018b)

present models that capture the relationship between the capacity, batch size, and lead times using

queuing theory. While the former expresses the mean and variability of the PCT as a function of

the batch size in a G/G/m system, the latter considers a G/G/1 queue and optimizes batch sizes.

Kumar and Aouam (2018a) considered a distribution network with a capacitated manufacturer and

studied the effect of setup reduction on the production lead time and safety stock placement. Kumar

and Aouam (2019) studied the effect of production capacity and production smoothing on safety stock

placement. Aouam and Kumar (2019) also modeled production lead times based on queuing theory,

while considering endogenous safety times and optimized overtime and subcontracting. Ghadimi et al.

(2020) extended the model of Aouam and Kumar (2019) by considering limited budgets for allocating

capacity to production stages in general acyclic supply chains.

The present paper also reflects the dependency between utilization and production lead times, but

differs from the above studies in three ways. First, the above papers consider a single workcenter at a

production stage with a known processing rate (capacity), while the present work considers multiple

workcenters where processing rates are decision variables that the manufacturer has to optimize under

a budget constraint. Second, this work does not assume any queuing model; rather, it assumes that

the production lead time of a workcenter is convex, decreasing in its processing rate. A simulation

procedure is then presented to illustrate how such a production lead time function can be estimated.
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Third, this paper considers a limited storage capacity at the warehouse, which is an important realistic

restriction (Akinc and Khumawala, 1977; Ozsen et al., 2008; Liu et al., 2010), and considers the effect

of storage capacity on safety stock placement.

Capacity planning subject to congestion is studied for systems that can be modeled as a network

of queues. Bitran and Tirupati (1989b,c) considered the processing rate setting, or equivalently the

capacity expansion and contraction, in a multi-product manufacturing system with a number of dis-

crete capacity options. They modeled the interaction between the capacity and system performance

measures, such as the WIP, throughput, and lead time. Bretthauer (1995) formulated the problem

of selecting among discrete capacity options to minimize the cost subject to a given target WIP. The

author also presented the dual problem that optimizes WIP while satisfying a budget constraint based

on the amount of money available for additional capacity. Bretthauer and Côté (1997) studied the

multi-period capacity planning problem, where the capacity at each work station may be varied in

discrete time periods. Rajagopalan and Yu (2001) addressed a capacity expansion problem subject

to a target cycle time in a single workcenter, multiple-product, and a multiple-server system. They

used an M/G/1 queuing model to derive the mean and variance of the cycle time at each workstation.

Kim and Uzsoy (2008, 2009) investigated capacity planning subject to congestion effects using concave

clearing functions to capture the relationship between the throughput and WIP. While this stream of

research recognizes the effect of capacity and utilization on WIP and lead times, it does not consider

the effect on the distribution part of the network.

In fact, lead times affect safety stock placement decisions. Hua and Willems (2016) analyzed

a two-stage supply chain under GSA, and analytically showed that lead times and inventory costs

jointly affect the optimal safety stock placement policy. They found that when the upstream hold-

ing cost is low or the upstream lead time is long, maintaining the inventory at both upstream and

downstream leads to lower cost, i.e. a better solution. This means that failing to jointly optimize

capacity allocation and safety stocks at downstream locations would certainly erode the performance

of production-distribution systems. The present paper builds on the above fact and contributes to the

GSA literature in four important ways. First, it proposes a model for integrating capacity and safety

stock planning for a multi-product supply chain with a limited capacity budget and storage capacity.

Second, the interaction between the production lead time, storage capacity, inventory costs, and safety

stock placement is characterized in a single-workcenter, single-product supply chain. Third, a nested

Lagrangian relaxation heuristic exploits the structure of the formulated problem to decompose it into

several subproblems that are easy to solve. Fourth, a simulation study is conducted to evaluate the

quality of the solutions and validate the proposed model.

3 Model formulation

This section presents notations, assumptions, and a mathematical formulation for the integrated ca-

pacity planning and safety stock placement problem under budget and storage constraints.
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3.1 Notations

Sets

M set of products

W set of workcenters

Mw set of products produced at workcenter w

Parameters

�j mean demand for product j at the retailer (units per period)

�j standard deviation of demand for product j at the retailer (units per period)

hwip

j
work-in-process holding cost at the manufacturer for product j (Euro per unit

per period)

bw cost of one unit of capacity at workcenter w (Euro per unit per period)

↵LT
w fraction of on-time completion at workcenter w

B manufacturer’s budget for allocating capacity (Euro)

K storage capacity at the warehouse (units)

h0,whs

j
inventory holding cost for product j at the warehouse (Euro per unit per period)

Hj(zwhs

j
) (augmented) inventory cost for product j at the warehouse (Euro per unit

per period)

h0,ret
j

inventory holding cost for product j at the retailer (Euro per unit per period)

Hj(zretj
) (augmented) inventory cost for product j at the retailer (Euro per unit per period)

cm
j

overtime (expediting) cost for product j at the manufacturer (Euro per unit

per period)

cds
j

overtime (expediting) cost for product j at the distribution side (Euro per unit

per period)

↵whs

j
, zwhs

j
target service level and corresponding safety factor for product j at the warehouse

↵ret

j
, zret

j
target service level and corresponding safety factor for product j at the retailer

⌧whs

j
delay at the warehouse, which includes review period in addition to transportation

and material handling time for product j (periods)

⌧ ret
j

delay at the retailer, which includes review period in addition to transportation

and material handling time for product j (periods)

sij external incoming service time for product j at the manufacturer (periods)

sj external outgoing service time for product j at the retailer (periods)

Decision variables

Rw capacity of workcenter w (units per period)

SIj incoming service time for product j at the manufacturer (periods)

Swhs

j
outgoing service time for product j at the warehouse (periods)

Sret

j
outgoing service time for product j at the retailer (periods)
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3.2 Model description and assumptions

Supply chain network. We consider a serial network consisting of three facilities in tandem: a manu-

facturer, a warehouse, and a retailer, as depicted in Figure 1. Customer requests for multiple products

j 2 M arrive continuously at the retailer. The warehouse and retailer are considered to be potential

safety stock holding locations and follow a periodic review base stock policy with a common review

period to replenish their inventory. The fixed lead times at the warehouse and retailer for product j

are ⌧whs

j
and ⌧ ret

j
, respectively. The warehouse has a storage capacity K, which limits the amount

of inventory that it can hold, i.e. the sum of base stock levels for all products (we assume a unit

volume for all items). The manufacturer is composed of multiple workcenters w 2 W, each comprising

a workstation and staging areas for raw materials and finished goods. The manufacturer has a limited

budget B to set production rates of workcenters. The capacity unit cost at workcenter w is bw. Each

item j 2 Mw is processed by a single workcenter w, which sets a deterministic lead time LTw that is

dependent on its capacity. This lead time is the elapsed time between the moment an order of a period

is received until it is completed and shipped to the warehouse.

Manufacturer Warehouse Retailer

Workstation

FGRW

Workstation

FGRW

Figure 1: Schematic model of the production-distribution system.

Demand and order processes. The demand Dj(t) for item j at the retailer is a random variable that is

observed at the beginning of period t. Although demands may arrive at the retailer continuously, one

unit at a time, during period t, it is commonly assumed in periodic review inventory models that the

demand is observed at the beginning of t (Axsäter, 2015). The demand is assumed to be independent

and identically distributed (i.i.d.) from period to period and independent across products. Demand

during net replenishment lead time T (i.e. the difference between the replenishment time and the

outgoing service time) is assumed to be normally distributed with mean �jT and standard deviation

�j
p
T . The demand for product j at the warehouse is Dwhs

j
(t) = Dj(t), and the demand at workcenter

w is Dwc
w (t) =

P
j2Mw

Dj(t).

The ordering process at each facility follows a periodic review base stock policy with a common

review period among all facilities. A base stock level is set at the warehouse and retailer to cover

7
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demand during net replenishment lead time T with a target service level ↵whs

j
at the warehouse and

↵ret

j
at the retailer. As an example, at the retailer, the base stock level is Bj (T ) = �jT + zret

j
�j
p
T ,

where zret
j

is the safety factor corresponding to ↵ret

j
. Similar to Klosterhalfen et al. (2013) and Aouam

and Kumar (2019), we assume that demand exceeding base stock levels is satisfied by expediting items

from the pipeline inventory using extraordinary measures, such as overtime. We follow their work and

consider a single cost value for each expedited item, irrespective of the duration, and we assume that

the pipeline inventory always exceeds the expediting amount.

Guaranteed service times. Each facility promises a guaranteed outgoing service time for product j,

denoted by Sfacility

j
, to its downstream customer within which it can satisfy all orders. Accordingly,

incoming service times to a facility SIfacility
j

are equal to the outgoing service time guaranteed by the

facility’s upstream supplier, i.e. SIwhs

j
= Swc

j
and SIret

j
= Swhs

j
. The incoming service time promised

by an external supplier to the manufacturer is denoted by SIj . A workcenter w that processes product

j quotes an outgoing service time of Swc

j
= SIj + LTw to the warehouse because no safety stocks are

held at the workcenters. Moreover, for each product, the incoming service time at the manufacturer

SIj must be greater than or equal to the external incoming service time sij and the outgoing service

time at the retailer Sret

j
cannot exceed the external outgoing service time sj .

Production lead times. Each workcenter w sets a guaranteed, deterministic lead time LTw(Rw) that is

dependent on its capacity Rw. At the beginning of a period, orders are received in the raw material

staging areas of workcenters. Then, items are continuously released (i.e. one-by-one) to the workstation

queue in the same period. After processing, units are placed in the finished goods staging area, and

once the lead time is elapsed, completed orders are shipped to the warehouse. When items of an order

are delayed during processing, they are expedited using overtime to guarantee a complete shipment.

A similar assumption has been made in Çelik and Maglaras (2008), Plambeck and Ward (2007) and

Plambeck and Ward (2008) to model overtime as a measure to expedite delayed items at production

nodes. The cost related to overtime due to the delay of items in the workcenter is not optimized in

our model. Further, we assume that LTw is a decreasing and convex function of capacity Rw. This

assumption is supported by the literature (Yang et al., 2007, 2008; Hopp and Spearman, 2011) and is

verified by our simulation study in Section 6.

Description of the production-distribution system. This paper studies a production-distribution system

with one manufacturer, consisting of multiple workcenters, supplying one warehouse and one retailer

under the GSA.

The demand Dj(t) is observed at the beginning of period t. At the end of period t, the retailer first

receives Dj(t� Swhs

j
� ⌧ ret

j
), which is the order placed to the warehouse in period t� Swhs

j
� ⌧ ret

j
, and

then satisfies Dj(t� Sret

j
). For example, when Sret

j
= 0, the observed demand Dj(t) at the beginning

of period t is fulfilled at the end of the same period. If Dj(t � Sret

j
) is greater than the retailer’s
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on-hand inventory, the excess demand is satisfied by expediting items from the pipeline inventory.

This means that the retailer always satisfies the whole customer demand within its guaranteed service

time Sret

j
. Finally, the retailer orders Dj(t) to raise its inventory position to the base stock level

Bret

j
= �j(Swhs

j
+ ⌧ ret

j
� Sret

j
) + zret

j
�j
q

Swhs

j
+ ⌧ ret

j
� Sret

j
.

At the warehouse, the order placed in period t�SIj �LTw � ⌧whs

j
, i.e. Dj(t�SIj �LTw � ⌧whs

j
),

is received from workcenter w which produces item j. The warehouse then fulfills Dj(t � Swhs

j
),

that is, the retailer’s order from period t � Swhs

j
. In case of a shortage, i.e. Dj(t � Swhs

j
) is greater

than the warehouse’s on-hand inventory, the excess demand is satisfied by expediting items from

the pipeline inventory so that the retailer’s order is satisfied in full within Swhs

j
. Afterwards, the

warehouse orders Dj(t) to the manufacturer in order to raise its inventory position to the base stock

level Bwhs

j
= �j(SIj + LTw + ⌧whs

j
� Swhs

j
) + zwhs

j
�j
q
SIj + LTw + ⌧whs

j
� Swhs

j
.

Each workcenter w at the manufacturer processes items j 2 Mw. We assume that the quantity

Dj(t � SIj) of each processed item is available at the beginning of period t in the workcenter’s RM

staging area. These quantities are released continuously, i.e. one unit at a time, to the workstation

queue in period t. Units of the various items are released and processed on a first-come first-served

(FCFS) basis, according to the sequence of arrival at the retailer. Once a unit is processed at a

workstation, it is placed at the corresponding finished goods staging area. At the end of period t,

workcenter w fulfills Dj(t� SIj � LTw), which is the order of the warehouse in period t� SIj � LTw

for product j. When Dj(t � SIj � LTw) is greater than the on-hand inventory for product j at the

finished goods area, the excess order is satisfied by expediting items from the WIP inventory at the

workcenter. In this manner, the complete order of the warehouse is satisfied within the guaranteed

service time Swc

j
= SIj + LTw.

3.3 Formulation of the integrated capacity planning and safety stock placement

problem

The objective of the integrated capacity planning and safety stock placement problem is to set capacity

(processing rates of workcenters) and service times to minimize WIP holding costs of the manufacturer

and inventory cost at the warehouse and retailer, in addition to overtime costs for expediting shortages.

The derivation of the expected total cost is based on the work of Klosterhalfen and Minner (2010) and

Aouam and Kumar (2019) and provided in Appendix A. The integrated capacity planning and safety

stock placement problem P can be formulated as follows,

9
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P min
X

w2W

X

j2Mw

 
hwip

j
�jLTw(Rw) +Hj(z

whs

j )�j
q
SIj + LTw(Rw) + ⌧whs

j
� Swhs

j

+Hj(z
ret

j )�j
q
Swhs

j
+ ⌧ ret

j
� Sret

j

!
(1)

subject to:
X

w2W
bwRw  B (2)

X

j2Mw

�j < Rw 8w 2 W (3)

X

w2W

X

j2Mw

�j

⇣
SIj + LTw(Rw) + ⌧whs

j � Swhs

j

⌘

+ zwhs

j �j
q

SIj + LTw(Rw) + ⌧whs

j
� Swhs

j
 K (4)

max(0, Sret

j � ⌧ retj )  Swhs

j  SIj + LTw(Rw) + ⌧whs

j 8w 2 W, 8j 2 Mw (5)

sij  SIj 8j 2 M (6)

Sret

j  sj 8j 2 M (7)

SIj , S
whs

j , Sret

j 2 Z+ 8j 2 M (8)

LTw(Rw) 2 Z+, Rw 2 R+ 8w 2 W (9)

The objective function minimizes the expected total cost of the production-distribution system. The

augmented inventory costs at the warehouse and retailer, Hj(zwhs

j
) and Hj(zretj

) respectively, include

the unit cost of holding inventory and expediting excess demand. Constraint (2) ensures that the cost

for allocating capacities to workcenters does not exceed the manufacturer’s budget. Constraints (3)

state that the capacity assigned to a workcenter should be greater than its total arrival rate (demand).

Constraint (4) ensures that the sum of base stock levels does not exceed the storage capacity of the

warehouse. Constraints (5) restrict the net replenishment lead time of the warehouse and retailer to

be positive. Constraints (6) put a limit on the lowest possible amount of incoming service time at

the manufacturer, and constraints (7) ensure that the external demand will be satisfied within its

maximum acceptable outgoing service time. Constraints (8) and (9) define all service times and lead

times as integer variables.

4 Impact of the storage capacity on safety stock placement

In this section, we study the safety stock placement problem in a supply chain that consists of a single

workcenter processing a single product and supplying a warehouse with limited storage capacity and

a retailer, as depicted in Figure 2. We characterize the optimal safety stock placement and the effect

of the lead time and inventory costs on safety stocks. The derived results extend the work of Minner

(2000) and Hua and Willems (2016), which studied safety stock placement in two-stage serial systems

with infinite storage capacity under the GSA.
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Warehouse Retailer

Workcenter
 

Manufacturer

Figure 2: Schematic model of a single-product production-distribution system.

In the rest of the paper, inventory coupling refers to the situation when inventory is held only

at the retailer, and no inventory is kept at the warehouse, while inventory decoupling refers to the

case when inventory is kept at both the warehouse and the retailer, and the warehouse capacity is

not binding. In addition, inventory partial decoupling refers to the case when keeping inventory at

the warehouse results in a lower cost; however, because of the storage capacity, part of the inventory

is shifted to the retailer. Below, we first derive the optimal outgoing service time of the warehouse.

Then, the impact of the production lead time and the ratio of the upstream to downstream inventory

costs
⇣
i.e. ⌫ = H(zwhs)

H(zret)

⌘
on optimal safety stock placement is characterized.

4.1 Optimal safety stock placement

In the above supply chain, it is optimal to set R = B

b
because there is only one workcenter and lead

time is decreasing in capacity. The integrated problem with storage capacity K reduces to optimizing

the outgoing service time at the warehouse Swhs, and can be re-written as follows:

PK min H(zwhs)�
p
RLT � Swhs +H(zret)�

p
Swhs + ⌧ ret (10)

�
⇣
RLT � Swhs

⌘
+ zwhs�

p
RLT � Swhs  K (11)

0  Swhs  RLT (12)

where RLT = LT (R)+ ⌧whs is the effective replenishment lead time that the warehouse is facing. The

objective function (10) minimizes the total inventory cost, and constraint (11) ensures that the base

stock level does not exceed the storage capacity at the warehouse. Constraint (12) restricts the net

replenishment lead time at the warehouse and retailer to be non-negative.

Based on Minner (2000) and Hua and Willems (2016), Lemma 1 provides the optimal service time

at the warehouse when there is infinite storage capacity. This Lemma states that the optimal service

time lies at one of two extreme points.

Lemma 1. The optimal outgoing service time at the warehouse in problem PK with infinite storage

capacity is given by Swhs,⇤ 2 {0, RLT}.

Proposition 1 extends the result of Lemma 1 to the case of limited storage capacity at the warehouse.

The proposition states that the optimal service time at the warehouse lies at one of three extreme points.

11
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Proposition 1. The optimal outgoing service time at the warehouse in problem PK with storage

capacity K is given by Swhs,⇤ 2 {0, SK , RLT}, where SK = RLT � (zwhs)2�2+2�K�zwhs
�

p
(zwhs)2�2+4�K

2�2

is the outgoing service time at the warehouse when the storage constraint (11) is binding.

Proof. See Appendix B.1.

This Proposition extends the two extreme points property of the optimal safety stock placement

under GSA in serial systems to reflect the storage capacity. The optimal solution now lies at three

extreme points: (i) Swhs,⇤ = RLT for inventory coupling at the retailer, (ii) Swhs,⇤ = 0 corresponds to

inventory decoupling, and (iii) Swhs,⇤ = SK when the storage capacity is binding and we have inventory

partial decoupling, i.e. some of the inventory is shifted to the retailer.

4.2 Impact of the replenishment lead time

When there is infinite storage capacity at the warehouse, Lemma 2 shows that the optimal safety

stock placement is determined by a threshold on replenishment lead time RLT 0
1 (see Minner (2000)

and Hua and Willems (2016)). This threshold is a function of the ratio of inventory costs ⌫. When

the replenishment lead time is less than RLT 0
1 , the inventory is coupled at the retailer; otherwise, the

inventory is decoupled, i.e. the inventory is kept at both the warehouse and retailer.

Lemma 2. Fixing all parameters and changing only the replenishment lead time RLT , the optimal

solution of problem PK when there is infinite storage capacity is given by:

a) when RLT 0
1  RLT , then Swhs,⇤ = 0, and both the warehouse and retailer keep a safety stock

(decoupling),

b) when RLT  RLT 0
1 , then Swhs,⇤ = RLT , and the safety stock is only kept at the retailer

(coupling).

where RLT 0
1 = max{⌧ ret 4⌫2

(1�⌫2)2 , 0}.

Proof. See Appendix B.2.

Proposition 2 extends the results of Lemma 2 by considering a finite storage capacity, and defines

a storage capacity threshold K0 and a threshold on the replenishment lead time RLT 0
2 that together

define the optimal safety stock placement. The case of K � K0 is similar to the infinite storage

capacity case, and the optimal safety stock placement can be obtained based on Lemma 2. When

K  K0, i.e. there is a finite storage capacity, the solution in Lemma 2 does not satisfy the storage

constraint (11). In this case, the optimal safety stock placement is determined by Proposition 2.

Proposition 2. By fixing all parameters and changing only the replenishment lead time RLT , the

optimal solution of problem PK when there is a finite storage capacity (i.e. K  K0) is given by:

a) when RLT  RLT 0
2 , then Swhs,⇤ = SK , the storage capacity is binding, and both the warehouse

and retailer maintain a safety stock (partial decoupling),

12
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b) when RLT 0
2  RLT , then Swhs,⇤ = RLT , and the safety stock is only kept at the retailer

(coupling),

where K0 = �RLT + zwhs�
p
RLT and RLT 0

2 = max

⇢
(zwhs)2�2+2�K�zwhs

�

p
(zwhs)2�2+4�K

2�2

⇣
(1+⌫

2)2

4⌫2

⌘
�

⌧ ret, 0

�
.

Proof. See Appendix B.3.

Proposition 2 shows that when the storage capacity is less than K0, the safety stock placement

depends on RLT 0
2 , which is a function of both ⌫ and K. In this case, the inventory is coupled at

the retailer if the replenishment lead time is greater than RLT 0
2 ; otherwise, the inventory is partially

decoupled. Table 2 defines the optimal safety stock placement for both infinite and finite storage

capacity cases depending on the replenishment lead time RLT .

Table 2: Optimal service time at the warehouse based on the replenishment lead time threshold.

Storage capacity Replenishment lead time Optimal service time

K � K0
(Infinite)

RLT 0
1  RLT Swhe,⇤ = 0

RLT  RLT 0
1 Swhe,⇤ = RLT

K  K0
(Finite)

RLT  RLT 0
2 Swhe,⇤ = SK

RLT 0
2  RLT Swhe,⇤ = RLT

The following corollaries provide properties of thresholds K0, RLT 0
1 , and RLT 0

2 .

Corollary 2.1. The threshold for storage capacity (K0) is an increasing function of the replenishment

lead time RLT .

Corollary 2.2. For infinite storage capacity, i.e. K � K0, the replenishment lead time threshold RLT 0
1

is not a function of K, and is an increasing function of ⌫.

Proof. See Appendix B.4.

Corollary 2.3. For a finite storage capacity, i.e. K  K0, the replenishment lead time threshold RLT 0
2

is an increasing function of K and a decreasing function of ⌫.

Proof. See Appendix B.5.

To illustrate our analytical results in this section, we use the following instance as a base case:

� = 10 and � = 3.16 units per period, b = 1 Euro, ⌫ = 0.5, ⌧whs = 2 and ⌧ ret = 2 periods,

↵whs

j
= 0.95. The budget at the manufacturer is B = 10.53 Euro, which is obtained based on 95%

utilization, i.e. B = b�

0.95 . The storage capacity at the warehouse is K = 0.75⇥K0 = 68.51 units, where

K0 is the storage capacity threshold derived in Proposition 2. We also assume that the production

lead time has the following form LT (R) = ln(1�0.95)
R�� , which is obtained based on the M/M/1 queuing

model, with 95% as the fraction of on-time completion (Kleinrock, 1975).

13
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Figure 3 plots K0 as a function of the replenishment lead time RLT and illustrates Corollary 2.1.

Figure 4 shows the replenishment lead time threshold RLT 0
1 as an increasing function of ⌫, which is

in line with Corollary 2.2. In fact, for infinite storage capacity, i.e. K � K0, as the difference between

the upstream and downstream inventory costs becomes insignificant, i.e. ⌫ increases, the inventory is

coupled for longer replenishment.

5 10 15 20

50
10

0
15

0
20

0
25

0

Replenishment lead time (RLT)

K > K0

K < K0

St
or

ag
e 

ca
pa

ci
ty

 th
re

sh
ol

d 
(K

0 )

Figure 3: Storage capacity threshold K0
as a func-

tion of replenishment lead time RLT .
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Figure 4: Replenishment lead time threshold RLT 0
1

as a function of ⌫.

Corollary 2.3 states that for finite storage capacity, i.e. K  K0, as the storage capacity increases,

the inventory is partially decoupled for longer replenishment lead times. Figure 5 shows the replenish-

ment lead time threshold RLT 0
2 as an increasing function of K for three different values of ⌫. For a

given K, the inventory is partially decoupled when as ⌫ decreases. Based on Figure 5, we can also see

that there is a minimum value of storage capacity below which the inventory is always coupled at the

retailer. Corollary 2.3 also states that as ⌫ increases, the inventory is partially decoupled for shorter

replenishment LTs. This is illustrated by Figure 6, which shows the replenishment lead time threshold

RLT 0
2 as a decreasing function of ⌫ for three different values of storage capacity.

4.3 Impact of the ratio of inventory costs

When there is infinite storage capacity at the warehouse, Lemma 3, which is obtained based on the

work of Minner (2000) and Hua and Willems (2016), shows that the optimal safety stock placement

depends on a threshold based on the ratio of inventory costs ⌫01 . This threshold is a function of the

replenishment lead time RLT . When ⌫ � ⌫01 , the inventory is coupled at the retailer; otherwise, the

inventory is decoupled, i.e. the inventory is kept at both the warehouse and retailer. In fact, for all

values of ⌫  ⌫01 , representing situations where the inventory cost at the warehouse is much cheaper

than the one at the retailer, the inventory is decoupled. As the difference between the inventory costs

becomes insignificant, i.e. ⌫ � ⌫01 , inventory coupling at the retailer leads to a lower cost.
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Lemma 3. By fixing all parameters and changing only the ratio of inventory costs ⌫, the optimal

solution of problem PK when there is infinite storage capacity is given by:

a) when ⌫  ⌫01 , then Swhs,⇤ = 0 and both the warehouse and retailer maintain a safety stock

(decoupling),

b) when ⌫ � ⌫01 , then Swhs,⇤ = RLT and a safety stock is only kept at the retailer (coupling)

where ⌫01 =
q

1 + ⌧ret

RLT
�
q

⌧ret

RLT
.

Proof. See Appendix B.6.

Proposition 3 extends the results of Lemma 3 by considering a finite storage capacity, and defines

a threshold based on the ratio of inventory costs ⌫02 that defines the optimal safety stock placement.

The case of K � K0 is similar to the infinite storage capacity case, and the optimal safety stock

placement can be obtained based on Lemma 3. When K  K0, i.e. there is a finite storage capacity,

the solution in Lemma 3 does not satisfy the storage constraint (11). In this case, the optimal safety

stock placement is given by Proposition 3.

Proposition 3. By fixing all parameters and changing only the ratio of inventory costs ⌫, the optimal

solution of problem PK when there is finite storage capacity (i.e. K  K0) is given by:

a) when ⌫  ⌫02 , then Swhs,⇤ = SK , the storage capacity is binding, and both the warehouse and

retailer maintain a safety stock (partial decoupling),

b) when ⌫ � ⌫02 , then Swhs,⇤ = RLT , and a safety stock is only kept at the retailer (coupling).

where ⌫02 =
r

2�2(RLT+⌧ret)

(zwhs)2�2+2�K�zwhs�
p

(zwhs)2�2+4�K
�
r

2�2(RLT+⌧ret)

(zwhs)2�2+2�K�zwhs�
p

(zwhs)2�2+4�K
� 1.
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Proof. See Appendix B.7.

Proposition 3 shows that when the storage capacity is less than K0, the safety stock placement

depends on ⌫02 , which is a function of both RLT and K. In this case, the inventory is coupled at the

retailer when the difference between the inventory costs is not significant, i.e. ⌫ � ⌫02 . When ⌫  ⌫02 ,

the inventory is partially decoupled. Table 3 shows the optimal safety stock placement for both infinite

and finite storage capacity based on the threshold for the ratio of inventory costs.

Table 3: Optimal service time at the warehouse based on the threshold on the ratio of inventory costs.

Storage capacity Ratio of inventory cost Optimal service time

K � K0
(Infinite)

⌫  ⌫0
1 Swhe,⇤ = 0

⌫ � ⌫0
1 Swhe,⇤ = RLT

K  K0
(finite)

⌫  ⌫0
2 Swhe,⇤ = SK

⌫ � ⌫0
2 Swhe,⇤ = RLT

The properties of ⌫01 and ⌫02 are given by the following corollaries.

Corollary 3.1. For an infinite storage capacity, i.e. K � K0, the threshold ⌫01 is an increasing function

of RLT .

Proof. See Appendix B.8.

Corollary 3.2. For a finite storage capacity, i.e. K  K0, the threshold ⌫02 is a decreasing function

of RLT , and increases in K.

Proof. See Appendix B.9.

Corollary 3.1 characterizes the effect of the replenishment lead time RLT on the threshold ⌫01 .

This effect is illustrated in Figure 7, which shows that ⌫01 is an increasing function of the replenishment

lead time RLT . This means that when there is infinite storage capacity, as the replenishment lead

time increases inventory decoupling happens only when the difference between inventory costs at the

warehouse and retailer is very high, i.e. ⌫ is very low.

Corollary 3.2 states that when there is a finite storage capacity, ⌫02 is a decreasing function of

RLT and an increasing function of K. Figure 8 plots the threshold ⌫02 as a decreasing function of

the replenishment lead time RLT for three different values of K. This figure shows that when the

replenishment lead time increases, the inventory is coupled at the retailer only when the difference

between the inventory cost at the warehouse and retailer is not significant, i.e. ⌫ is high. Figure 9

shows the threshold ⌫02 as an increasing function of K for three different values of utilization. This

figure also shows that there is a maximum value of storage capacity at the warehouse above which the

inventory is always partially decoupled. Similarly, based on Figure 9, one can observe that there is a

minimum value of utilization below which the inventory is always partially decoupled.

16

������������������



10 20 30 40 50 60

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Replenishment lead time (RLT)

ν > ν1
0

Coupling

ν < ν1
0

Decoupling

Th
re

sh
ol

d 
on

 th
e 

ra
tio

 o
f i

nv
en

to
ry

 c
os

t (
ν

10 )

Figure 7: ⌫01 as a function of the replenishment lead time RLT .

From the above analysis, it is clear that the storage capacity at the warehouse, replenishment lead

time, and inventory costs affect the safety stock placement in a supply chain. The replenishment lead

time is a function of the manufacturer’s budget, and hence the manufacturer’s budget also affects the

safety stock placement. For finite storage capacity at the warehouse, inventory coupling results in a

lower cost when the replenishment lead time is very long or when the inventory cost downstream is

very expensive.

5 Solving the integrated problem using a nested Lagrangian relax-

ation heuristic

When the manufacturer operates multiple workcenters, each of which processes multiple products,

the production lead times are not fixed, and the objective function is no longer concave, as was the

case in the previous section. In fact, production lead times become variables that are dependent on

capacity decisions, and the objective function of problem P is non-convex. Therefore, problem P is

a non-convex problem and falls into the difficult class of global optimization problems (Horst et al.,

2000). In this section, we propose a nested Lagrangian relaxation heuristic as an integrated solution

approach of problem P.

The proposed nested Lagrangian relaxation heuristic dualizes constraints (2) and (4), which link

workcenters and products, over two phases. In the first phase, the storage constraint (4) is relaxed

with a Lagrangian multiplier . The objective value of the relaxed problem provides a lower bound for

problem P. The solution of this relaxed problem satisfies the budget constraint, but not necessarily

the storage constraint. By repairing this solution, i.e. providing feasible solutions, and updating the

Lagrangian multiplier , an optimal or near-optimal solution of P can be obtained. To solve the relaxed

problem of the first phase, the budget constraint (2) is relaxed with a Lagrangian multiplier � � 0
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of B.

in the second phase. The objective value of the resulting relaxed problem provides a lower bound for

the relaxed problem of the first phase. The lower bound solution for the relaxed problem of the first

phase does not necessarily satisfy the budget constraint. Using an efficient greedy heuristic to repair

the lower bound solutions, upper bounds can be generated for the relaxed problem of the first phase.

By updating the Lagrangian multiplier � in each iteration, an optimal or near-optimal solution for the

relaxed problem of the first phase can be obtained. The nested Lagrangian relaxation algorithm is

summarized in Figure 10.

5.1 First phase: relaxing the storage constraint

In the first phase of the nested Lagrangian relaxation, the storage constraint (4) is relaxed with a
Lagrangian multiplier . The relaxed problem of the first phase NLR1

 for a given  is formulated as
follows:

NLR1
 NL1() = min

X

w2W

X

j2Mw

 
hwip
j �jLTw(Rw) +Hj(z

whs
j )�j

q
SIj + LTw(Rw) + ⌧whs

j � Swhs
j

+Hj(z
ret
j )�j

q
Swhs
j + ⌧ retj � Sret

j

!
+ 

 
X

w2W

X

j2Mw

�j

�
SIj + LTw(Rw) + ⌧whs

j � Swhs
j

�

+ zwhs
j �j

q
SIj + LTw(Rw) + ⌧whs

j � Swhs
j �K

!
(13)

subject to: constraints (2), (3), (5), (6), (7), (8) and (9).

By solving NLR1
 for a given , a lower bound on the objective value of problem P can be obtained.

An optimal or near-optimal solution of NLR1
 is obtained in the second phase of the nested Lagrangian

relaxation heuristic. This solution satisfies the budget constraint (2), but does not necessarily satisfy

the storage constraint (4). Next, we present an upper bound method that generates a feasible solution
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for P by repairing the solution of NLR1
.

5.1.1 Generating upper bounds for problem P

When the solution of NLR1
 satisfies the storage constraint (4), it is also a feasible solution for problem

P. As a result, the corresponding objective value becomes an upper bound on the objective value of

P. When this is not the case, we use a greedy heuristic to eliminate the surplus of storage capacity,

denoted by Surplus1. The proposed greedy heuristic does not change the capacity level Rw because it

satisfies the budget constraint, but it modifies the outgoing service times at the warehouse. Algorithm

1 lists the steps of the greedy heuristic, where fP is the objective value of problem P.

The algorithm identifies all products that are stored at the warehouse in the lower bound solution,

i.e. products with positive net replenishment lead time at the warehouse or NRTwhs

j
> 0 (Line 7).

For each product j stored at the warehouse, the algorithm calculates Loss1[j] which corresponds to

the marginal increment in the objective value when the inventory of j is shifted from the warehouse

to the retailer, i.e. when Swhs

j
= SIj + LTw(Rw) + ⌧whs

j
(Line 8). If a product j is only stored at the

retailer in the solution then Loss1[j] = + 8 (Line 9). For all products with negative Loss1, we set the

outgoing service time at the warehouse to be equal to Swhs,UB

j
= SIj + LTw(Rw) + ⌧whs

j
because it

results in a lower objective value (Line 11). These products are then shifted from the warehouse to

the retailer and we set Loss1[j] = + 8.

Afterwards, we start from the product with the lowest value of Loss1 (Line 13). The corresponding

product j results in the largest free space at the warehouse with the smallest increment in the objective

function. For this product, we set Swhs,UB

j
= SIj + LTw(Rw) + ⌧whs

j
and Loss1[j] = + 8 since

this product is now moved to the retailer (Line 15). Surplus1 is also updated by subtracting the

base stock level of j. The same process is repeated until the storage constraint (4) is satisfied, i.e.

Surplus1  0. In the last iteration, if the base stock level of the last product is greater than the

surplus, i.e. Bj > Surplus1, then we change the base stock level to Bj � Surplus1, which means

that a quantity Surplus1 of product j is moved to the retailer. This corresponds to setting Swhs,UB

j
=&

(zwhs
j )2�2

j+2�j(Bj�Surpluss1)�zwhs
j �

q
(zwhs

j )2�2
j+4�j(Bj�Surpluss1)

2�2
j

� ⌧whs

j
� SIj

'
(Line 17). In this case, the

storage capacity constraint (4) would be satisfied.
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Algorithm 1 Greedy heuristic to generate upper bounds for problem P.
1: function UpperBound1()

2: UB1 0

3: for all w 2W, j 2 Mw do RUB

w  Rw Swhs,UB
j  Swhs

j , NRTwhs
j  SIj + LTw(Rw) + ⌧whs

j � Swhs
j end for

4: if
P

w2W
P

j2Mw
�j(NRTwhs

j ) + zwhs
j �j

q
NRTwhs

j > K then

5: Surplus1 
P

w2W
P

j2Mw
�j(NRTwhs

j ) + zwhs
j �j

q
NRTwhs

j �K

6: for all j 2 M do

7: if NRTwhs
j > 0 then

8: Loss1[j] =
fP

⇣
SIj+LTw(Rw)+⌧whs

j

⌘
�fP

⇣
Swhs
j

⌘

Bj

9: else Loss1[j] = + 8 end if

10: if Loss1[j] < 0 then

11: Swhs,UB
j  SIj + LTw(Rw) + ⌧whs

j , Surplus1 Surplus1� Bj , Loss1[j] = + 8 end if end for

12: while Surplus1 > 0 do

13: FindProductWithLowestValueIn(Loss1)

14: if Surplus1� Bj > 0 then

15: Swhs,UB
j  SIj + LTw(Rw) + ⌧whs

j , Surplus1 Surplus1� Bj , Loss1[j] = + 8

16: else

17: Swhs,UB
j  

⇠
(zwhs

j )2�2
j+2�j(Bj�Surpluss1)�zwhs

j �
q

(zwhs
j )2�2

j+4�j(Bj�Surpluss1)

2�2
j

� ⌧whs
j � SIj

⇡
,

18: Surplus1 0 end if end while end if

19: for all w 2W, j 2 Mw do UB1 UB1 + fP
⇣
RUB

w , Swhs,UB
j

⌘
end for

20: return UB1

21: end function

5.1.2 Updating the Lagrangian multiplier 

The subgradient method is the common method used to solve the Lagrangian dual problem (see Fisher

(1981, 1985) and Shor (2012)). This method converges for smooth and non-differentiable functionals at

the rate of a geometric progression (Polyak, 1969; Held et al., 1974; Allen et al., 1987). We implemented

the subgradient-based heavy ball method proposed by Polyak (1964) to accelerate the convergence by

using the history of the last search direction. The direction of the search is defined based on the current

gradient and the last search direction in equation (14), where 0  ✓  1 is a constant parameter that

defines how much memory the algorithm uses. When ✓ = 0, the method reduces to the standard

subgradient method. The step size of the heavy ball method is calculated using equation (15), and the

Lagrangian multiplier is updated based on equation (16).

diter1 = (1� ✓)Giter1 + ✓diter1�1 (14)

T iter1 =
UB � f

NLR
1
iter1

(diter1)2
(15)

iter1+1 = iter1 + T iter1diter1 (16)

21

������������������



5.2 Second phase: relaxing the budget constraint

To obtain a lower bound of the first phase relaxation problem NLR1
, the budget constraint is dualized

in the second phase with a Lagrangian multiplier � � 0. The formulation of the resulting relaxed
problem NLR2

,� for a given � is defined as follows:

NLR2
,� NL2(, �) = min

X

w2W

X

j2Mw

 
hwip
j �jLTw(Rw) +Hj(z

whs
j )�j

q
SIj + LTw(Rw) + ⌧whs

j � Swhs
j

+Hj(z
ret
j )�j

q
Swhs
j + ⌧ retj � Sret

j

!
+ 

 
X

w2W

X

j2Mw

�j

�
SIj + LTw(Rw) + ⌧whs

j � Swhs
j

�

+ zwhs
j �j

q
SIj + LTw(Rw) + ⌧whs

j � Swhs
j �K

!
+ �

 
X

w2W
bwRw �B

!
(17)

subject to: constraints (3), (5), (6), (7), (8) and (9).

Problem NLR2
,� can be decomposed into |W| subproblems D�NLR2

,�,w, each corresponding to a

single workcenter w. Note that the terms �B and K in the objective function of NLR2
,� for a given

� and  are constant, and are dropped from the objective function of subproblems D�NLR2
,�,w,

which is expressed as

D�NLR2
,�,w min

X

j2Mw

 
hwip

j
�jLTw(Rw) +Hj(z

whs

j )�j
q
SIj + LTw(Rw) + ⌧whs

j
� Swhs

j

+Hj(z
ret

j )�j
q
Swhs

j
+ ⌧ ret

j
� Sret

j

!
+ 

 
X

j2Mw

�j

⇣
SIj + LTw(Rw) + ⌧whs

j � Swhs

j

⌘

+ zwhs

j �j
q
SIj + LTw(Rw) + ⌧whs

j
� Swhs

j

!
+ �bwRw (18)

subject to:
X

j2Mw

�j < Rw (19)

max(0, Sret

j � ⌧ retj )  Swhs

j  SIj + LTw(Rw) + ⌧whs

j 8j 2 Mw (20)

sij  SIj 8j 2 Mw (21)

Sret

j  sj 8j 2 Mw (22)

Swhs

j , Sret

j 2 Z+ 8j 2 Mw (23)

LTw(Rw) 2 Z+ (24)

For a fixed level of capacity Rw at the workcenter, problem D�NLR2
,�,w can be decomposed into

|Mw| subproblems D�Prod2
,�,w,j , each corresponding to a single-workcenter and a single-product.

The term �bwRw in the objective of D�NLR2
,�,w for a given Rw is constant and is dropped from

the objective of subproblems D�Prod2
,�,w,j defined as
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D�Prod2
,�,w,j min hwip

j
�jLTw(Rw) +Hj(z

whs

j )�j
q
SIj + LTw(Rw) + ⌧whs

j
� Swhs

j

+Hj(z
ret

j )�j
q
Swhs

j
+ ⌧ ret

j
� Sret

j
+ �j

⇣
SIj + LTw(Rw) + ⌧whs

j � Swhs

j

⌘

+ zwhs

j �j
q
SIj + LTw(Rw) + ⌧whs

j
� Swhs

j
(25)

subject to: max(0, Sret

j � ⌧ retj )  Swhs

j  SIj + LTw(Rw) + ⌧whs

j (26)

sij  SIj (27)

Sret

j  sj (28)

Swhs

j , Sret

j 2 Z+ (29)

The objective function of problem D�Prod2
,�,w,j is concave in Swhs

j
when Hj(zwhs

j
)+zwhs

j
� 0.

Therefore, for a given capacity level Rw, when  � �Hj(zwhs
j )

z
whs
j

, the optimal outgoing service time

at the warehouse lies at one of two extreme points, i.e. Swhs,⇤
j

= max(0, Sret

j
� ⌧ ret

j
) or Swhs,⇤

j
=

SIj + LTw(Rw) + ⌧whs

j
(Lines 3 to 6). When  <

�Hj(zwhs
j )

z
whs
j

, we search all possible integer values

of the outgoing service time at the warehouse and compute the objective value f
D�Prod

2
,�,w,j

. This

full search determines the best outgoing service time at the warehouse with the lowest objective value

f⇤
D�Prod

2
,�,w,j

(Lines 9 to 12). Algorithm 2 shows the procedure for solving problem D�Prod2
,�,w,j

for a given capacity level Rw.

Algorithm 2 Procedure for solving D�Prod2
,�,w,j .

1: function Solve D�Prod2
(, �, w, j, Rw)

2: S1,whs
j  max(0, Sret

j � ⌧ret
j ), S2,whs

j  SIj + LTw(Rw) + ⌧whs
j , f⇤

D�Prod2
,�,w,j

 +1

3: if f
D�Prod2

,�,w,j

⇣
S1,whs
j

⌘
< f

D�Prod2
,�,w,j

⇣
S2,whs
j

⌘
then

4: Swhs,⇤
j  S1,whs

j , f⇤
D�Prod2

,�,w,j
 f

D�Prod2
,�,w,j

⇣
S1,whs
j

⌘

5: else

6: Swhs,⇤
j  S2,whs

j , f⇤
D�Prod2

,�,w,j
 f

D�Prod2
,�,w,j

⇣
S2,whs
j

⌘
end if

7: if  <
�Hj(z

whs
j )

zwhs
j

then

8: Swhs
j  S1,whs

j

9: while Swhs
j  S2,whs

j do

10: if f
D�Prod2

,�,w,j

⇣
Swhs
j

⌘
< f⇤

D�Prod2
,�,w,j

then

11: Swhs,⇤
j  Swhs

j , f⇤
D�Prod2

,�,w,j
 f

D�Prod2
,�,w,j

⇣
Swhs
j

⌘
end if

12: Swhs
j  Swhs

j + 1 end while end if

13: return f⇤
D�Prod2

,�,w,j

14: end function

To solve D�NLR2
,�,w, we search all possible values of Rw that result in integer lead times, and we

compute the corresponding objective value f
D�NLR

2
,�,w

. This full search determines the best capacity

and lowest cost f⇤
D�NLR

2
,�,w

. The steps employed to solve NLR2
,� are summarized in Algorithm 3.
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Algorithm 3 Procedure for solving NLR2
,� .

1: function Solve NLR2
(, �)

2: f⇤
NLR2

,�
 0

3: for all w 2W do

4: f⇤
D�NLR2

,�,w
 +1, Rw  

P
j2Mw

�j

5: while Rw 
P

j2Mw
�j +

B�
P

i2W
P

j2Mw
bi�j

bw
do

6: fD�NLR2
,�,w

 0

7: for all j 2 Mw do

8: f
D�Prod2

,�,w,j
 Solve D�Prod2

(, �, w, j, Rw) . Using Algorithm 2

9: fD�NLR2
,�,w

 fD�NLR2
,�,w

+ f
D�Prod2

,�,w,j
end for

10: fD�NLR2
,�,w

 fD�NLR2
,�,w

+ �
⇣
bwRw � B

|W|

⌘
� K

11: if fD�NLR2
,�,w

 f⇤
D�NLR2

,�,w
then f⇤

D�NLR2
,�,w

 fD�NLR2
,�,w

end if

12: Rw  FindNextR end while . Find next Rw that results in integer lead time

13: f⇤
NLR2

,�
 f⇤

NLR2
,�

+ f⇤
D�NLR2

,�,w
end for

14: return f⇤
NLR2

,�

15: end function

5.2.1 Generating upper bounds for problem NLR1


To generate upper bounds on the objective value of the first phase relaxation problem NLR1
, a

greedy heuristic is used in each iteration of the second phase. After solving NLR2
,� , we check whether

the obtained lower bound solution satisfies the budget constraint (2). If this is the case, the lower

bound solution is feasible for NLR1
, and the corresponding objective value is an upper bound. When

P
w2W bwRw > B, i.e. the lower bound solution is not feasible, a greedy heuristic is used to repair the

solution by eliminating the surplus of the capacity budget, denoted by Surplus2. The output of this

heuristic is a repaired, feasible solution for which the objective value is an upper bound on problem

NLR1
.

In each iteration of the greedy heuristic, Surplus2 is reduced by a predefined capacity budget re-

duction, which we refer to as Step. Subtracting Step from the capacity budget of a workcenter reduces

its capacity level by Step

bw
and increases the objective value of NLR1

 by Loss2 (Line 9). We start

from the workcenter with the lowest value of Loss2 (Line 10), reduce its capacity by Step

bw
, and update

Surplus2 (Line 11). This process is repeated until the budget constraint (2) is satisfied. Once the ob-

tained capacities become feasible, we need to determine the corresponding optimal service times. When

 � �Hj(zwhs
j )

z
whs
j

, problem NLR1
 is concave in Swhs

j
, and the optimal outgoing service time at the ware-

house lies at one of two extreme points: Swhs,⇤
j

= max(0, Sret

j
�⌧ ret

j
) or Swhs,⇤

j
= SIj+LTw(Rw)+⌧whs

j
.

When  <
�Hj(zwhs

j )

z
whs
j

, we search over all possible values of Swhs

j
and compute the objective value of

NLR1
. Algorithm 4 lists the steps of the greedy heuristic to generate upper bounds for NLR1

.
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Algorithm 4 Greedy heuristic to generate upper bounds for NLR1
.

1: function UpperBound2(�)

2: UB2 0

3: if
P

w2W bwRw  B then
4: for all w 2W do RUB

w  Rw end for . Rw is the solution of problem NLR
2
,�

5: else
6: Surplus2 

P
w2W bwRw �B, Step Surplus2P

w2W bw

7: while 0 < Surplus2 do
8: if Surplus2� Step < 0 then Step Surplus2 end if

9: for all w 2W do Loss2[w] = fP

 
max

⇣P
j2Mw

�j , Rw � Step
bw

⌘!
� fP(Rw) end for

10: FindWorkcenterWithLowestValueIn(Loss2)

11: Surplus Surplus� bw

⇣
Rw �max(

P
j2Mw

�j , Rw � Step
bw

)
⌘

12: R
UB
w  Rw, Rw  max

⇣P
j2Mw

�j , Rw � Step
bw

⌘
end while end if

13: for all w 2W, j 2 Mw do
14: f

D�Prod2
,�,w,j

 Solve D�Prod
2(, �, w, j, R

UB
w ) . Using Algorithm 2

15: UB2 UB2 + f
D�Prod2

,�,w,j
end for

16: return UB2

17: end function

5.2.2 Updating the Lagrangian multiplier �

The subgradient-based heavy ball method, presented in Section 5.1.2, is used to update the Lagrangian

multiplier �. The current gradient is
P

w2W bwRw �B and the direction of the search is defined based

on equation (30), where 0  ✓  1. The step size of the heavy ball method is calculated using equation

(31), and the Lagrangian multiplier is updated based on equation (32).

diter2 = (1� ✓)Giter2 + ✓diter2�1 (30)

T iter2 =
UB � f

NLR
2
iter1�iter2

(diter2)2
(31)

�iter2+1 = max
�
�iter2 + T iter2diter2, 0

�
(32)

6 A simulation study

This section presents a simulation study to evaluate the accuracy of the mathematical model and

to compare two approaches for setting capacity and safety stocks in order to assess the value of the

integration. The simulation study includes three steps. In the first step, production lead times are

estimated using simulation-based cycle time-throughput curves. Based on the obtained approximate

lead time functions LTw(Rw), the second step sets capacities and service times. In the third step,

the obtained solutions are taken as inputs of a discrete-event simulation model for the production-

distribution system described in Section 3.2. This last step evaluates the quality of the solutions and

the accuracy of the model with respect to several performance criteria.
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6.1 Simulation steps

6.1.1 Production lead time estimation

Each workcenter w sets a guaranteed, deterministic lead time LTw that is dependent on its capacity

Rw. This lead time is the elapsed time between the moment an order of a period is received by the

workcenter until it is completed and shipped to the warehouse.

We set LTw to include two parts, the first part is the average time an item spends in the raw material

staging area plus a second part, which is a fixed time to be spent by an item at the workstation and

the finished good staging area. The second part of the lead time, i.e. the fixed time, is determined

such that a target fraction ↵LT
w of processed items are completed and ready to be shipped within this

fixed time. Units that are delayed, i.e. units that are not available at the finished good staging area to

be able to ship a complete order to the warehouse, are expedited from the queue of the workstation.

Expediting can be implemented using special measures such as overtime (Çelik and Maglaras, 2008;

Plambeck and Ward, 2007, 2008). Inderfurth (1993) and Minner (2000) also used a similar approach

to define lead times in GSA models. In this manner, the complete order of the warehouse is satisfied

within the guaranteed service time of the workcenter, i.e. SIj + LTw for product j 2 Mw. In this

case, (1� ↵LT
w ) represents the percentage of time the manufacturer resorts to expediting measures at

workcenter w, and the expected number of delayed items per period is (1� ↵LT
w )

P
j2Mw

�j .

Specifically, at the beginning of each period, orders are placed in the raw material staging area.

Subsequently, units of the various items are released and processed on a FCFS basis, according to the

sequence of arrival at the retailer. On average, orders spend 0.5 periods in the raw material staging

area. The time that an item spends in the workstation (queuing plus processing) is the production

cycle time of workcenter w, PCTw which is a random variable. The fixed time tw, which is the second

part of lead time, is defined such that P(PCTw  tw) � ↵LT
w .

To estimate the fixed time tw and hence production lead times as a function of the allocated

capacity Rw, we use simulation-based cycle time-throughput curves based on the work reported by

Yang et al. (2008). We start by estimating the ↵LT
w -percentile of PCTw by fitting curves to the

first three moments of PCTw, and subsequently matching a generalized gamma distribution function

to these three moments. Afterwards, a nonlinear regression model can be fitted on the obtained

percentiles to estimate the fixed time as a function of Rw at a given ↵LT
w . This procedure is described

in Appendix C.

6.1.2 Two approaches for setting capacity and safety stocks

Two methods that are employed to set capacity and safety stocks in the production-distribution system

are considered, namely a sequential approach and an integrated approach. The sequential approach

considers the relationship between the capacity, cycle time, and WIP, while setting the capacity, but it

ignores the effect of the capacity on safety stocks. The integrated approach jointly optimizes capacity

and safety stocks.
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Sequential approach (Seq). In this approach, the capacity planning problem is solved first to set

capacities of workcenters Rw, and subsequently, the safety stock placement problem is solved to obtain

optimal service times and safety stock levels. The capacity planning problem determines the processing

rate for each workcenter while considering the manufacturer’s budget and WIP inventory cost. Based

on Bretthauer (1995) and Bretthauer and Côté (1997), the capacity planning problem (CAP) can be

formulated as follows:

CAP min
R

X

w2W

X

j2Mw

hwip

j
�jLTw(Rw) (33)

subject to: constraints (2), (3) and (9).

Once problem CAP is solved, production lead times LTw(Rw) are taken as inputs to the safety stock

placement problem (SSP), which is solved using Algorithm 1 to determine safety stocks. The safety

stock placement problem SSP is given by

SSP min
SI, S

Hj(z
whs

j )�j
q
SIj + LTw + ⌧whs

j
� Swhs

j
+Hj(z

ret

j )�j
q
Swhs

j
+ ⌧ ret

j
� Sret

j
(34)

subject to: constraints (4), (5), (6), (7) and (8).

Integrated approach (Int) The integrated approach jointly optimizes capacity and safety stocks.

The integrated problem is formulated in Section 3 and solved using the nested Lagrangian relaxation

heuristic presented in Section 5. The improvement obtained through integration is measured using the

value of integration (VOI)%, which is defined as the savings obtained using the integrated approach

relative to the other approaches or

VOI% = f
Seq�fInt

fSeq ⇥ 100.

Where fSeq is the total cost of the sequential approach, and f Int is the total cost of the integrated

approach.

6.1.3 Evaluation

Once capacity and safety stocks (or base stock levels) are set using one of the above two approaches,

they are taken as inputs for a discrete-event simulation model. To evaluate the quality of the so-

lutions, simulation experiments were conducted, and statistics on various performance measures are

calculated. Performance measures include: the fraction of on-time completion at workcenters (↵LT
w ),

service levels at the warehouse and retailer
�
↵whs

j
,↵ret

j

�
, the WIP level at workcenters, expediting

(backorders) at warehouse and retailers (BOwhs

j
, BOret

j
), on-hand inventory at the warehouse and

retailers (OHwhs

j
, OHret

j
), and the total cost of the system.

6.2 Simulation experiments

The simulation steps described in the previous section were applied to a production-distribution system

example. The simulation model was implemented using FlexSim simulation software version 7.0.
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Production-distribution system example. We consider an example of a production-distribution

system, where the production part is motivated by the semiconductor manufacturing process at IBM,

presented in Woerner et al. (2018). The semiconductor manufacturing system consists of two assembly

lines. Each assembly line processes a single product, and includes five production steps. In this

paper, we assume that all five production steps are done in one workcenter. Therefore, the production-

distribution system consists of one manufacturer with two workcenters, one warehouse, and one retailer,

as depicted in Figure 11. Workcenter 1 processes product 1, while workcenter 2 produces product 2.

Demand for products 1 and 2 follow a normal distribution with means 100 and 1000, and standard

deviation values of 200 and 10 units per period, respectively. Product 1 has a lower demand rate and

higher coefficient of variation (COV=2) in comparison to product 2 (COV=0.01). The duration of

each review period is 1440 min or one day.

Product 1 is assumed to be more expensive to hold and expedite through the supply chain compared

with product 2. Based on Woerner et al. (2018), to set the WIP cost, we take the average WIP cost

of the five production steps in each assembly line. Therefore, the WIP costs are hwip

j
= {26, 2.6} Euro

per unit per period. We define the value addition at the warehouse and retailer as �whs

j
=

h
0,whs
j

h
wip
j

and

�ret

j
=

h
0,ret
j

h
0,whs
j

, respectively, and set �whs

j
= �ret

j
= 1.2. Based on Woerner et al. (2018), the capacity

unit cost at workcenters is set to bw = {0.1, 1} in Euro per unit per period. The total available budget

at the manufacturer is B = 1030.6 Euro, which is obtained based on an average utilization of 98% at

the manufacturer. Processing times at both workcenters follow a log-normal distribution function with

a squared coefficient of variation C2
s = 2.

The service factor for both products at the warehouse and retailer are zwhs

j
= 1.281 and zret

j
= 1.96,

respectively, which corresponds to a 90% and 97.5% service level. Unit expediting costs are computed

based on Aouam and Kumar (2019). The logistics delays ⌧whs

j
and ⌧ ret

j
are set equal to two periods.

We also assume that costumers are willing to wait for their items. Accordingly, the maximum outgoing

service times at the retailer are s1 = s2 = 1 period. In addition, we set the minimum incoming service

times at the manufacturer to zero, i.e. si1 = si2 = 0. In the base case instance, we consider four

different values for the storage capacity, K 2 {1, 23000, 20000, 1000}.

Warehouse RetailerManufacturer

Figure 11: Supply chain network of the base case instance.

Lead time estimation. Production lead times of workcenters 1 and 2 are estimated based on Yang
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et al. (2008). The average time that an item spends in the raw material staging area is calculated and

added to the fixed time, as explained in section 6.1.1. For each workcenter, we consider 500 capacity

levels and 100 simulation runs for each capacity level, where each run consists of 20,000 periods. Inter-

release times follow log-normal distributions with mean 1
�j

and coefficient of variation equal to one.

Once an order (a period demand) arrives as a batch at the staging area, the average time an item waits

in batch is 0.5 periods. Based on Yang et al. (2008) and for ↵LT
w =95%, the lead time functions for

workcenters 1 and 2 are estimated as follows:

LT1(R1) = 0.5 +
4.685� 23.763

⇣
100
R1

⌘
+ 47.683

⇣
100
R1

⌘2
� 42.25

⇣
100
R1

⌘3
+ 13.645

⇣
100
R1

⌘4

⇣
1� 100

R1

⌘2.017 (35)

LT2(R2) = 0.5 +
2.459� 9.676

⇣
1000
R2

⌘
+ 15.894

⇣
1000
R2

⌘2
� 10.306

⇣
1000
R2

⌘3
+ 1.928

⇣
1000
R2

⌘4

⇣
1� 1000

R2

⌘1.007 (36)

Solutions of the two approaches and effect of storage capacity

Given the above estimated lead times, the integrated and sequential approaches presented in Section

6.1.2 determine the capacity levels and service times. Table 4 shows the solutions of these two ap-

proaches for the base case with K 2 {1, 23000, 20000, 1000}. From Table 4, one can observe that

the two approaches result in different replenishment lead times and safety stocks.

Table 4: Integrated and sequential solutions for the base case instance.

Storage capacity Integrated approach Sequential approach

K (in units) RLT SSwhs SSret
Type RLT SSwhs SSret

Type

8

Product 1 5 572.88 392.00 Decoupling 7 677.84 392.00 Decoupling

Product 2 23 61.43 19.60 Decoupling 21 58.70 19.60 Decoupling

TC 104736.76 (VOI=4.10%) 109210.40

23000

Product 1 5 572.88 392.00 Decoupling 7 677.84 392.00 Decoupling

Product 2 23 58.70 33.95 Partial decoupling 21 58.70 19.60 Decoupling

TC 104789.17 (VOI=4.05%) 109210.40

20000

Product 1 5 572.88 392.00 Decoupling 7 677.84 392.00 Decoupling

Product 2 23 0.00 96.02 Coupling 21 54.35 39.20 Partial decoupling

TC 104815.51 (VOI=4.08%) 109279.32

1000

Product 1 5 0.00 960.20 Coupling 7 0.00 1108.74 Coupling

Product 2 23 0.00 96.02 Coupling 21 0.00 91.93 Coupling

TC 105708.85 (VOI=5.89%) 112324.16

From Table 4, the replenishment lead time at the warehouse RLT = (7, 21) periods in the sequential

approach. When safety stock placement is taken into consideration in the integrated approach, capacity

allocation changes and RLT = (5, 23) periods. The different capacity allocation results in different

safety stock levels. The sequential approach first sets the capacity and subsequently optimizes safety

stocks. The approach considers the differences in the WIP holding costs, capacity unit costs, and

demand rates between products, and allocates more capacity to product 1. This results in RLT1 = 7

periods for product 1 that is much shorter than RLT1 = 21 periods for product 2. When safety stock

placement is taken into consideration in the integrated approach, RLT for product 1 is further reduced
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to RLT1 = 5 periods because product 1 is expensive to hold and has more demand variability. The

integrated approach minimizes production and distribution costs simultaneously, and this explains the

cost savings that are realized. Therefore, the integrated approach allocates capacity more efficiently,

which leads to a cost reduction (value of integration) relative to the sequential approach of V OI = 4.1%.

Table 4 shows that RLT is not affected by the warehouse storage capacity K in both approaches.

This means that for any value of K, it is more cost-efficient to adjust safety stock placement than to

change capacity allocation. When storage capacity is reduced from infinity to K = 23000 units, the

optimal safety stock placement remains unchanged and inventory is decoupled for both products in the

sequential approach. In the integrated approach, inventory is decoupled for product 1, while inventory

is partially decoupled for product 2. When storage capacity is further reduced to K = 20000 units,

the integrated approach couples inventory of product 2 at the retailer while the sequential approach

partially decouples inventory of product 2. When storage capacity is very small K = 1000 units, both

approaches place inventory at the retailer for both products. Therefore, storage capacity at the ware-

house seems to impact safety stock placement and not capacity allocation in both approaches. Storage

capacity has more effect on safety stock placement in the integrated approach. As storage capacity

becomes smaller, inventory is pushed towards the retailer.

Validation of the mathematical model and evaluation

To validate the mathematical model and evaluate the solutions of the integrated approach, performance

measures are computed using simulation experiments, and the results are compared with those of the

mathematical model. Based on 100 simulation runs, the mean and 95% confidence interval (CI) of the

performance measures are estimated. The simulation and mathematical model results are reported in

Tables 5 and 6, respectively.

Table 5: Simulation results for the integrated approach.

Storage capacity Performance measures based on the simulation

(units) ↵LT
WIP ↵whs ↵ret BOwhs BOret OHwhs OHret

8

Product 1 95.11%±0.15 294.76±0.44 90.01%±0.09 97.51%±0.05 21.14±0.07 1.89±0.007 595.98±2.73 395.44±1.67

Product 2 95.09%±0.19 20913.34±53.42 90.02%±0.05 97.50%±0.08 2.27±0.01 0.09±0.002 63.91±0.27 19.77±0.08

TC 104432.67±326.08

23000

Product 1 95.14%±0.22 294.68±0.47 90.00%±0.09 97.51%±0.07 21.15±0.08 1.89±0.006 596.16±2.67 395.35±1.61

Product 2 95.15%±0.21 20910.20±56.56 90.05%±0.06 97.53%±0.04 2.17±0.01 0.16±0.003 60.98±0.19 34.21±0.11

TC 104471.35±336.87

20000

Product 1 95.16%±0.27 294.34±0.84 90.02%±0.10 97.53%±0.11 21.13±0.10 1.88±0.006 595.83±2.58 395.33±1.83

Product 2 95.11%±0.23 20907.05±59.71 - 97.52%±0.08 - 0.46±0.004 - 96.81±0.37

TC 104455.28±366.22

1000

Product 1 95.16%±0.27 294.72±0.46 - 97.51%±0.03 - 4.63±0.008 - 968.25±3.91

Product 2 95.14%±0.19 20932.19±26.19 - 97.52%±0.09 - 0.46±0.002 - 96.76±0.32

TC 105468.07±246.81

Table 5 indicates that the fraction of on-time completion ↵LT in all three cases is always higher

than the target ↵LT
w = 95% in the mathematical model. This means that the production lead time

estimation is conservative, leading to fewer delayed items at workcenters. In addition, the average cycle
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service levels ↵whs and ↵ret are very close to but slightly higher than their target values. The reason

is that to set the base stock level in the simulation model, we round up the base stock level obtained

from the mathematical model. Therefore, in the simulation model, we have a higher base stock level,

which results in higher service level. When a stage does not carry inventory, i.e. the net replenishment

lead time is equal to zero, we do not report the service level.

Table 6: Results of the mathematical model for the integrated approach.

Storage capacity Performance measures based on the mathematical models

(units) ↵LT
WIP ↵whs ↵ret BOwhs BOret OHwhs OHret

8

Product 1 95% 295 90% 97.5% 21.20 1.89 594.08 393.89

Product 2 95% 20950 90% 97.5% 2.27 0.09 63.71 19.69

TC 104736.76

23000

Product 1 95% 295 90% 97.5% 21.20 1.89 594.08 393.89

Product 2 95% 20950 90% 97.5% 2.17 0.16 60.87 34.11

TC 104789.17

20000

Product 1 95% 295 90% 97.5% 21.20 1.89 594.08 393.89

Product 2 95% 20950 - 97.5% - 0.46 - 96.48

TC 104815.51

1000

Product 1 95% 295 - 97.5% - 4.63 - 964.83

Product 2 95% 20950 - 97.5% - 0.46 - 96.48

TC 105708.85

In addition, when comparing both Tables 5 and 6 we observe that backorders (BOwhs and BOret)

as well as on-hand inventories (OHwhs and OHret) of the mathematical model are close to those of the

simulation and within the 95% CI. Average WIP levels in the simulation are slightly lower compared

with those of the mathematical model owing to the conservative production lead time estimation. Fur-

thermore, for all three cases, the total cost of the system in the mathematical model falls within the

95% CI estimated through simulation. The above results show that the approximations used in the

mathematical model are accurate.

Effect of different parameters on the VOI%

In the following, we study the effect of different parameters on the VOI%. In each experiment, the

parameter of product 1 is changed while the parameter of product 2 remains constant. The warehouse

storage capacity is set to K = 20000 units in the base case.

Coefficient of variation of the demand. Figure 12 plots the total cost of the system as a function of the

demand coefficient of variation for product 1, i.e. COV1. This figure shows that as COV1 increases, the

total cost of the system for both integrated and sequential approaches increases, while the total cost

of the integrated approach is always lower. In fact, as the demand variability increases, it is necessary

for more safety stocks to be kept on the distribution side in order to hedge against uncertainty. This

figure also displays that the total cost of the system is very close to the total cost of the simulation.

Figure 13 shows that as COV1 increases, the VOI% increases. In fact, the sequential approach does

not consider the effect of demand variability in the capacity allocation phase, while the integrated

approach is able to jointly optimize capacity and safety stocks, which results in savings up to 5.06%.
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Figure 12: Impact of demand variability (COV1)

on total cost of the system.
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Figure 13: Impact of demand variability (COV1)

on VOI%.

External outgoing service time s. Figure 14 illustrates the effect of the external outgoing service time

s1 of product 1 on the total cost of the system for both integrated and sequential approaches. The total

cost in both approaches decreases with s1 because constraints (7) are less restrictive. However, the

total cost in the integrated approach is always lower, and hence, there is a positive VOI% up to 19.73%,

as shown in Figure 15. This figure also shows that there is a threshold on s1, s01 = 9 periods, above

which the total cost of the integrated and sequential approaches is the same. This threshold is reached

when the lead time of product 1 takes its maximum value LTmax

1 = 5 periods in our example, and the

threshold can be computed as s01 = LTmax

1 + ⌧whs

1 + ⌧ ret1 = 9 periods. Furthermore, we observe that

the VOI% is particularly high for s1 = 6, 7 and 8 periods and reaches its maximum value at s1 = 7

periods. In fact, the integrated approach reallocates capacity to increase RLT1 when s1 increases,

while the capacity allocation remains unchanged in the sequential approach when s1 is increased. In

the integrated approach, the retailer and warehouse do not carry inventory of product 1 when s1 � 6,

i.e. product 1 is made to order. This makes sense since product 1 is expensive to hold in inventory and

the customer is willing to wait. The same solution is optimal in the case of the sequential approach,

but only when s1 � 9. The difference in the type of safety stock placement solutions between the two

approaches explains the high VOI%.

Value addition at the warehouse (�whs) and at the retailer (�ret). The total cost of the system for

both integrated and sequential approaches increases with �whs

1 and �ret

1 . This can be explained by the

increase in holding costs at the warehouse h0,whs

1 and the retailer h0,ret1 , which increase with �whs

1 and

�ret

1 . This increase is captured by the integrated approach while allocating capacity to workcenters.

As a result, the total cost of the integrated approach is always lower than the cost of the sequential

approach. As displayed in Figure 16, the VOI% ranges from 4.08% to 5.01%. We also notice a major

change in the VOI% at �whs

1 = �ret

1 = 1.2, which can be explained by the change in the type of safety

stock placement solution in the integrated approach. While inventory of product 1 is decoupled for
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Figure 14: Impact of s1 on total cost of the sys-

tem.
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Figure 15: Impact of s1 on VOI%.

all considered values of �whs

1 and �ret

1 in the sequential approach, it is coupled at the retailer when

�whs

1 = �ret

1 < 1.2 and then decoupled for �whs

1 = �ret

1 � 1.2 in the integrated approach.
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of the system.

1.0 1.2 1.4 1.6 1.8 2.0

4.
2

4.
4

4.
6

4.
8

5.
0

Value addition for product 1

VO
I (

 %
 )

Figure 17: Impact of �whs
1 and �ret

1 on VOI%.

7 Performance of the nested Lagrangian relaxation heuristic

The performance of the proposed solution procedure, i.e. the nested Lagrangian relaxation heuristic

presented in section 5, is assessed in this section. Solutions and CPU times of the proposed algorithm

are compared to those of BARON, a standard solver for solving non-convex mathematical programming.

The nested Lagrangian relaxation heuristic is coded in JAVA 8 and run on a 64-bit computer with 2.7

GHz Intel Core i5 processor and 8 GB of RAM under OSX 10.11.6. The integrated problem P was
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coded in GAMS 24.7.4 and solved using BARON solver.

7.1 Instance generation

We consider three instance sets A (5 workcenters), B (10 workcenters), and C (30 workcenters). Each

instance set consists of 10 randomly generated instances. Next, we describe how these instances are

constructed.

The number of products processed by workcenter is uniformly generated between 1 and 3 for set A

and between 10 and 20 for sets B and between 20 and 40 for set C. For all products, demand arrival is

modeled as a Poisson process and for each instance mean demand is randomly generated between 100

and 1000 units per period. Lead times are estimated through simulation as describe in section 6.1.1.

We assume log-normal processing times for workcenters in the simulation and the fraction of on-time

completion is ↵LT
w = 0.95. The unit cost of capacity bw for each workcenter is generated uniformly

between 100 and 1000 Euro per unit per period and the capacity budget B is set randomly in a way

that the average utilization to be between 0.85 and 0.95, i.e B=
P

w2W
P

j2Mw
�jbw

85% to 95% . The manufacturer’s

WIP holding cost for each product (hwip

j
) is generated uniformly between 10 and 100 Euro.

The inventory holding costs at the warehouse (h0,whs

j
) are generated randomly to be on average

between 1.05 and 2 times of the WIP holding cost at the manufacturers. Similarly, the inventory

holding costs at the retailer (h0,ret
j

) are generated randomly to be on average between 1.1 and 1.4

times of the inventory holding cost at the warehouse. Safety factor at both warehouse and retailer is

equal to 1.96 which corresponds to a 97.5% service level. The overtime costs and augmented inventory

costs are set based on Aouam and Kumar (2019). The external incoming service times for products

at the manufacturer (sij) and the external outgoing service time at the retailer (sj) are generated

uniformly between 0 and 10 periods. The delays ⌧whs

j
and ⌧ ret

j
are drawn uniformly between 1 and 20

periods. The storage capacity is set randomly as a function of the sum of base stock levels such that

K = (50% to 150%)⇥
P

j2M
�
�j⌧whs

j
+ zwhs

j
�j
q
⌧whs

j

�
.

7.2 Computational results

In the nested Lagrangian relaxation heuristic, the memory parameter of the heavy ball method is

✓ = 0.3 and the initial values for all Lagrangian multipliers are taken to be zero. The algorithm stops

when the optimality gap is less than 0.01%, the step size is less than 10�10 , or the number of iterations

exceeds 1000. For large instances in set C, we add an additional stopping criterion, where the algorithm

stops when the lower bound does not improve for five consecutive iterations.

To compare the quality of BARON’s upper bound with the one obtained using the nested La-

grangian relaxation heuristic, we define relative gap GAP0% as follows:

GAP0% = UBNLR�UBBARON

UBBARON
⇥ 100.

Where UBNLR and UBBARON are the obtained upper bound of the nested Lagrangian relaxation

heuristic and BARON solver, respectively. Negative values of GAP0% indicate that the nested La-
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grangian relaxation heuristic finds a lower cost solution in comparison to BARON. Tables 7-9 report

lower bound, upper bound, optimality gap GAP %, CPU time, number of iterations and relative gap

GAP0% for all instances in sets A, B, and C. The second column in these tables refers to the total

number of products in each instance.

From Table 7, we see that BARON solves all instances from set A to optimality within an average

CPU time of 261 seconds. The average optimality gap of BARON increases from 0.0% in set A to 68.5%

in set B in Table 8. In Table 9, we can see that except for instance number 6 for which the optimality

gap is 98.4%, BARON does not find feasible solutions for instances in set C. We can conclude that as

the number of workcenters and the number of products in the network increases, the performance of

BARON greatly deteriorates.

Table 7: Results for set A with 5 workcenters

I
n
s
.
#

P
r
d
.
#

BARON Nested Lagrangian relaxation

Gap
0
%

LB UB Gap % Time (s) LB UB Gap % Time(s) Iter

1 9 11776874.0 11776874.0 0.00 288 11769152.2 11776874.0 0.07 1.2 38 0.00

2 9 7285517.6 7285517.6 0.00 62 7283156.9 7285517.6 0.03 0.7 40 0.00

3 10 7731110.4 7731110.4 0.00 264 7729345.7 7731110.4 0.02 1.1 39 0.00

4 9 18860806.0 18860806.0 0.00 53 18849170.5 18860806.0 0.06 1.6 31 0.00

5 12 9530299.4 9530299.4 0.00 1179 9527438.2 9530299.4 0.03 1.0 41 0.00

6 9 7522070.0 7522070.0 0.00 108 7519698.3 7522070.0 0.03 1.0 35 0.00

7 10 9395256.7 9395256.8 0.00 214 9390639.6 9395256.8 0.05 0.6 39 0.00

8 9 6421194.3 6421194.3 0.00 140 6418537.1 6421194.3 0.04 0.7 37 0.00

9 11 20007963.0 20007963.0 0.00 288 20006168.7 20007963.0 0.01 0.6 30 0.00

10 6 6254402.2 6254402.2 0.00 16 6244826.6 6254402.2 0.15 0.6 43 0.00

Average 0.00 261 0.05 0.9 37 0.00

The nested Lagrangian relaxation heuristic finds optimal or near optimal solutions for all instances

in set A, B, and C in reasonable CPU times. The average optimality gap is 0.05%, 0.05%, and 0.06%

and the average solution time is 0.9, 9.0 and 98.7 seconds for instance set A, B, and C, respectively.

We also notice that the average number of iterations in set C is 26, which is lower than 37 and 32

iterations for sets A and B, respectively. This is because the nested Lagrangian relaxation algorithm

is terminated if the lower bound does not improve after five consecutive iterations for instances in set

C.

When comparing the solutions of BARON with those of the nested Lagrangian relaxation heuristic,

we can see that for small size instances in set A, the average GAP0%= 0.0. Which means that the

nested Lagrangian relaxation heuristic is able to find the optimal solutions in all instances. From

Table 8, one can observe that the nested Lagrangian relaxation heuristic provides better solutions for

all instances in set B since GAP0%< 0 for all instances, with an average of -46.8%. Further, Table 9

shows that the optimality gap is very small with an average GAP = 0.06% and the lower bounds of

the nested Lagrangian are much higher than those provided by BARON. In addition, GAP0 = -68.5%

for instance 6 for which BARON finds a feasible solution.

35

������������������



Table 8: Results for set B with 10 workcenters
I
n
s
.
#

P
r
d
.
#

BARON Nested Lagrangian relaxation

Gap
0
%

LB UB Gap % Time(s) LB UB Gap % Time(s) Iter

1 157 82811643 401060250 79.4 3600 223051491 223120120 0.03 7.6 26 -44.4

2 156 94744226 330564870 71.3 3600 168272393 168307780 0.02 9.4 36 -49.1

3 138 76940600 282948000 72.8 3600 153586905 153655015 0.04 18.6 43 -45.7

4 143 76383256 439425000 82.6 3600 142019460 142119768 0.07 8.1 35 -67.7

5 136 123519000 302441000 59.2 3600 173603949 173743092 0.08 6.7 30 -42.6

6 137 170635560 336925460 49.4 3600 236931787 236981006 0.02 6.9 24 -29.7

7 144 56245926 310623800 81.9 3600 139680261 139783514 0.07 10.7 33 -55.0

8 126 133239540 264551820 49.6 3600 175354154 175384711 0.02 6.9 30 -33.7

9 159 62575199 321347260 80.5 3600 144426656 144503319 0.05 7.9 29 -55.0

10 138 123389790 298290740 58.6 3600 162868925 162945945 0.05 7.7 33 -45.4

Average 68.5 3600 0.05 9.0 32 -46.8

Table 9: Results for set C with 30 workcenters

I
n
s
.
#

P
r
d
.
#

BARON Nested Lagrangian relaxation

Gap
0
%

LB UB Gap % Time(s) LB UB Gap % Time(s) Iter

1 934 45016209 - - 3600 1091682660 1092637780 0.09 77.6 20 -

2 919 40973842 - - 3600 1003378835 1003840743 0.05 113.3 32 -

3 900 41000300 - - 3600 859477698 860049665 0.07 229.8 23 -

4 831 39596200 - - 3600 889559131 890113578 0.06 77.7 28 -

5 844 37224343 - - 3600 913484638 913903133 0.05 67.7 22 -

6 920 43079500 2677180000 98.4 3600 844110355 844379870 0.03 70.6 24 -68.5

7 865 41400800 - - 3600 933763974 934339898 0.06 79.3 26 -

8 895 40651627 - - 3600 933587117 934316778 0.08 74.8 30 -

9 940 42127887 - - 3600 937714247 938334400 0.07 95.3 26 -

10 915 43539152 - - 3600 983672233 984140914 0.05 100.6 28 -

Average - 3600 0.06 98.7 26 -

8 Conclusion

This paper addresses the problem of jointly optimizing capacity planning and safety stock placement

under the GSA in a serial production-distribution system with multiple products. The production-

distribution network consists of a capacitated manufacturer that supplies a warehouse with limited

storage capacity and a retailer. The manufacturer must efficiently allocate capacity to multiple work-

centers, which makes the lead times of these workcenters endogenous. We formulate the integrated

problem of planning capacity and safety stocks with the objective of minimizing the WIP, inventory

and overtime costs subject to budget, and storage constraints.

For a single workcenter processing a single-product, the interaction between the manufacturer’s

lead time, the storage capacity at the warehouse, inventory costs, and the safety stock placement is

analytically characterized. For a given budget at the manufacturer, there is a storage threshold above

which the problem is similar to the problem with infinite storage capacity. When the storage capacity

is greater than the storage threshold, there is a replenishment lead time threshold that determines the

safety stock placement. This replenishment lead time threshold is increasing in the ratio of inventory

costs. Similarly, there is also a threshold for the ratio of the inventory cost, which is an increasing

function of the replenishment lead time. When the storage capacity is less than the storage threshold,

the safety stock placement depends on another replenishment lead time threshold, which is increasing
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in the storage capacity and decreasing in the ratio of inventory costs. Similarly, there is also a threshold

for the ratio of the inventory cost, which is a decreasing function of the replenishment lead time and

increasing in the storage capacity.

When the manufacturer has multiple workcenters, the integrated problem is formulated as a non-

convex program and solved using a nested Lagrangian relaxation heuristic. The algorithm dualizes the

storage constraint in the first phase and the budget constraint in the second phase. This decomposes the

problem into subproblems, each corresponding to a single workcenter, that are easy to solve. To solve

the integrated problem, lower bounds are computed by iteratively solving the relaxed problems and

employing efficient greedy heuristics to find tight upper bounds. Subgradient procedures update the

Lagrangian multipliers in both phases until an acceptable optimality gap is reached. Our computational

experiments show that the nested Lagrangian relaxation heuristic is able to find optimal or near-optimal

solutions in reasonable CPU times, and outperforms BARON, which is a commercial mixed-integer

nonlinear optimization solver, in terms of the average optimality gap and run time.

In addition, a simulation study was conducted to evaluate the accuracy of the mathematical model

and to compare the solution of the integrated approach with that of the sequential approach employed

to set capacity and safety stocks. These experiments illustrate that for multiple products with highly

different demand variability and inventory costs, the integrated approach results in a high value of

integration relative to the sequential approach. The reason is that the integrated approach considers

the effect of demand variability, inventory costs, and the cost trade-offs between different products

competing for the shared manufacturer’s budget and warehouse storage and allocates capacity more

efficiently.

This paper considers a serial supply chain and can be extended to analyze more complex supply

chain structures. Manufacturers may belong to different firms each with its own capacity budget.

Another interesting future research direction would be to model other production decisions, such as lot

sizing and scheduling at the manufacturer, and to study the impact on capacity allocation and safety

stocks.
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Highlights: 
i) Capacity and safety stocks are optimized in a serial production-distribution 

system. 
ii) The effect of warehouse storage capacity on safety stocks is characterized. 
iii) A nested Lagrangian relaxation heuristic is proposed to solve the problem. 
iv) A simulation study demonstrates the value of integration. 
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