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Valence bonds in elongated boron clusters

Athanasios G. Arvanitidis ∗, Kie Zen Lim †,

Remco W.A. Havenith ‡, Arnout Ceulemans §

Abstract

A well defined class of planar or quasi-planar elongated boron clusters,

of type B
q−
7+3n, serves as a basis to identify the valence bond picture of

delocalized boron networks. The origin of the series is the B−

7 cluster,

which exhibits σ-aromaticity. The cluster generating step is the repetitive

expansion by three boron atoms in the direction of elongation. Specific

electron counting rules are obtained for π-bonding, peripheral σ-bonding

and multi-center inner σ-bonding. A valence bond structure is introduced

which explains the remarkable regularity in the bonding pattern. The anal-

ysis supports 4c-2e bonds as an alternative to the common 3c-2e bonds. The

results are validated by symmetry induction and ab initio calculations.
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Introduction

The recent literature reports on a wide variety of planar and bowl shaped boron clusters.

Proposed structures are usually based on theoretical calculations, but for some cases struc-

tures could be confirmed by Photoelectron or infrared spectroscopy 1 on clusters produced

by laser evaporation 2–4. A further special feature of some clusters which are shaped like two

concentric rings is the almost barrierless rotatory motion of the inner ring with respect to

the outer ring 5. This motion has been compared to a Wankel motor at the molecular scale

6. In view of the rich variety of shapes and properties, which challenges accepted concepts

of chemical bonding, boron is said to be the new carbon. As opposed to carbon, it is known

to adopt multi-center bonds which have to be accomodated in a proper theoretical scheme.

7–9. To build a consistent valence bond picture that would apply to all these clusters, a

gradual approach is required based on a well-defined set of structures. For this, we chose

the particular family of the so-called elongated boron clusters. The aim is to obtain a set of

rules that rationalize the electronic structure calculations on a series of structures extending

from B−

7 to B2−
28

10–18.

Elongated Boron Clusters

The origin of the elongated family is B−

7 . Extension of this structure is based on adding B3

units along a given direction. This leads to a family of B7+3n structures. For n even, stable

clusters acquire a closed shell ground-state as mono-anions. For n odd, previous calculations

on B16 have revealed that it becomes a perfectly planar closed shell structures as a dianion19.

Here we will report a similar finding for B2−
10 . On this basis we define the family of elongated

boron clusters as the planar or quasi-planar structures with general formula B
q−
7+3n, with:

q =
3− (−1)n

2
(1)

A set of clusters belonging to this family is shown in Fig.1. Previous calculations on B10

show that for the mono-anion the elongated structure (Cs
2A′′) is the global minimum13.

The elongated structure of B−

13 was predicted by Boustani to be the global minimum as

well20. This was later confirmed by Fowler and Ugalde18. For the dianion B2−
16 the elongated
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Figure 1: Elongated family up to B−

25

structure (D2h
1A1g) is the minimum at B3LYP and CCSD(T) level of theory19. The B−

19

cluster is a local minimum (C2v
1A1)

21. At LDA level it is 7 kcal/mol above a disk-like

structure which is the global minimum. For B22 cluster the mono-anion was investigated by

Zope et al. at PBE level22. It was found to be the second lowest minimum, 5.5 kcal/mol above

a double-ring structure. Sergeeva et al.11 proposed for the global minimum of this cluster an

anthracene-like planar structure, but did not investigate the elongated isomer. Finally the

elongated form of B−

25 is competing with bowl-shaped alternatives with a marginal difference

of only 0.9 kcal/mol at CCSD(T)/6-311+G(d)//PBE0/6-311+G(d) level12.

Methods

In this paper we will investigate in detail a set of 8 clusters, from B−

7 till B2−
28 . For each clus-

ter we perform a geometry optimization and detailed electronic structure calculations using

Density Functional Theory (DFT) methods. All clusters are optimized at the B3LYP/6-

311G ∗ ∗ level of theory23–25 and are confirmed as local minima by calculation of vibrational
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Figure 2: The B2−
28 cluster, with C2h symmetry. The color segments describe 4c-2e bonds

frequencies using the G09 package26. For dianions some test calculations were also performed

with the inclusion of diffuse functions, at the B3LYP/6-311 + +G ∗ ∗ level. To describe the

electron distribution in chemical systems, a variety of indices have been proposed, all of

them carrying their pros and cons. In this paper we have opted for the Adaptive Natural

Density Partitioning (AdNDP) analysis27–29, which provides a quantitative and comprehen-

sive picture of bonding in many non-classical chemical structures including boron clusters.

In previous papers, AdNDP has been used successfully to examine bonding patterns in a

variety of boron clusters. The bonding analysis was carried out using the AdNDP method

at the B3LYP/6-311G∗∗ level of theory as implemented in Multiwfn software30. In addition

some test calculations were carried out with other functionals (PBE0, PBE, M06, TPSSh)

to examine the stability of the AdNDP occupation numbers. Canonical molecular orbitals

were visualized using Avogadro31 and AdNDP bonds using Molden32 and Gaussview soft-

ware. The orbital composition of the resulting ground states is classified according to the

irreducible representation of a standard D2h symmetry group. The in-plane directions are

labeled as z and y for the long and short axis respectively. The x direction coincides with

a twofold rotation axis perpendicular to the plane of the molecule, as indicated in Fig.2. In

Figure 1 we show the optimized geometry of the largest cluster of our series, with n = 7.

The accurate symmetry is C2h due to some ruffling of the inner boron chain.
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Results

Electron counting rules

The total number of valence electrons in the clusters under investigation is 3(7 + 3n) + q.

Our strategy to find out the bonding rules of these electrons is based on reverse engineering.

Table 1 shows how this total electron count can be distributed over several types of bonding.

First of all, since all clusters are quasi-planar or exactly planar, the valence orbitals can be

partitioned in a π and a σ shell. As we have shown before, the π-bonding is of multi-center

character and follows the simple particle in an elongated box model33,34. B−

7 has only two π

bonds, and therefore is anti-aromatic as far as π-aromaticity is concerned. Equal occupation

of the πx and πy orbitals gives rise to a triplet ground state, which favors an hexagonal

pyramidal geometry, with C6v symmetry. In contrast unequal occupation of both orbitals

leads to a distorted C2v structure with a singlet ground state13,35. Both spin states are nearly

degenerate. In the elongated clusters the singlet C2v structure will prevail, but - irrespective

of whether one considers the singlet or the triplet state - B−

7 counts for two bonds. For

the higher homologues the number of π bonds increases in a perfectly linear relation to the

extension of the cluster, and corresponds simply to n+ 2; so each added B3 unit introduces

one additional π bond to the two bonds of the n = 0 member. The remainder electron count

has to be assigned to in-plane σ-bonding. One thus has:

Ntotal = 3(7 + 3n) + q

Nπ = 2n+ 4

Nσ = Ntotal −Nπ = 17 + 7n+ q (2)

Hence the challenge really concentrates on the σ-bonds. Here AdNDP provides an important

insight. The search for localized electron-pair bonds between two B atoms (2c-2e bonds)

has revealed that the perimeter of the cluster always forms a totally bonding ring. Thus,

although boron clusters are electron-deficient, they nevertheless invest in localized bonding

on the perimeter. This is not only true for the elongated clusters, studied in this report, but

also holds for many other templates36. Closer inspection of the molecular orbitals involved

indicates that the corresponding electron density is not restricted to pure 2c-2e bonds but
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n B
q−
7+3n Ntotal Nπ Nσ Nσo Nσi

0 B−

7 22 4 18 12 6

1 B2−
10 32 6 26 16 10

2 B−

13 40 8 32 20 12

3 B2−
16 50 10 40 24 16

4 B−

19 58 12 46 28 18

5 B2−
22 68 14 54 32 22

6 B−

25 76 16 60 36 24

7 B2−
28 86 18 68 40 28

Table 1: Elongated boron clusters: valence electron counts, with a partitioning over π, outer

σ and inner σ bonds.

also includes some outward-pointing lone-pair character. We have investigated this further

for the case of the B2−
10 dianion, including diffuse basis functions. This stabilizes the energy

by a marginal 0.48 eV, but the molecular orbitals and electron density distribution are not

affected at all. The total in-plane bonding in each cluster can thus be considered as a sum

of two main ”fractions”: the totally bonding outer perimeter (including outward lone-pairs)

and the remainder responsible for inner bonding. The latter bonding must necessarily be

delocalized since the remaining number of electrons is insufficient to link all inner boron

atoms by 2c-2e bonds. The electron count for the 2c-2e bonds in the outer fraction is

denoted as Nσo. Note that there are six outer bonds in B7 and that for each n an additional

two outer bonds are added. Hence in total there are 6+2n perimeter bonds. So Nσo is equal

to twice that number. The remainder is the inner bonding count, denoted as Nσi:

Nσo = 12 + 4n

Nσi = Nσ −Nσo = 5 + 3n+ q (3)

These numbers can be found in Table 1. It is intriguing to find that the delocalized bonding

follows a peculiar regularity, the number of electrons going up alternately by four and by

two, as: 6, 10, 12, 16, 18, 22, 24, 28. As a consequence of this regularity, the inner σ-count

for even values of n is a multiple of six, while for odd values of n it is exactly equal to

6



Figure 3: Resonance in B−

7 adopting the 4c-2e partitioning

the number of boron atoms! To understand how the electron deficient boron succeeds in

providing such a regular delocalized bonding scheme over the cluster interior forms the main

topic of this paper.

Delocalized bonding

Boron is known for its tendency to form triangular 3c-2e bonds, so it is a good starting point

for the AdNDP analysis to search for local three-center bonds. For the case of B2−
16 Sergeeva

et al.19 identified four isolated inner triangles, with occupation numbers above 1.86 |e|. The

remaining two electron pairs were allocated to 4c-2e bonds on either side, with occupation

numbers up to 1.97 |e|. This scheme explains the 16 inner electrons, as counted in Table

1. However, when one tries to apply the same pattern to the other members of the cluster,

discrepancies arise both for smaller and larger n. Indeed, adding or subtracting a B3 unit in

this scheme accounts for a change by 4 in the inner electron count. Extension of the model

by Sergeeva et al. for arbitrary n is expressed by the quantity Qσ:

Qσ = 4 + 4n (4)

As shown in Table 2 this quantity does not match the Nσi result, except for n = 2, 3.

So a more general scheme is needed. We note that according to the Qσ count in Table 2,

the starting cluster of the series, B−

7 , is assigned only two bond pairs, while it actually has

three electron pairs for inner σ-bonding. This strongly suggests that this bonding could

be σ-aromatic and provides a central clue that 4c-2e rather than 3c-2e bonds should be at

the basis of the delocalized bonding. The hexagon around the central boron in this cluster

contains six rhombic four-center units, such that the partitioning of three 4c-2e pairs over

this hexagon will make up two Kekule-type combinations as shown in Fig.3. Their resonance

7



n B Nσi Qσ

0 B−

7 6 4

1 B2−
10 10 8

2 B−

13 12 12

3 B2−
16 16 16

4 B−

19 18 20

5 B2−
22 22 24

6 B−

25 24 28

7 B2−
28 28 32

Table 2: Inner σ-bonds: comparison of actual electron count (Nσi) versus the number of

electrons in a localized scheme of triangular bonds, with two 4c-2e bonds at the outsides.

leads to a fully delocalized 3σ aromatic sextet. Thus, a viable hypothesis is to base the

bonding pattern on isolated stable hexagonal units in the boron network. In this hypothesis

there is a clear distinction between clusters with even and odd n. For n even, clusters are

mono-anionic, hence q = 1, and the number of inner σ electrons is equal to 6+ 3n. This is a

multiple of 6, and indeed these clusters can be partitioned in isolated σ-aromatic rings. Note

that in this pattern neighboring hexagons share a common vertex, leaving two non-bonding

triangles in between. This partitioning scheme is illustrated in Fig.4. For n odd, a perfect

partitioning in isolated hexagons falls short of two hexagons sharing a common bond. These

clusters can thus be partitioned in isolated hexagons, and two additional 4c-2e bonds, as

shown in Fig.4. Such unequal distribution of density thus requires to adopt resonance as an

essential ingredient of the bonding. The smallest cluster of this type is B2−
10 . Keeping the

4c-2e partitioning, this cluster matches the topology of naphthalene, and one can identify

the five bonding combinations as the five double bonds in the three resonating Kekule forms

of this carbon analogue. This fits the expected electron count of 10. Hence the increase of

n by one, from n = 0 to n = 1, gives rise to four extra electrons. Then from n = 1 to n = 2

only two more electrons are needed to make up for an additional aromatic sextet. Following

the same partition, the Nσi counts for B
2−
16 and B2−

22 are 16 and 22, respectively. Indeed one
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can easily show that, for n odd, the number of delocalized σ electrons exactly equals the

number of boron atoms.

for n odd: Nσi = 3(n+ 1) + 4 = 7 + 3n (5)

Molecular orbital symmetries

The proposed bonding schemes comply with the electron counts, but this mere coincidence

can hardly be considered as a proof for the validity of these claims. AdNDP analysis in itself

is not conclusive either, since all 3c-2e and 4c-2e bonds, as obtained by AdNDP, usually have

occupation numbers above a threshold of 1.6 |e|. However the proposed bonding scheme uses

only a subset of all possible triangular and rhombic bonds, and invokes resonance to cover

the whole atomic mesh. Hence for a more direct proof of the proposed scheme, we need

to identify the symmetries of the localized bonds that correspond to the proposed pattern,

and compare these to the symmetries of the MO’s, obtained from the DFT calculation.

Quasi-planar clusters with C2h symmetries were reoptimized under a D2h constraint, so as

to maximize symmetry information. The reason why we chose to do the analysis in the

idealized planar group is based on a simple group-theoretical argument: if the prediction of

the irreducible representations of the occupied MOs can be shown to hold in the covering

group, it will necessarily be obeyed in the subgroups, while the opposite is not the case. In

this symmetry, the plane of the molecule is identified as the σyz reflection plane, with the

z-defined by a Cz
2 axis coinciding with the major axis of the molecule. The symmetries of

localized bonds are generated by the induction method 37. For in-plane bonds, three types

of inductions are possible. The induction process takes an object at a particular site of the

molecule, and generates all its symmetry related copies. Here the object is a valence bond,

localized on a given site. Such a bond is a totally symmetric object in the site symmetry

and is labeled as an a-type irreducible representation in the site group. This is shown

schematically in Fig.5. In case of a central bond, the induction is trivial since the site group

coincides with D2h and all symmetry elements will map it onto itself. Such a bond thus

transforms as the totally symmetric irreducible representation in D2h, and receives the label

9



Figure 4: Covering the elongated boron clusters by 4c-2e bonds. The first, third, fifth,

...member consist of isolated aromatic sextets with three 4c-2e bonds, indicated in yellow,

orange and green. The second, fourth, ...member always have an additional pair of 4c-2e

bonds, indicated in red and blue.
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n B Peripheral 2c-bonds Ag B3g B1u B2u

0 B−

7 O3 +O4 2 1 1 2

1 B2−
10 2O4 2 2 2 2

2 B−

13 O3 + 2O4 3 2 2 3

3 B2−
16 3O4 3 3 3 3

4 B−

19 O3 + 3O4 4 3 3 4

5 B2−
22 4O4 4 4 4 4

6 B−

25 O3 + 4O4 5 4 4 5

7 B2−
28 5O4 5 5 5 5

Table 3: Symmetry orbits for the peripheral outer σ-bonds

Ag. This trivial orbit is denoted as O1. A bond which is cut by the z-axis, but is off-center,

has two copies at either side of the center of inversion. Their symmetries are given by the

induction from the Cz
2v subgroup, and correspond to orbit O2. Similarly, a perimeter bond

which is lying on the y-axis has a symmetry related mirror image at the opposite side of

the perimeter, as obtained by induction from the C
y
2v subgroup. This is orbit O3. Finally,

for a bond which is not lying on a twofold symmetry axis and has only in-plane reflection

symmetry, there are four identical copies, the symmetries of which are obtained by induction

from Cyz
s , as in orbit O4. The induced irreducible representations are indicated by capital

letters, and form four orbits:

O1 = Γ(ag D2h ↑ D2h) = Ag

O2 = Γ(a1C
z
2v ↑ D2h) = Ag + B1u

O3 = Γ(a1C
y
2v ↑ D2h) = Ag + B2u

O4 = Γ(a′Cyz
s ↑ D2h) = Ag + B3g + B1u + B2u (6)

In Table 3 are listed the symmetry orbits for the peripheral bonds. In order to determine

the symmetry for the multi-center inner bonds, we have to take into account the difference

between clusters with even n which are σ-aromatic, and the ones with odd n. In the aromatic

B−

7 cluster the usual three bonding molecular orbitals are found, which are already adapted

11
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Figure 5: O1 up to O4 orbits for B2−
10

to the point-group symmetry: the nodeless totally symmetric 6c orbital, has Ag symmetry,

and the two degenerate orbitals with one nodal plane transform as B1u + B2u. We denote

these irreducible representations of a central sextet hexagon by capital letter S.

S = Ag + B1u +B2u (7)

For aromatic rings lying off-center, such as in B−

13, induction now involves site objects which

are not yet adapted to the full point group symmetry. The 6c fully bonding orbital is totally

symmetric in the Cz
2v sitegroup and thus induces the O2 orbit. This is also the case for

the combination which has a nodal plane perpendicular to the z-axis, since this plane does

not coincide with a reflection plane of the central point group. However for the remaining

combination the nodal plane coincides with the σxz reflection plane, indicating that this

combination has b2 symmetry in the Cz
2v site group. This gives rise to a further orbit, as

depicted in Fig.6. In this way all orbital symmetries of delocalized σ bonds for clusters with

even n are easily obtained, as given in Table 4.

O5 = Γ(b2 C
z
2v ↑ D2h) = B3g +B2u (8)

To identify the orbital symmetries of the members with n odd, we must make a distinction

between two subclasses: the first subclass is formed by the series B2−
10+12m (with m = 0, 1, ...),

as exemplified by the clusters B2−
10 and B2−

22 , while the second subclass is defined as B2−
16+12m,

with B2−
16 as its first member. Starting with B2−

10 , to find the symmetry of its five delocalized

12



Figure 6: Schematic σ-aromatic structures in B2−
10 and B−

13. The 4c-2e bonds are put in corre-

spondence to double bonds of hydrocarbons. In B2−
10 (top), a Kekule structure of napthalene

is produced. In B−

13 (middle) the 4c-2e bond corresponds to two isolated benzenes. The b2

orbital of B−

13 (bottom) gives rise to the O5 orbit.
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n B Inner 4c-bonds Ag B3g B1u B2u

0 B−

7 S 1 0 1 1

1 B2−
10 O1 +O4 2 1 1 1

2 B−

13 2O2 +O5 2 1 2 1

3 B2−
16 O2 +O3 +O4 3 1 2 2

4 B−

19 S + 2O2 +O5 3 1 3 2

5 B2−
22 O1 +O2 + 2O4 4 2 3 1

6 B−

25 4O2 + 2O5 4 2 4 2

7 B2−
28 3O2 +O3 +O4 +O5 5 2 4 3

Table 4: Symmetry orbits for the delocalized inner σ-bonds

inner σ-bonds, we rely on the analogy with conjugated carbon analogues. As shown before

its electronic structure corresponds to an aromatic sextet, to which two extra bonds are

added. The corresponding carbon analogue is thus identified as naphthalene, which has

three resonating Kekule structures. However two of these are broken symmetry solutions. In

order to determine the symmetry orbits, we thus must choose the unique Kekule structure

that is invariant under the D2h symmetry, as shown in Fig.6. From this structure the 4c-2e

bonds can be identified as the O1+O4 orbits. The next odd n member of this subclass, B2−
22 ,

can then immediately be described as a central B10 unit with two aromatic sextet at either

side, so we could formally write B22 = B10 + 2B7, or in general:

B10+12m = B10+12(m−1) + 2B7 (9)

The remaining series, B2−
16+12m, starts out at B2−

16 . According to the scheme in Fig.4, this

would correspond to the sum of B2−
10 and one aromatic sextet, yielding indeed 8 delocalized

σ-orbitals. However, there is no conjugated hydrocarbon that would combine a phenyl

and a naphthyl in a centrosymmetric way. Hence to account for the eight orbitals and

keep D2h symmetry, we formally partition B2−
16 as two aromatic sextets at either side, and

two 3c-2e bonds in the center, thus approaching the valence bonds proposed previously by

Boldyrev et al19. The corresponding symmetry induction is given in Table 3. This building-

up principle can then easily be extended to the next member B2−
28 , which can be summarized

14



as: B28 = B16 + 2B7, or in general:

B16+12m = B16+12(m−1) + 2B7 (10)

In this way the symmetries of the entire set of σ orbitals can be characterized by four integer

numbers, describing the frequencies of the allowed irreducible representations of the D2h

symmetry group:

Γσ = c1Ag + c2B3g + c3B1u + c4B2u (11)

These numbers are obtained by adding the results for peripheral and central in-plane bonds

in Tables 3 and 4 respectively. As an example, for the largest cluster of our series, one finds:

Γσ(B
2−
28 ) = 10Ag + 7B3g + 9B1u + 8B2u (12)

The corresponding orbitals, calculated by DFT, are all listed with their symmetries in D2h in

the supplementary material. There is exact correspondence between Γσ and the calculated

symmetries. Since in this analysis each cluster is uniquely identified by a code of four integer

numbers, this observed total eclipse provides a strong proof for the proposed valence bond

structure.

Discussion

The proposed decomposition of the valence bonds in these elongated clusters can be further

analyzed using the AdNDP technique. In Fig.7 we provide the AdNDP analysis of B−

13. This

is one of the two clusters, which according to Table 2 can equally well be split into eight

4c-2e or 3c-2e bonds. Table 5 lists corresponding density amounts for several resonance

structures with 4c-2e and 3c-2e schemes. The residues are the remaining densities, that are

not accounted for by the proposed partitioning. The results all refer to calculations with the

B3LYP functional. Application of other functionals did not affect the occupation numbers,

changes being limited to 0.1 %. It is seen that the 4c-2e bonding leaves less unrecovered

amount of the total density. As expected, the AdNDP analysis recovers the ten peripheral

2c-2e bonds. As for the internal four-center bonds, the B−

13 network contains 16 four-center

15



units formed by two triangles sharing a common edge. Of these, exactly 12 have an electron

occupation larger than a threshold of 1.87 |e|, while the occupation of the four remaining ones

cannot be detected up to a threshold 1.87 |e|. The twelve dominant 4c-2e bonds precisely

constitute all the possible Kekule structures that can be drawn from two isolated hexagons,

as indicated by the color scheme in Table 5. We thus claim that AdNDP analysis supports

the proposed bonding scheme of two Clar aromatic sextets. In this interpretation AdNDP

yields the basic Kekule patterns on which resonance is to be applied38. The Table also offers

a comparison with the strictly localized scheme, consisting of two 4c-2e bonds at either side,

and four internal 3c-2e bonds. It is seen that the 4c-2e bonding leaves less unrecovered

amount of the total density. The arrangement of the inner σ electrons in 4c-2e bonds grants

higher occupation numbers and confirms the low occupation numbers for the unused triangles

in agreement with the ideal D2h symmetry.

16
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Figure 7: AdNDP analysis of the σ bonds in B−

13, showing ten localized peripheral bonds,

and twelve four-center bonds with an occupation number exceeding 1.87 |e|

The arrangement of the inner σ electrons in 4c-2e bonds grants higher occupation numbers

and confirms the low occupation numbers for the unused triangles in agreement with the

ideal D2h symmetry.
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inner 1 inner 2 inner 3 3c-2e inner

2c-2e σ-bonds 18.81 18.81 18.81 18.81

4c-2e/3c-2e σ-bonds 11.40 11.25 11.51 11.14

π-bonds 7.18 7.18 7.18 7.18

residue 2.65 2.80 2.54 2.91

Table 5: Resonance structures in B−

13

Conclusion

Electron counting rules for small elongated boron clusters are provided to rationalize the

preference of boron for multi-center bonding. The rules can be summarized as follows:

chemical bonding in the family of Bq−
7+3n comprises three levels:

1. Delocalized π-bonding: the number of bonding combinations is equal to n + 2 and

closely follows the orbital scheme of a particle in a rectangular box.

2. Localized σ-bonding at the outside: the perimeter of the cluster always consists of a

(6 + 2n)-membered chain of localized 2c-2e bonds.

3. Delocalized σ-bonding at the inside: Three subclasses are identified:

(a) Clusters of type B−

7+6m comprise m+ 1 isolated σ-aromatic sextets.

(b) Clusters of type B2−
10+12m: their inner electron count is equal to the number of

boron atoms and consists of a 10-electron naphthalene like structure and 2m

aromatic sextets.

(c) Clusters of type B2−
16+12m: their inner electron count is equal to the number of

boron atoms and consists of 2m isolated σ-aromatic sextets and two central 3c-2e

bonds.

These findings emphasize the dominance of σ-aromaticity in these clusters. The patterns

for the inner delocalized bonding are essentially based on 4c-2e bonds and are supported

18



by symmetry induction and by ab initio analysis with the AdNDP technique. Those 4c-2e

regularities are valid for elongated boron clusters but we expect them to be useful as well

for more complex cases with different topologies.
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