Cation—π Interactions Accelerate the Living Cationic Ring-Opening Polymerization of Unsaturated 2-Alkyl-2-oxazolines

Elias Van Den Broeck, Bart Verbraeken, Karen Dedecker, Pieter Cnudde, Louis Vanduyfhuys, Toon Verstraeten, Kristof Van Hecke, Valentin Victor Jerca, Sarom Catak, Richard Hoogenboom,* and Veronique Van Speybroeck*

ABSTRACT: Cation–dipole interactions were previously shown to have a rate-enhancing effect on the cationic ring-opening polymerization (CROP) of 2-oxazolines bearing a side-chain ester functionality. In line with this, a similar rate enhancement—via intermolecular cation–π interactions—was anticipated to occur when π-bonds are introduced into the 2-oxazoline side-chains. Moreover, the incorporation of π-bonds allows for facile postfunctionalization of the resulting poly(2-oxazoline)s with double and triple bonds in the side-chains via various click reactions. Herein, a combined molecular modeling and experimental approach was used to study the CROP reaction rates of 2-oxazolines with side-chains having varying degrees of unsaturation and side-chain length. The presence of cation–π interactions and the influence of the degree of unsaturation were initially confirmed by means of regular molecular dynamics simulations on pentameric systems. Furthermore, a combination of enhanced molecular dynamics simulations, static calculations, and a thorough analysis of the noncovalent interactions was performed to unravel to what extent cation–π interactions alter the reaction kinetics. Additionally, the observed trends were confirmed also in the presence of acetonitrile as solvent, in which experimentally the polymerization is performed. Most intriguingly, we found only a limited effect on the intrinsic reaction kinetics of the CROP and a preorganization effect in the reactive complex region. The latter effect was established by the unsaturated side-chains and the cationic center through a complex interplay between cation–π, π–π, and cation–dipole interactions. These findings led us to propose a two-step mechanism comprised of an equilibration step and a CROP reaction step. The influence of the degree of unsaturation, through a preorganization effect, on the equilibration step was determined with the following trend for the polymerization rates: n-ButylOx < ButenOx < ButynOx > PentynOx. The trend was experimentally confirmed by determining the polymerization rate constants.

INTRODUCTION

The living cationic ring-opening polymerization (CROP) has long been known to provide wide access to poly(2-oxazoline)s with controlled end-group functionality.1−9 Substituents on the 2-, 4-, and 5-positions can influence the propagation rates (k_p) significantly by electronic and/or steric effects, which govern the reaction (Scheme 1).10−15 Despite their slow polymerization rates, 2-oxazolines substituted at the sp²-hybridized carbons C4 and C5 can still be of interest as chemically inert delivery systems.5,7,8,21,22 The living cationic ring-opening polymerization (CROP) has thus long been known to provide wide access to poly(2-oxazoline)s with controlled end-group functionality.1−9 Substituents on the 2-, 4-, and 5-positions can influence the propagation rates (k_p) significantly by electronic and/or steric effects, which govern the reaction (Scheme 1).10−15 Despite their slow polymerization rates, 2-oxazolines substituted at the sp²-hybridized carbons C4 and C5 can still be of interest as chemically inert delivery systems.5,7,8,21,22

Furthermore, the properties of PAOx are highly tunable by altering the C2 substituent (see Scheme 1) of the monomer, which also enables introduction of (protected) side-chain functionalities.7,11,23−26 Of particular interest in this study are 2-oxazoline monomers with alkene and alkyne functionalities, more specifically, 2-(but-3-enyl)-2-oxazoline (ButenOx, Scheme 1, 1b), 2-(but-3-ynyl)-2-oxazoline (ButynOx, Scheme 1, 1c), and 2-(pent-4-ynyl)-2-oxazoline (PentynOx, Scheme 1, 1d). These functionalities are of interest for various click reactions, such as copper(I)-catalyzed azide cycloaddition as...
well as thiol—ene and thiol—yne reactions, which enable facile postfunctionalization of the resulting polymers. Click reactions on PAOx are typically performed by using copolymers and have found many practical applications, such as the introduction of targeting molecules on polymeric chains,27 coatings of nanoparticles,28–31 or stainless steel,31–33 creation of biocompatible materials with anode-selective deposition behavior,33,34 and many others.35–39 In addition, post-polymerization modification readily enables the introduction of side-chains that are not compatible with the CROP of 2-oxazolines.40 Moreover, cross-linking of alkene- and/or alkyne-functionalized PAOx has been applied for the development of hydrogels or core−shell cross-linked nanoparticles.22,25,41

In general, the propagation rate constants for the CROP of 2-alkyl-2-oxazolines (Scheme 1) are governed by both electronic and steric effects, though the latter tends to have a more significant impact in most CROP reactions.10,14 This effect explains the slower polymerization rates when increasing the alkyl chain from methyl up to propyl, with only marginal behavior,33,34 and many others.23,35

Another case in which electronic effects significantly influence the propagation rate constant was reported by Lobert et al. for the CROP of fluorinated and nonfluorinated analogues of 2-phenyl-2-oxazoline (PhOx).15 When the phenyl side-chain and the 2-oxazoline ring are coplanar, the phenyl side-chain can withdraw electron density from the 2-oxazoline ring through conjugation; this effect is further enhanced when the phenyl ring is fluorinated. Hence, meta-fluorinated (m-FPhOx) and para-fluorinated PhOx (p-FPhOx) monomers have lower CROP rates than PhOx due to the decreased nucleophilicity of the monomer. However, ortho-substitution disrupts the conjugation by sterically preventing planarity (out-of-plane angle of 3°–4°). As a result, the electron-withdrawing effect of the fluoro-substituted phenyl side-chain is reduced on an inductive effect, which is much less effective than the electron-withdrawing effect through conjugation. Therefore, the propagation rate constant for ortho-monofluorinated PhOx (o-FPhOx) is significantly higher in comparison to the parent PhOx. In the 2-ortho-fluorophenyl-2-oxazoline system (Scheme 1, o-FPhOx, 1e), nonplanarity was further increased (out-of-plane angle of 39°), leading to a 2-fold increase of the propagation rate constant when compared to o-FPhOx. This latter effect was then confirmed by using MMFF94 calculations, which showed that in the case of o-FPhOx there were two contributing factors. First, the steric clash caused by the ortho-fluorine substituent on the phenyl ring resulted in a nonplanar geometry with respect to the 2-oxazoline ring, effectively preventing conjugation, and as a result, the nucleophilicity of the 2-oxazoline was not significantly reduced. Second, a clear intermolecular interaction was shown to occur between the ortho-fluorine substituent and the cationic reaction center, which was hypothesized to increase the electrophilicity of the 2-oxazolinium cation, enhancing the CROP rates. Hence, this latter point indicates that dipole−cation interactions could also have a significant impact on the polymerization kinetics.

In view of prior studies that showed the varying effect of different side-chains on 2-oxazoline CROP propagation rate constants, Bouten et al. investigated the propagation rate constants of 2-oxazoline monomers with methyl ester substituents, namely, 2-methoxycarbonylpropyl-2-oxazoline (Scheme 1, C$_3$-MestOx, 1f) and 2-methoxycarbonylpropyl-2-oxazoline (Scheme 1, C$_3$-MestOx, 1g).11,12 Even though the propagation rate constants of the methyl ester-substituted 2-oxazolines were expected to be lower than their counterparts bearing aliphatic side-chains due to the electron-withdrawing ester functionality, faster propagation rate constants were experimentally observed. The authors rationalized these findings using DFT calculations, where they showed that the observed rate enhancement was mainly caused by the numerous inter- and intramolecular interactions between the...
carbonyl group of the side-chains and the active oxazolinium chain-end. The dipole–cation interaction between the carbonyl and the 2-oxazolinium moieties was shown to further increase the electrophilic nature of the chain-end, in particular, on the C1 carbon atom, favoring nucleophilic attack (Scheme 1) and leading to the observed increase in CROP rate constants.

In the aforementioned studies, the CROP propagation rate constants of both o-DPhOx \(\text{15} \) (Scheme 1, 1e) and C\(_2\)MestOx\(\text{11,12} \) (Scheme 1, 1f,g) were increased by 2-oxazoline side-chains bearing electron-withdrawing groups (fluorine and carbonyl, respectively). The resulting intermolecular interaction between the electron- withdrawing species and the 2-oxazolinium chain-end further enhances both the electrophilic nature of the ring and the rate of the polymerization reaction. Both studies demonstrated that fine-tuning the side-chain of 2-oxazolines could induce rate-enhancing effects in CROP.

Based on this knowledge, a similar rate enhancement may be hypothesized when π-bonds are incorporated into 2-oxazoline side-chains, resulting in intermolecular cation−π interactions between the side-chain and the cationic chain-end, thereby potentially increasing their CROP rate constants. This hypothesis is proposed here for the first time and will be validated based on a combined experimental and molecular modeling study to investigate the CROP reaction rate constants of 2-oxazolines with side-chains of varying degrees of unsaturation (Scheme 1, monomers 1a−d). The factors that affect the propagation rate constants were thoroughly examined by means of static DFT calculations and ab initio molecular dynamics simulations. We also tested the effect of the solvent on the specific interactions in the polymerization system. These computational predictions were further verified by an experimental kinetic study for monomers 1a−d (Scheme 1) revealing that the computational evidence for cation−π interactions are translated into acceleration of the CROP of 2-oxazoline monomers with unsaturated side-chains. Despite the numerous previous reports on the CROP (co)polymerization of such monomers, this is the first in-depth study revealing faster polymerization resulting from cation−π interactions.

COMPUTATIONAL METHODOLOGY

In contrast to earlier modeling efforts, a multilevel modeling approach is applied in this study, where information about transition states is obtained from static DFT calculations while the conformational flexibility of the growing polymer chain is assessed from molecular dynamics studies. DFT-based simulations were performed on two types of model systems for each monomer 1a−d (Scheme 1): a pentameric system, to monitor the presence and persistence of cation−π interactions, and a trimeric system, to compare the intrinsic reactivity of the monomers toward CROP monomer addition reactions.

Static Calculations

To compare the relative activation barriers for the prototypical CROP propagation step depicted in Scheme 1, a series of static calculations were performed on 2-oxazoline monomers 1a−d. Methyl is taken as initiator fragment for the CROP in the systems under investigation, which is in accordance with the frequent use of methyl tosylate and methyl triflate as initiator in experimental studies. The B3LYP/6-311+G(d,p) level of theory was used for geometry optimizations to which Grimme’s D3 dispersion corrections were added to take into account noncovalent and long-range interactions. \(^{50}\) This functional has been proven to give reliable results for similar systems. \(^{47−50}\)

Normal-mode analysis was used to characterize the nature of the energetic minima and first-order saddle points (transition states (TSs)). To generate a representative set of reactant complexes, intrinsic reaction coordinate calculations are performed for a limited number of TSs. \(^{51−53}\) Additionally, the solvent effects on the obtained complexes are assessed by using the integral equation formalism variant of the polarized continuum model (IEF-PCM). \(^{54}\) All static calculations were performed using the Gaussian 16 package. \(^{55}\) TS guesses were generated by using enhanced sampling simulations, namely metadynamics, which provided a critical distance for the TS region and sufficient sampling to explore the conformational flexibility of the TSs (see Supporting Information section S1.1). \(^{56}\)

Molecular Dynamics Simulations

The CP2K software package \(^{57}\) was utilized to carry out nonperiodic molecular dynamics (MD) simulations. The BLYP functional along with additional Grimme D3 dispersion corrections and the TZVP-GTH basis set were used to perform ab initio MD. \(^{46,57−60}\) Given the extensive number of first-principles molecular dynamics simulations that were performed, it was impossible to use the hybrid B3LYP functional in view of computational time. However, the BLYP functional has shown to give a reasonable description of noncovalent interactions when D3 corrections are included with comparable performance to dispersion corrected hybrid functionals such as B3LYP-D3. \(^{51}\) This basis set is a combination of Gaussian basis functions and plane waves (GPW) with a cutoff energy of 320 Ry. \(^{62,63}\) The equations of motion were integrated with a time step of 0.5 fs. All systems were simulated by using the canonical ensemble at 413 K, which is controlled by a Nose–Hoover thermostat chain of length five. \(^{64,65}\) The pentamic ButylOx, ButenOx, and ButynOx were simulated by using a cubic box of 29 Å × 29 Å × 29 Å. For the pentamic PentynOx a box size of 33 Å was used. The solvent environment (acetonitrile) and the counterion (tosylate or triflate) were not considered in these first-principles MD-based simulations as this would require the simulations of a complete explicit solvent shell and would become computationally unfeasible. Emenike and co-workers have shown, by the use of molecular balances, that free energy differences for similar noncovalent interactions in the gas phase may be overestimated but in general are within the context of the values in solution, i.e., for acetonitrile. \(^{66,67}\) Furthermore, cation−π interactions among other interactions were shown to prevail in acetonitrile by other experimental groups, which is in line with the theoretical work reported by Dougherty et al. \(^{58−71}\) To verify our findings and this assumption, the density-functional tight binding (DFTB) method implemented in CP2K (enabling dispersion corrections; an Ewald-type method for Coulomb interactions and the self-consistent field method) is used to perform semiempirical MD simulations (see Supporting Information section S2.2.3) which allow us to investigate the influence of an explicit solvent environment in a computational efficient manner (vide infra). \(^{72−76}\)

To achieve a sufficient sampling of the phase space for the ab initio MD, the system was first equilibrated for 10 ps followed by a production run of 100 ps. For each system, three separate simulations were run in parallel with three different initial geometries. More specifically, a folded, an extended, and a random coil conformation were used for each pentameric system to consider the flexibility of the chain. Initially, the presence of cation−π interactions was determined by analyzing the evolution of the distances of the penultimate side-chain bonds toward the cationic center with a cutoff distance of 4 Å,
well-known as the optimal distance for these types of interactions.

To further analyze and compare the MD results of the different systems, and thus elaborate on the strength of the interaction with the cationic center, the sampled phase space for the side-chains attached to the oxazolinium moiety was divided into two distinct regions depending on the proximity of the terminal side-chain bond to the cationic center (see Supporting Information section S2.1.2 and Figure S7). The distribution of the interaction distances allows the selection of two interfaces for each system, which enables a division into two different states: one “interacting” and one “noninteracting”.

If a conformation is located in between these interfaces, the state will be classified as “interacting” if its previous conformation was classified as “interacting”, and vice versa. This methodology was adopted from Van Erp and co-workers.

The relative strength of the cation−π interaction (or cation-induced dipole in the case of ButylOx) is evaluated through the mean distance between the side-chain terminal bond and the cationic ring attained in the interacting state. To explicitly test the effect of the acetonitrile solvent, this distance was selected based on the graph of the reduced gradient in 20 windows. The results are discussed in the Overall Reactivity Pattern section (vide infra) and section S2.2.3.2 of the Supporting Information.

In the umbrella sampling (US) method the reaction coordinate is subdivided into a number of windows along the proposed reaction coordinate \(q \). For the CROP reaction, the collective variable (CV) of choice was defined as the difference between distances of the breaking and the forming bonds: \(d(C-N) - d(C-O) \) (as schematically shown in Scheme 3). By the selection of a proper CV, which uniquely describes the reaction coordinate \(q \), US simulations could be used to sample specific regions of the free energy surface. The reactant and product regions are described by CV values higher than 0.1 and lower than −0.1, respectively.

The CP2K software was used as the MD engine and interfaced with the PLUMED module to perform the US simulations. For each system, umbrellas were placed along the CV from −2.8 to 3.2 Å with an increment of 0.1 Å, hence 59 windows. For each of these windows a biased MD simulation is performed. Initial configurations for each window were randomly selected from a moving bias potential simulation, which encapsulates the entire reaction coordinate region of interest. Sufficient sampling was ensured by employing harmonic bias potentials centered around the equilibrium value \(q_0 \) and with bias spring constant \(\kappa \).

\[
U_b(q) = \frac{\kappa}{2}(q - q_0)^2
\]

The \(\kappa \) value was chosen at 250 kJ mol\(^{-1}\) Å\(^{-2}\). Furthermore, in a second phase, the CV range was extended to 5.4 Å by placing an extra 10 windows with an increment of 0.2 Å and a \(\kappa \) value of 100 kJ mol\(^{-1}\) Å\(^{-2}\) to explore the reactant region more extensively. Subsequently, the free energy profiles were reconstructed by combining the sampled collective variable distribution in each window by using the weighted histogram analysis method (WHAM). To extract Helmholtz free energies of activation from these profiles and kinetic data (using additional trajectory information about the US simulations), a method based on transition state theory is used which was applied by our research group before.

Assessment of convergence for the obtained profiles has been performed using the bootstrap method (see the Supporting Information).

Furthermore, the constructed 1D free energy profiles are transformed into 2D free energy surfaces (see Supporting Information section S1.3) with newly proposed collective variables based on the noncovalent interaction analysis (vide infra), e.g., the distance between the side-chain terminal bonds and the oxazolinium ion or the distance between the attacking monomer side-chain terminal bond and those of the growing polymer. This was done to analyze both the broadness of the various regions and the effect of noncovalent interactions hereon.

To assess the effect of the solvent environment on the prereactive complex region, umbrella sampling simulations are performed to constrain the system within the prereactive complex region. Hence, umbrellas were placed along the CV range of this prereactive region (from 0.0 to 10.5 Å) with an increment of 0.5 Å and a \(\kappa \) value of 100 kJ mol\(^{-1}\) Å\(^{-2}\) resulting in 20 windows. The results are discussed in the Overall Reactivity Pattern section (vide infra) and section S2.2.3.2 of the Supporting Information.

Noncovalent Interactions Analysis. Analysis of intermolecular interactions was performed using the Non-Covalent Interaction (NCI) index plot tool, NCIPLOT (see Supporting Information section S1.2). A cutoff for both the reduced gradient and the electron density is required to visualize specific interactions and discriminate between them. These were selected based on the graph of the reduced gradient in function of the electron density (\(\rho(r) \), multiplied with the sign of \(\lambda_2 \)) produced by NCIPLOT. This allowed for a more specific determination of the optimal plotting cutoff to capture and distinguish the different important interactions for each transition state. A typical cutoff for the systems under investigation is 0.025 for the electron density and 0.3 for the reduced gradient.

RESULTS AND DISCUSSION

Theoretical Results. To investigate the effect of introducing unsaturated side-chains to 2-oxazolines on the CROP, four different monomers with side-chains of varying degrees of unsaturation were chosen (Scheme 1, monomers 1a–d), covering a saturated side-chain (1a), double (1b) and triple bonds (1c and 1d), and a change in the distance between the triple bond and the 2-oxazoline ring. The presence/
absence of cation–π interactions between the unsaturated side-chains and the cationic chain-end were investigated via regular MD simulations that were performed on pentameric systems of each monomer. Subsequently, the influence of the cation–π interaction on the propagation rate constant was explored by modeling the second propagation step (the formation of a trimeric chain) of the CROP reaction for 1a–d by using both static DFT calculations to map the reaction free energy profile as well as enhanced sampling ab initio techniques to sample the broadness of the conformational space in both the reactant and transition state region. In the first instance, the simulation results were thoroughly and comparatively analyzed for all four systems to elucidate differences in their reactivity, indeed revealing evidence for cation–π interactions. In the second instance, the computational hypothesis was confirmed experimentally. To this end, the monomers 1a–d were synthesized, and their CROP propagation rate constants were experimentally determined in an effort to validate the computational predictions for the relative CROP reaction rates.

Cation–π Interactions: Evidence from Regular Ab Initio MD Simulations. In the aforementioned study by Bouten et al., a semiempirical MD simulation on a decameric C2-MestOx system (Scheme 1, I) demonstrated the consistent presence of cation–dipole interactions between the side-chain carbonyl moieties and the 2-oxazolinium chain-end.11 To investigate the proximity of the side-chain-ends of the pentameric chains from monomers 1a–d shown in Scheme 4, the distance of the first side-chain up to the fifth side-chain, marked as s1 to s5, respectively, to the cationic center marked in yellow was followed. Additionally, the proximity of the carbonyl moieties was also investigated (marked in green in Scheme 4). If a distinct difference between the simulations for the systems with the unsaturated side-chains, namely pentaButenOx, pentaButynOx, and pentaPentynOx, and the reference system bearing a saturated butyl side-chain, pentaButylOx, is observed, this will serve as an indicator of the presence of cation–π interactions. Furthermore, these simulations will help shed light on the influence of both the degree of unsaturation and the proximity of the unsaturated terminal bond on the occurrence of cation–π interactions.

Figure 1 shows the time evolution of the distance between the side-chain terminal bonds and the cationic chain-end for each system (a complete overview of all regular MD results is found in the Supporting Information, Figures S2–S5). The MD results show a clear correlation between the degree of unsaturation and the extent of interactions occurring between the side-chain terminal bonds and the center of the 2-oxazolinium moiety. For the pentaButylOx system (Figure 1a), as anticipated, no specific interaction was observed between the side-chains and the cationic center. However, for pentaButenOx, pentaButynOx, and pentaPentynOx, simulations clearly show consistent proximity (~4 Å) between the side-chain terminal groups and the 2-oxazolinium chain-end throughout the simulation (Figure 1b–d). In most instances, multiple side-chains were shown to interact with the 2-oxazolinium cation, which was further verified through the orientation and proximity of the side-chains in the snapshots shown for each system (Figure 1, snapshots represent the interactions in the time span of the rectangular region). It should also be noted that regardless of the substituent’s nature, the side-chains occasionally come relatively close to the cationic center due to cation–dipole (carbonyl) interactions, which are present in all systems. These interactions cause a prominent folded conformation in all pentameric structures (see section S2.1.1 and Figures S2–S5 in the Supporting Information).

To evaluate the relative strength of the cation–π interaction for the different systems, distinct “interacting” and “non-interacting” states are defined for the side-chain terminal bond attached to the oxazolinium ion for which the mean distance within the former state will act as an indicator for the corresponding interaction strength, as previously explained in the Methodology section, allowing to distinguish each interaction between the side-chain and the cationic chain-end. Note that this side-chain (Scheme 4, s1) is always in close proximity to the cationic center due to its connectivity, and in the case of pentaButylOx, a cation-induced dipole interaction with the chain-end is always possible, albeit significantly weaker and less persistent than a cation–π interaction. In contrast to pentaButylOx, the systems bearing unsaturated side-chains exhibited distinct “interacting” states between their side-chain terminal bond and their 2-oxazolinium centers (see section S2.1.2 and Figure S7 of the Supporting Information), giving further evidence for the occurrence of “cation–π” interactions. Furthermore, the influence of the degree of unsaturation is clear from the mean interaction distance, which decreases from 4.39 Å for ButylOx to 4.11, 4.07, and 3.59 Å for ButenOx, ButynOx, and PentynOx, respectively. This decrease in mean interaction distance reflects the increase in interaction strength between the side-chain terminal bonds and the cationic center (from cation-induced dipole to cation–π interactions). Although the interaction distance for ButynOx only slightly decreases with respect to ButenOx, we anticipate this interaction to be significantly stronger as it is hampered by

![Scheme 4. Pentameric Chains with Side-Chains of Differing Degrees of Unsaturation: PentaButylOx (a), PentaButenOx (b), PentaButynOx (c), and PentaPentynOx (d)\(^a\)](image_url)

\(^a\)Cationic chain-ends, backbone carbonyl groups, and side-chain terminal groups are shown in yellow, green, and red, respectively. s1–s5 and O\(^1\)–O\(^2\) refer to side-chains 1–5 and carbonyl groups 1–4, respectively.
steric constraints for its shorter “arm-like” side-chain with respect to PentynOx, which does show this increase in strength. Additionally, comparison of the ButynOx and PentynOx simulations (see section S2.1 as well as Figures S4, S5, and S7 of the Supporting Information) suggests an entropic penalty for the pentyn side-chains, as the interacting state is less prominent in comparison to ButynOx.

In conclusion, the regular first-principles MD simulations provide evidence for the occurrence of favorable cation−π interactions between unsaturated side-chains and the cationic 2-oxazolinium chain-end. In the next section, the intrinsic reaction kinetics will be studied for a trimeric model system to investigate whether these cation−π interactions will also affect the reaction kinetics. We also evaluated whether these interactions are preserved in the presence of acetonitrile, which was indeed the case (section S.2.2.3 of the Supporting Information).

Reactivity and Energetics: Static DFT vs Enhanced Sampling Ab Initio Dynamics Calculations. The present study aims to elucidate the effect that cation−π interactions may have on the CROP propagation rate constants. However, it is important to first distinguish whether these monomers may have different intrinsic reactivity resulting from the different electronic nature of their side-chains. For this purpose, smaller dimeric model systems (Scheme S) were

Figure 1. Evolution of distances for a representative MD run between the side-chain terminal bonds and the center of the 2-oxazolinium end-group (colored in yellow in the right panels) for pentaButylOx (a), pentaButenOx (b), pentaButynOx (c), and pentaPentynOx (d). Snapshots (right-hand side) indicate the interaction pattern observed in the rectangular region time span for each system; color codes shown at the top (see Supporting Information section S2.1 for all the results).
chosen to determine the activation barrier for the second propagation step of the CROP propagation reaction.

As the systems under study are extremely flexible, we opted to initially explore the transition state region by metadynamics simulations. From these simulations a representative set of transition states were extracted that were further optimized by using static DFT calculations. Relevant states were selected based on a critical distance; more information is provided in Supporting Information section S1.1. For each of the systems 1a–d in Scheme 1, about 70–90 transition states were identified by using this procedure. A summary of all reaction barriers for each of these states is given in Supporting Information section S2.2 and Tables S1–S4. All conformers are shown with respect to their corresponding separate reactant in which the unfolded conformer of the dimer is taken for comparability. The highly variable range of transition state free energies and conformers emphasizes both the complexity and the multidimensionality of the free energy surface due to the many degrees of freedom (DoF). A summary of the obtained free energy barriers and separate enthalpic and entropic contributions are visually shown in Figure 2. Some transition states that are expected to control the minimal free energy path connecting the separate reactants and the trimer are indicated by a1, b1/b2, c1, and d1 in Figure 2 for n-ButylOx, ButenOx, ButynOx, and PentynOx, respectively. The corresponding free energy barriers reveal the following trend n-ButylOx > ButenOx > ButynOx ≤ PentynOx with a difference of <5 kJ mol\(^{-1}\) between ButynOx and PentynOx. It is important to note that the values here correspond to separate reactants and that the observed effect of the side-chain could be originating from the preorganization effect in which the side-chain has preferable interactions with the reacting center or from the intrinsic reaction kinetics. For ButenOx, including an unsaturation in the side-chain mainly enables extra enthalpic stabilization with respect to the saturated side-chains for n-ButylOx. This yields an extra stabilization of the ButenOx transition states lowering the activation barrier by 12.6 kJ mol\(^{-1}\) with respect to n-ButylOx. Increasing the degree of unsaturation from a double to a triple bond, i.e., from ButenOx to ButynOx, a further enthalpic stabilization effect is observed with a change in Gibbs free energy of 12.3 kJ mol\(^{-1}\) with respect to ButenOx. However, the most stable transition states for ButynOx, on average, show higher entropic barriers with respect to ButenOx which can be explained by the more rigid-arm-like (sp-hybridized) structure of the butynyl side-chain showing less flexibility than the butenyl side-chain (vide infra). For the PentynOx system, a higher entropic penalty is also observed, and thus, the overall reaction kinetics may be expected to be lower compared to the ButynOx system. This balance between enthalpic and entropic effects causes the free energies of the controlling TSs of PentynOx to be slightly higher than for ButynOx with a difference in \(\Delta G\) of 3.8 kJ mol\(^{-1}\). The higher entropic dependence for PentynOx thus confirms the suggestion for the entropic penalty for the pentyn side-chains (vide supra). Hence, the influence of both the degree of unsaturation and
the side-chain length is shown to exist, indicating the possible positive effect of the cation–π interaction on the Gibbs free activation barriers. To obtain more insight into the inter- and intramolecular interactions at play in the various TSs, an extensive analysis was performed using the NCI-plot tool.91

Intra- and Intermolecular Interactions. Because the most important differences between n-ButylOx, ButenOx, and ButynOx systems are the enthalpic contributions (based on Figure 2), we explored which interactions are causing this extra stabilization and, hence, find the controlling inter- and intramolecular interactions for the CROP reaction of the respective systems. In Figure 3, the NCI plots for the most stable (lowest Gibbs free energy) TS conformations are shown for the formation of triButylOx, triButenOx, and triButynOx, which were discussed in the previous section (vide supra). The PentynOx system is discussed in Supporting Information section S2.1.1 as well as the other transition states indicated in Figure 2.

For the propagation reaction resulting in triButylOx, TS-a1 shows interactions between the carbonyl moiety of the amide (CH$_2$NHC=O) and the 2-oxazolinium carbon atoms (OCH$_2$CH$_2$N) as indicated by the blue surfaces in between these moieties. This is in line with the finding for the pentameric systems (see section S2.1.1 and Figures S2–S5) and previous work by Bouten et al. for methyl ester-functionalized 2-oxazoline monomers.1,12 This interaction is also observed for the other systems and will hence not be responsible for the extra stabilization effect present in the unsaturated systems (see Figure 3, section S2.2.1, and Figures S9–S12). Structure TS-a1 (Figure 3) shows that for triButylOx no significant stabilizing interactions (which would be indicated in blue) are present between the polymer side-chains and the reactive center of the 2-oxazolinium. However, stabilizing interactions are observed between the attacking monomer side-chain and both the carbonyl moiety (a dipole–induced dipole interaction indicated by the dotted line and blue surface perpendicular to it between NCH$_2$ and C=O) and the terminal side-chain of the dimer (indicated by blue/green surfaces between the orange and gray side-chains) which is ascribed to a preorganization effect. It is anticipated that this effect will be stronger or more pronounced in the case of unsaturated side-chains.

For triButenOx both TS-b1 and TS-b2 are shown in Figure 3 because the interactions present will dominate the transition state landscape and can be compared to triButylOx to investigate the effect of the unsaturation in the side-chain. However, their conformations are very different with respect to each other and, connected with this, so are the dominating NCI. In contrast to TS-a1, a clear stabilizing interaction occurs between the unsaturated moity of the growing polymer and the 2-oxazolinium moiety for TS-b1 (indicated by a blue surface between CH$_2$=CH and CH$_2$CH$_2$N), which is the anticipated cation–π interaction. Additional stabilizing cation–π interactions are present between the attacking monomer side-chain and the 2-oxazolinium (CH$_2$=CH and CH$_2$CH$_2$O). This latter interaction indicates again the presence of a preorganization effect between the attacking monomer and the growing polymer. Remarkably, this TS dominated by cation–π interactions is equally favorable than TS-b2, which is not showing any cation–π interactions. TS-b2 is dominated by both π–π and π–induced dipole (CH$_2$=CH and CHCH$_2$CH$_2$) interactions between the side-chains, causing enthalpic stabilization equal to the cation–π interactions observed for TS-b1 (see Figure 2). These latter interactions can again be ascribed to a preorganization effect that is present between the monomer and the growing polymer, which, hence, is stronger than the effect present in TS-a1 (based on the enthalpic stability see Figure 2). For the CROP of ButynOx, similar conclusions can be made for TS-c1 and TS-c3 (see Figure 3, section 2.2.1, and Figure S10) as was done for TS-b1 and TS-b2. Hence, the most important results from the NCI analysis are that, on one hand, the governing inter- and intramolecular interactions show different patterns and indicate that unsaturations in the side-chains give access to a range of interactions providing extra enthalpic stabilization and, on the other hand, that cation–π, π–π, dipole–induced dipole, and π–induced dipole interactions are present between the attacking monomer and the growing polymer, indicating an important preorganization effect in all investigated systems.

In summary, these results indicate that the difference in the Gibbs free energy of the investigated systems can be ascribed to the degree of unsaturation and their corresponding interaction patterns. Furthermore, it is found that cation–π interactions are not solely responsible for stabilizing the TS structures but that it is rather a combination of cation–π, π–π, dipole–induced dipole, and π–induced dipole interactions. These interactions are also causing a preorganization effect between the attacking monomer and the dimer.

These static simulations already provide insights into the governing interactions, but as there is a substantial conformational freedom in the TS region and to obtain further in-depth insights into both the preorganization effect and the intrinsic reaction kinetics, the CROP reaction was further investigated by using enhanced sampling MD simulations.

的整体反应性模式使用增强采样MD模拟。准确描述了系统的自由能。
profiles is imperative to understand the influence of the degree of unsaturation on the intrinsic reactivity of the 2-oxazoline monomers. To this end, enhanced sampling simulations, namely umbrella sampling simulations, were performed for each system to investigate the effect of the side-chain on the activation barriers and to account for the conformational flexibility of the TS region (vide supra). The results are shown in Table 1, and the corresponding energy profiles can be found in section S2.2.2.1 and Figures S12–S15.

Table 1. Intrinsic Helmholtz Free Energies of Activation and Propagation Rate Constants \((k_p) \) for the Model Trimeric Systems under Investigation Obtained via US Simulations.

<table>
<thead>
<tr>
<th>monomer</th>
<th>(\Delta F^a_{\text{act}}) (kJ/mol)</th>
<th>(\Delta F^a_{\text{prod}}) (kJ/mol)</th>
<th>(k_p^{-1}) (s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Butylox (a)</td>
<td>64</td>
<td>105</td>
<td>7.2 \times 10^4</td>
</tr>
<tr>
<td>Butenox (b)</td>
<td>63</td>
<td>100</td>
<td>1.0 \times 10^5</td>
</tr>
<tr>
<td>Butynox (c)</td>
<td>63</td>
<td>100</td>
<td>9.9 \times 10^4</td>
</tr>
<tr>
<td>Pentynox (d)</td>
<td>67</td>
<td>116</td>
<td>3.0 \times 10^4</td>
</tr>
</tbody>
</table>

“Note that this \(k_p \) is not equal to the experimentally measured apparent rate constant (BLYP/TZVP-GTH, 413 K, NVT). Calculated based on the method described by Bailleul et al.\(^{90}\)

Interestingly, the intrinsic reaction kinetics seem to be barely affected by the degree of unsaturation in the side-chain. Moreover, the impact of the degree of unsaturation as estimated from the propagation rate constants does not agree with the conclusions drawn from the regular MD simulation nor from the static calculations. The effect of unsaturation in the side-chain on the reactant, product, or TS regions is in first instance assessed by calculating the RMSD between different snapshots corresponding to a specific value of the collective variable (see section S2.2.2.1.1). However, no preferred states were observed, and further exploration was needed. Hence, at second instance the one-dimensional free energy profiles were transformed to two-dimensional free energy surfaces in terms of a new set of collective variables that is chosen based on the conclusions from the NCI analysis. Moreover, these variables are expected to show preferred conformations (and hence preferred CV values) within the reactant, product, and/or TS region. To construct two-dimensional free energy profiles, extra information was extracted from the US trajectories in the form of conditional probabilities. More details on this transformation can be found in section S1.3. These profiles not only reveal the broadness of the product, TS, and reactant region (in line with the RMSD results) but also give further insights into preferred reactant and TS regions with respect to this new set of collective variables shown in the 2D free energy profiles (Figure 4, section S2.2.2.1.1, and Figures S18–S22). Herein, as is the case for all shown profiles, the x-axis represents the CV defined in Scheme 3 with the reactant region situated from 1 to 5.4 Å (hence on the right side of the profiles), and the product region is from −2.6 to −1 Å (on the left side).

Overall the proposed collective variables do not provide new insights into possible stabilizing effects within the TS region apart from the previously discussed cation–dipole interaction (see section S2.2.2.1.1 and Figure S21). Nonetheless, for the prereactive complex region a clear stabilization occurs when increasing the degree of unsaturation. This indicates that the preorganization effect will not manifest itself by stabilizing the TS but it will by stabilizing the reactant region. Figure 4 nicely illustrated this effect by the occurrence of a more stable prereactive complex region appearing around D3 equal to 4.5 Å for monomers 1a to 1c (also section 2.2.2.1, Figure S19 D2, and Figure S21 D5 show this trend). This observation holds for Pentynox (1d) as well and is entirely in agreement with the preorganization effect extracted from the NCI-analysis.

From these computational results we conclude that the reaction kinetics will not only be controlled by the intrinsic reactivity of the monomer and propagating cationic chain-end but should be described by a two-step mechanism, similar to the approach of Degirmenci et al., where the apparent rate constant can be split into two contributions: on the one hand, the equilibration constant \((K_e) \) which accounts for the association \((k_a) \) and dissociation \((k_{-a}) \) of the growing polymer chain and the attacking monomer and, on the other hand, the CROP propagation rate constant \((k_p) \) (see Scheme 6)\(^{93,94}\).

Based on the steady-state approximation, the apparent rate constant for the first-order reaction kinetics is in this case defined as

\[
k_{\text{app}} = Kk_p = \frac{k_kk_p}{k_{-a} + k_p}
\]

To this end the prereactive complexes of the previously discussed most stable TSs (see Figures 2 and 3 a1, b1, b2, c1, and d2) are calculated statically (see section S2.2.2.2). By combination of the enhanced MD simulations with these static DFT calculations, the role of the observed preorganization effect is clarified. In Figure 5, the free energy profiles for both the equilibration step and the CROP reaction step are displayed schematically. The prereactive complexes of the most stable TSs are highlighted in bold. Note that the free energy differences obtained for the equilibration step of the separate reactants and thus the formation of the prereactive complex are obtained from static calculations while the CROP reaction barriers are obtained from enhanced MD simulations.

On the left, a clear difference exists in the equilibration step with formation of the prereactive complex depending on the degree of unsaturation. The trend reveals that an increasing degree of unsaturation favors the formation of the prereactive complex and thus also favors the reaction kinetics (by its effect on \(k_{\text{app}} \)), with a decrease in Gibbs free energy of 14 and 27 kJ mol\(^{-1}\) for the prereactive complex of the most stable TSs of Butenox and Butynox with respect to n-Butylox. This trend is also valid for the other computed prereactive complexes (see Table S6). Furthermore, the side-chain length also affects the formation of the prereactive complex as it is slightly less stable for Pentynox than for Butynox (−43 and −47 kJ mol\(^{-1}\), respectively). This side-chain length dependence is, however, not seen for all selected TSs which is attributed to the entropy effects which are poorly accounted for in this static approach. Additionally the prereactive complexes were reoptimized by using an implicit solvent model to get a first indication of the influence of the solvent (see section S2.2.2.2 and Table S6, values between brackets), which indeed reveal more stable complexes in the presence of an unsaturated side chain.

As the polymerization experimentally takes place in the presence of acetonitrile, it needs to be verified whether the preorganization effect through cation−π interactions still occurs in the presence of acetonitrile, where also a competitive stabilization with the cationic center could occur through the π bonds of the acetonitrile environment. To assess its effect on the cation−π interactions in the prereactive complex region,
US simulations are performed by using the DFTB method in this specific part of the reaction profile. The ability of DFTB to capture cation–π interactions was first benchmarked by using the pentameric n-ButylOx and ButynOx systems (see section S2.2.3.1). The cation–π interactions in the prereactive complex region are again analyzed by constructing two-dimensional free energy profiles based on conditional probabilities. The results are shown in Figure 6 and section S2.2.3.2 and indicate that even in the presence of acetonitrile the cation–π interactions are present in a wide range of the prereactive complex region (see [1] and [2] in Figure 6). This can be seen from the short distances attained by D1, which represents the distance between the attacking monomer π-bond and the cationic center, even at CV values of 6–7.5 Å. In case acetonitrile would destroy the cation–π interactions, these interacting distances would have not been observed. Remarkably, there is no significant barrier observed between the prereactive complex region and the region in which no interactions occur between the monomer and the dimer (7.5–11 Å); this potentially indicates that the CV of our choice is not a proper variable to account for this preorganization effect.

Figure 4. Two-dimensional free energy profiles for ButylOx (a), ButenOx (b), ButynOx (c), and PentynOx (d) constructed based on the method described in section S1.3. Color scale is in kJ mol⁻¹. The proposed new collective variable is the distance of the penultimate bond of the terminal side-chain and the cationic center shown in blue in the structures (D3) and represented by the y-axis. The x-axis is the collective variable describing the reaction, which is sampled in the US simulations. The reactant region is on the right and the product region on the left.

Scheme 6. Reaction Steps Controlling the Kinetics for the CROP of the Investigated 2-Alkyl-2-oxazolines; Monomer M, Polymer P⁺, and Prereactive Complex M–P⁺

\[
\begin{align*}
M + P' & \rightarrow \frac{k_1}{k_{-1}} \quad M \text{mon} P' \\
M \text{mon} P' & \rightarrow k_p \quad P'
\end{align*}
\]
Furthermore, it was shown that the preorganization effect in intrinsic barrier heights of the CROP propagation reaction of 2-alkyl-2-oxazolines. It is responsible for this difference in reactivity due to the π-π interactions of unsaturated bonds in the 2-oxazoline structure (vide supra) translate in an acceleration of the CROP by a factor of 4 for ButynOx (kₚ = (416 ± 3) × 10⁻³ L mol⁻¹ s⁻¹) and ButynOx (kₚ = (496 ± 11) × 10⁻³ L mol⁻¹ s⁻¹) within the field of polymerization reactions, such 4-fold rate enhancements are regarded as significant. Nonetheless, such rate accelerations correspond to relatively minor differences in reaction barriers of only a few kJ/mol, which is a challenge for theoretical methods to achieve. Nonetheless, as we systematically found differences in the intermolecular interactions with a broad range of methods and in the presence of solvent, there is solid evidence for the theoretically established acceleration of the CROP by cation–π interactions of unsaturated bonds in the 2-oxazoline monomer side-chains.

Figure 5. Combined free energy profile for the equilibration step and the order kinetic plot (Figure 7), thus demonstrating a constant amount of propagating species indicative of the absence of termination as well as fast initiation. Furthermore, the number-average molecular weight (Mₐ) increased linearly with conversion, while the dispersity (D) remained below 1.30 (see section S3.3 as well as Figures S27 and S28), demonstrating that the polymerizations proceeded in a living/controlled manner. The first-order kinetic plot (Figure 7) clearly revealed that the polymerization rate constant changes upon variation of the substituent in the 2-position. The unsaturated monomers polymerize significantly faster than n-ButylOx (kₚ = (94 ± 6) × 10⁻³ L mol⁻¹ s⁻¹), ranging from a factor of 2 for ButenOx (kₚ = (200 ± 10) × 10⁻³ L mol⁻¹ s⁻¹) to an increase in rate by a factor of 4–5 for PentynOx (kₚ = (416 ± 3) × 10⁻³ L mol⁻¹ s⁻¹) and ButynOx (kₚ = (496 ± 11) × 10⁻³ L mol⁻¹ s⁻¹). Within the field of polymerization reactions, such 4-fold rate enhancements are regarded as significant. Nonetheless, such rate accelerations correspond to relatively minor differences in reaction barriers of only a few kJ/mol, which is a challenge for theoretical methods to achieve. Nonetheless, as we systematically found differences in the intermolecular interactions with a broad range of methods and in the presence of solvent, there is solid evidence for the theoretically established acceleration of the CROP by cation–π interactions of unsaturated bonds in the 2-oxazoline monomer side-chains.
n-ButOx < ButenOx < ButynOx ≥ PentynOx. The insights obtained in this study are potentially of great importance to different monomers which polymerize through a cationic, or even anionic, polymerization mechanism. Our study clearly shows how the polymerization kinetics can be altered through preorganization effects induced by interactions between the active center of the growing polymer and neighboring group effects. Irrespective of the specific results for this polymerization system, the modeling strategy yields valuable information about how to investigate polymerization kinetics and the way it is affected by noncovalent, stabilizing interactions and by the presence of solvent interactions. With regard to the modeling of polymerization reactions, we have shown that investigating trimeric systems suffices to investigate both intrinsic reactivity and side-chain flexibility, in line with previous study by Izgorodina et al.102 Furthermore, in case a stabilizing interaction occurs within the transition states, e.g., cation−π or π−π interactions, these potentially have no net effect on the intrinsic reactivity because similar stabilization effects occur in the prereactive complex region. To finalize, preorganization effects established through the aforementioned interactions can induce significant rate-enhancing effects by guiding the growth of the polymer more efficiently. Such effects might be of great importance in copolymerization reactions to control monomer distributions within the resulting polymers.

CONCLUSIONS

In this work, we have established proof for the presence of cation−π interactions in ButenOx, ButynOx, and PentynOx by first-principles MD simulations, as these were not present in the reference system (n-ButylOx). Additionally, an effect of the degree of unsaturation is theoretically confirmed, and an entropic penalty for the longer side-chain is observed. To explore to what extent the intrinsic kinetics are affected by the side-chain, complementary calculations have been performed on the second propagation step of the CROP in combination with a thorough analysis of the governing noncovalent interactions. First a static approach revealed that complex interaction patterns are governing a very broad transition state region, and it was concluded that an interplay occurs between cation−π, π−π, π−π−induced dipole, and cation−dipole interactions. These interactions were also shown to enable a preorganization effect against the attacking monomer and the growing polymer chain-end. Furthermore, a larger entropic dependence of the PentynOx system, suggested by the regular MD simulations, was confirmed. Second, because of the substantial conformational freedom, enhanced sampling MD simulations were performed to accurately describe the effect of the side-chain on the intrinsic barrier heights. Limited effects were observed, and hereto the width of reactant, product, and transition state regions was assessed by the construction of two-dimensional free energy surfaces through conditional probabilities, extracted from the enhanced sampling simulations. These revealed that the previously observed preorganization effect enables stabilization of preferentially the prereactive complex region through the presence of cation−π interactions among others. Combining the conclusion of the static and enhanced sampling approach led to the proposal of a two-step mechanism involving the equilibration process with formation of the prereactive complex next to the actual CROP step. By use of a static approach, the equilibration step of the reactants toward the prereactive complex is shown to be the rate-determining step, as a clear difference is observed depending on the degree of unsaturation of the side-chain. Based on the computational conclusions, the following trend in reaction kinetics was anticipated, which was then confirmed by experiments that revealed the following order in the apparent propagation rate constants: n-ButylOx < ButenOx < ButynOx ≥ PentynOx. The insights obtained in this study are potentially of great importance to different monomers which polymerize through a cationic, or even anionic, polymerization mechanism. Our study clearly shows how the polymerization kinetics can be altered through preorganization effects induced by interactions between the active center of the growing polymer and neighboring group effects. Irrespective of the specific results for this polymerization system, the modeling strategy yields valuable information about how to investigate polymerization kinetics and the way it is affected by noncovalent, stabilizing interactions and by the presence of solvent interactions. With regard to the modeling of polymerization reactions, we have shown that investigating trimeric systems suffices to investigate both intrinsic reactivity and side-chain flexibility, in line with previous study by Izgorodina et al.102 Furthermore, in case a stabilizing interaction occurs within the transition states, e.g., cation−π or π−π interactions, these potentially have no net effect on the intrinsic reactivity because similar stabilization effects occur in the prereactive complex region. To finalize, preorganization effects established through the aforementioned interactions can induce significant rate-enhancing effects by guiding the growth of the polymer more efficiently. Such effects might be of great importance in copolymerization reactions to control monomer distributions within the resulting polymers.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.macromol.0c00865.

Figures S1–S28, Schemes S1–S3, and Tables S1–S6 (PDF)
Crystallographic data (CIF)

AUTHOR INFORMATION

Corresponding Authors
Veronique Van Speybroeck — Center for Molecular Modeling, Gent University, 9052 Zwijnaarde, Belgium; orcid.org/0000-0003-2206-178X; Email: veronique.vanspeybroeck@ugent.be
Richard Hoogenboom — Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Gent, Belgium; orcid.org/0000-0001-7398-2058; Email: Richard.hoogenboom@ugent.be

Authors
Elias Van Den Broeck — Center for Molecular Modeling, Gent University, 9052 Zwijnaarde, Belgium; orcid.org/0000-0002-9609-4333
Bart Verbraeken — Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Gent, Belgium
Karen Dedecker — Center for Molecular Modeling, Gent University, 9052 Zwijnaarde, Belgium
Pieter Caude — Center for Molecular Modeling, Gent University, 9052 Zwijnaarde, Belgium; orcid.org/0000-0002-6735-0078

Figure 7. First-order kinetic plot for the cationic ring-opening polymerization of n-ButOx, ButenOx, ButynOx, and PentynOx. Polymerizations were performed at 140 °C in acetonitrile with 4 M monomer (M) concentration, methyl tosylate (I) as initiator, and a [M]:[I] ratio of 100. The polymerization rate constants (k_p’s) are given in 10^{-3} L mol^{-1} s^{-1}.

Valentin Victor Jerca — Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMac), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Gent, Belgium; Centre for Organic Chemistry “Costin D. Nenitzescu”, Romanian Academy, Bucharest 060023, Romania; orcid.org/0000-0001-6997-4979

Saron Catak — Center for Molecular Modeling, Ghent University, 9052 Zwijnaarde, Belgium; Department of Chemistry, Bogazici University, 34342 Istanbul, Turkey; orcid.org/0000-0002-4396-8375

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.macromol.0c00865

Author Contributions
E.V.D.B. and B.V. contributed equally to this work.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The computational resources and services used were provided by Ghent University (Stevin Supercomputer Infrastructure), the VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO). Further this work is supported by the Research Board of the Ghent University (BOF). K.V.H. thanks the Special Research Fund (BOF) – UGent (project 01N03217) for funding. V.V.S., P.C., and K.D. acknowledge funding from the European Union’s Horizon 2020 research and innovation program (consolidator ERC grant agreement no. 647755 - DYNPOR (2015-2020)). The Fund for Scientific Research Flanders and the Research Board of the Ghent University (BOF) is acknowledged for funding.

REFERENCES

Swelling Degrees Capable of Stimuli-Triggered Compound Release.

