Advanced search
1 file | 147.54 KB Add to list

Fractional analogue of sturm-liouville operator

(2016) DOCUMENTA MATHEMATICA. 21. p.1503-1514
Author
Organization
Abstract
In this paper we study a symmetric fractional differential operator of order 2 alpha, (1/2 < alpha < 1). Using the extension theory a class of self-adjoint problems generated by the fractional Sturm-Liouville equation is described.
Keywords
NUMERICAL-SOLUTION, EQUATION, DIFFUSION, TIME, DOMAIN, Self-adjoint operator, symmetric operator, fractional Sturm-Liouville, operator, fractional differential equation, boundary value problem, boundary condition, Caputo operator, Riemann-Liouville operator

Downloads

  • (...).pdf
    • full text (Published version)
    • |
    • UGent only
    • |
    • PDF
    • |
    • 147.54 KB

Citation

Please use this url to cite or link to this publication:

MLA
Tokmagambetov, Niyaz, and Berikbol Torebek. “Fractional Analogue of Sturm-Liouville Operator.” DOCUMENTA MATHEMATICA, vol. 21, 2016, pp. 1503–14.
APA
Tokmagambetov, N., & Torebek, B. (2016). Fractional analogue of sturm-liouville operator. DOCUMENTA MATHEMATICA, 21, 1503–1514.
Chicago author-date
Tokmagambetov, Niyaz, and Berikbol Torebek. 2016. “Fractional Analogue of Sturm-Liouville Operator.” DOCUMENTA MATHEMATICA 21: 1503–14.
Chicago author-date (all authors)
Tokmagambetov, Niyaz, and Berikbol Torebek. 2016. “Fractional Analogue of Sturm-Liouville Operator.” DOCUMENTA MATHEMATICA 21: 1503–1514.
Vancouver
1.
Tokmagambetov N, Torebek B. Fractional analogue of sturm-liouville operator. DOCUMENTA MATHEMATICA. 2016;21:1503–14.
IEEE
[1]
N. Tokmagambetov and B. Torebek, “Fractional analogue of sturm-liouville operator,” DOCUMENTA MATHEMATICA, vol. 21, pp. 1503–1514, 2016.
@article{8665968,
  abstract     = {{In this paper we study a symmetric fractional differential operator of order 2 alpha, (1/2 < alpha < 1). Using the extension theory a class of self-adjoint problems generated by the fractional Sturm-Liouville equation is described.}},
  author       = {{Tokmagambetov, Niyaz and Torebek, Berikbol}},
  issn         = {{1431-0635}},
  journal      = {{DOCUMENTA MATHEMATICA}},
  keywords     = {{NUMERICAL-SOLUTION,EQUATION,DIFFUSION,TIME,DOMAIN,Self-adjoint operator,symmetric operator,fractional Sturm-Liouville,operator,fractional differential equation,boundary value problem,boundary condition,Caputo operator,Riemann-Liouville operator}},
  language     = {{eng}},
  pages        = {{1503--1514}},
  title        = {{Fractional analogue of sturm-liouville operator}},
  volume       = {{21}},
  year         = {{2016}},
}

Web of Science
Times cited: