- Author
- Niyaz Tokmagambetov (UGent) and Berikbol Torebek (UGent)
- Organization
- Abstract
- In this paper we study a symmetric fractional differential operator of order 2 alpha, (1/2 < alpha < 1). Using the extension theory a class of self-adjoint problems generated by the fractional Sturm-Liouville equation is described.
- Keywords
- NUMERICAL-SOLUTION, EQUATION, DIFFUSION, TIME, DOMAIN, Self-adjoint operator, symmetric operator, fractional Sturm-Liouville, operator, fractional differential equation, boundary value problem, boundary condition, Caputo operator, Riemann-Liouville operator
Downloads
-
(...).pdf
- full text (Published version)
- |
- UGent only
- |
- |
- 147.54 KB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8665968
- MLA
- Tokmagambetov, Niyaz, and Berikbol Torebek. “Fractional Analogue of Sturm-Liouville Operator.” DOCUMENTA MATHEMATICA, vol. 21, 2016, pp. 1503–14.
- APA
- Tokmagambetov, N., & Torebek, B. (2016). Fractional analogue of sturm-liouville operator. DOCUMENTA MATHEMATICA, 21, 1503–1514.
- Chicago author-date
- Tokmagambetov, Niyaz, and Berikbol Torebek. 2016. “Fractional Analogue of Sturm-Liouville Operator.” DOCUMENTA MATHEMATICA 21: 1503–14.
- Chicago author-date (all authors)
- Tokmagambetov, Niyaz, and Berikbol Torebek. 2016. “Fractional Analogue of Sturm-Liouville Operator.” DOCUMENTA MATHEMATICA 21: 1503–1514.
- Vancouver
- 1.Tokmagambetov N, Torebek B. Fractional analogue of sturm-liouville operator. DOCUMENTA MATHEMATICA. 2016;21:1503–14.
- IEEE
- [1]N. Tokmagambetov and B. Torebek, “Fractional analogue of sturm-liouville operator,” DOCUMENTA MATHEMATICA, vol. 21, pp. 1503–1514, 2016.
@article{8665968, abstract = {{In this paper we study a symmetric fractional differential operator of order 2 alpha, (1/2 < alpha < 1). Using the extension theory a class of self-adjoint problems generated by the fractional Sturm-Liouville equation is described.}}, author = {{Tokmagambetov, Niyaz and Torebek, Berikbol}}, issn = {{1431-0635}}, journal = {{DOCUMENTA MATHEMATICA}}, keywords = {{NUMERICAL-SOLUTION,EQUATION,DIFFUSION,TIME,DOMAIN,Self-adjoint operator,symmetric operator,fractional Sturm-Liouville,operator,fractional differential equation,boundary value problem,boundary condition,Caputo operator,Riemann-Liouville operator}}, language = {{eng}}, pages = {{1503--1514}}, title = {{Fractional analogue of sturm-liouville operator}}, volume = {{21}}, year = {{2016}}, }