
9178  |  	﻿�  Ecology and Evolution. 2020;10:9178–9191.www.ecolevol.org

 

Received: 18 March 2020  |  Revised: 11 June 2020  |  Accepted: 15 June 2020

DOI: 10.1002/ece3.6571  

O R I G I N A L  A R T I C L E

From leaf to label: A robust automated workflow for stomata 
detection

Sofie Meeus1 |   Jan Van den Bulcke2 |   Francis wyffels3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Meise Botanic Garden, Meise, Belgium
2Department of Environment, Ghent 
University, Gent, Belgium
3Department of Electronics and Information 
Systems, IDLab-AIRO, Ghent University--
imec, Zwijnaarde, Belgium

Correspondence
Sofie Meeus, Meise Botanic Garden, Meise, 
Belgium.
Email: sofie.meeus@plantentuinmeise.be

Abstract
1.	 Plant leaf stomata are the gatekeepers of the atmosphere–plant interface and 

are essential building blocks of land surface models as they control transpiration 
and photosynthesis. Although more stomatal trait data are needed to significantly 
reduce the error in these model predictions, recording these traits is time-con-
suming, and no standardized protocol is currently available. Some attempts were 
made to automate stomatal detection from photomicrographs; however, these ap-
proaches have the disadvantage of using classic image processing or targeting a 
narrow taxonomic entity which makes these technologies less robust and general-
izable to other plant species. We propose an easy-to-use and adaptable workflow 
from leaf to label. A methodology for automatic stomata detection was developed 
using deep neural networks according to the state of the art and its applicability 
demonstrated across the phylogeny of the angiosperms.

2.	 We used a patch-based approach for training/tuning three different deep learning 
architectures. For training, we used 431 micrographs taken from leaf prints made 
according to the nail polish method from herbarium specimens of 19 species. The 
best-performing architecture was tested on 595 images of 16 additional species 
spread across the angiosperm phylogeny.

3.	 The nail polish method was successfully applied in 78% of the species sampled 
here. The VGG19 architecture slightly outperformed the basic shallow and deep 
architectures, with a confidence threshold equal to 0.7 resulting in an optimal 
trade-off between precision and recall. Applying this threshold, the VGG19 archi-
tecture obtained an average F-score of 0.87, 0.89, and 0.67 on the training, valida-
tion, and unseen test set, respectively. The average accuracy was very high (94%) 
for computed stomatal counts on unseen images of species used for training.

4.	 The leaf-to-label pipeline is an easy-to-use workflow for researchers of different 
areas of expertise interested in detecting stomata more efficiently. The described 
methodology was based on multiple species and well-established methods so that 
it can serve as a reference for future work.
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1  | INTRODUC TION

The study of ecosystem functioning requires a thorough under-
standing of the physiological processes of organisms occurring 
at the individual level. Organisms can be defined in terms of their 
functional traits, which are the phenotypic characteristics that are 
related to the fitness and performance of an organism. The spatial 
distribution of these functional traits in combination with environ-
mental conditions constitutes the global diversity in ecosystem 
functioning and is therefore essential building blocks of land sur-
face models (LSM). LSM are essential for estimating transpiration 
and photosynthesis from vegetated surfaces (Jefferson, Maxwell, & 
Constantine, 2017), the dominant component of global land evapo-
transpiration, and are a key component in models for operational 
predictions of the near-climate (Kushnir et al., 2019; Bertolino, 
Caine, & Gray, 2019). Transpiration in an ecosystem, in essence, oc-
curs at the individual leaf surface where stomata function as “gates” 
between deep-soil water reservoirs and the atmosphere. Leaf sto-
mata are microscopic pores surrounded by two guard cells ranging 
from approximately 10 to 100 µm in length. They control the bal-
ance between water loss and CO2 uptake by the leaves and there-
fore have an important effect on the global carbon and hydrologic 
cycle (Berry, Beerling, & Franks, 2010; Steinthorsdottir, Woodward, 
Surlyk, & McElwain, 2012; Wang et al., 2015). Moreover, as stoma-
tal traits show a clear response to environmental parameters such 
as climate (Liu, He, et al., 2018) and atmospheric carbon dioxide 
concentrations (e.g., Woodward, 1987; Tanaka, Sugano, Shimada, 
& Hara-Nishimura,  2013), they are key proxies of environmental 
change (Hetherington & Woodward, 2003). Stomatal conductance 
(gs), defined as the uptake rate of carbon dioxide or water vapor loss 
through the stomata of a leaf, is an elemental parameter in the LSM 
linking plant water use and carbon uptake (Kala et al., 2016) and is 
constrained by and derived from the size and density of the leaf sto-
mata (Drake, Froend, & Franks, 2013). It is well known that (maximum 
and minimum) stomatal conductance, as well as stomatal size, den-
sity, and rate of response, varies widely across plant species. Recent 
efforts have mapped stomatal behavior globally (a.o. Lin et al., 2015), 
yet more detail is needed as including more interspecific trait varia-
tion in climate models could significantly reduce the error in model 
predictions (Butler et  al.,  2017; Wolz, Wertin, Abordo, Wang, & 
Leakey, 2017). To be useful in global-scale mapping, functional traits 
should be relatively easy and inexpensive to measure in a large num-
ber of taxa using a standardized protocol (Cornelissen et al., 2003; 
Dawson et al., 2019; Moretti et al., 2017; Pérez-Harguindeguy et al., 
2013). Recording stomatal traits is widely considered to be labor-in-
tensive and time-consuming and, to this day, mostly performed man-
ually (e.g., counting stomata through the microscope) and therefore 
not replicable. The aspects of the methodologies currently used that 

add to the cost and intensity of the labor are the (a) preparation of the 
leaves to be viewed with a microscope, (b) the number of replicates 
to account for the intraindividual variation in stomatal traits, and (c) 
the measurements, either counts or size measurements, themselves. 
Few methods to automate the detection of and measurement on 
stomata have been reported in the literature, and in most cases, they 
consist of conventional image processing using algorithms that have 
to be tweaked to the specific task at hand. Scarlett, Tang, Petrie, and 
Whitty (2016) for instance, apply maximum stable external regions 
to detect potential ellipses of stomata on microscope images of vine 
leaves while da Silva Oliveira et al. (2014) use Gaussian filtering and 
a series of morphological operations to detect stomata on optical mi-
croscope imagery of five different plant species. Duarte et al. (2017) 
use wavelet spot detection in tandem with standard image process-
ing tools to segment stomata on one plant species, and Higaki et al. 
(2014) combine a genetic algorithm and self–organizing maps, coined 
clustering-aided rapid training agent, for the detection of stomata 
on fluorescently labeled cell contour images of the leaf epidermis 
of Arabidopsis leaves. A series of other papers relies on classifiers 
for detecting of stomata. Vialet-Chabrand and Brendel (2014) report 
on the use of a cascade classifier for rapid assessment of the den-
sity and distribution of stomata on the leaves of two oak species. 
By training a Haar feature-based classifier with exemplary stomata, 
they can be detected with high accuracy on SEM microphotographs. 
Jayakody, Liu, Whitty, and Petrie (2017) use a cascade object de-
tection learning algorithm to correctly identify multiple stomata on 
rather large microscopic images of grapevine leaves, but also apply a 
combination of image processing techniques to estimate the pore di-
mensions of the stomata that were detected with the cascade object 
detector. Typically, the applied classic image processing techniques 
are based on handcrafted features for the detection and segmenta-
tion of the desired stomata. While these techniques perform well on 
one specific plant species, they do not generalize to other species.

An answer to the limitations of classical image processing tech-
niques came from the field of neural networks with the introduc-
tion of deep learning. In a significant breakthrough, Krizhevsky, 
Sutskever, and Hinton (2012) showed that deep learning was ca-
pable of achieving record-breaking results for object recognition. 
Deep learning allows computational models that are composed of 
multiple processing layers to learn representations from raw data 
with multiple levels of abstraction (LeCun et al., 2015; Najafabadi 
et al., 2015). Since then, deep learning was quickly adopted by the 
vision community, which led to state-of-the-art results for the pre-
diction of galaxy pictures (Dieleman, Willett, & Dambre, 2015), face 
recognition (Parkhi, Vedaldi, & Zisserman,  2015), or the detection 
of anatomical structures (Shen, Wu, & Suk, 2017; Hoo-Chang et al., 
2016). Its application is now being explored in different fields of 
biology including plant phenotyping (e.g., Pound et  al.,  2017) and 
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taxonomy (e.g., Wäldchen and Mäder, 2018). The very recently pub-
lished work of Fetter, Eberhardt, Barclay, Wing, and Keller (2019), 
covering 82 angiosperm families, is a good example of the potential 
of using DL for stomata counting. LeCun et al. (2015) state that all 
of these successes in deep learning can be explained by the increase 
in computing power via GPUs, the ease with which data can be col-
lected and various improvements for neural network techniques. 
Moreover, with the advent of deep learning toolboxes such as Keras 
(Chollet, 2015), deep learning also became accessible for noncom-
puter scientists. Although deep learning can outperform other ma-
chine-learning algorithms, training data are needed. Despite their 
important function, no standardized methodology has yet been 
described to measure stomatal traits such as stomatal density and 
size. The handbook of protocols for the measurement of plant func-
tional traits (Cornelissen et al., 2003) highlights the importance of 
stomata as hard functional traits; however, it does not include any 
advice standardized way on how to prepare, image and count them, 
while there is a clear need in the framework of global efforts on the 
one hand (Lin et al., 2015), and to feed our deep learning networks 
on the other hand.

Finally, the recent paper by (Christin, Hervet, & Lecomte, 2019) 
highlights the importance of guidelines and recommendations to 
help ecologists get started with deep learning. Although deep 
learning has proven its potential in a lot of disciplines, develop-
ing a deep learning solution is not yet a trivial task. They strongly 
advocate a stronger interaction between computer scientists and 
ecologists.

However, given the diversity of stomatal shapes and sizes 
among plants (there are more than 400 angiosperm families 
only; Haston, Richardson, Stevens, Chase, & Harris,  2009), the 
variation in techniques for making stomatal impressions (Gitz & 
Baker, 2009) and the different kinds of imaging techniques avail-
able (optical, fluorescence microscopy and SEM), there is a clear 
need for researchers to be able to understand the entire process 
"from leaf to label" and to tweak this to their own needs. Here, we 
describe a step-by-step guide of a pipeline of actions we have de-
veloped from leaf preparation to microscope imaging that is easy, 
inexpensive, and acquires enough image quality to train and use 
the DL network. The objective of this paper is therefore twofold. 
(a) We provide a methodological protocol aimed at standardizing 
sample preparation as well as imaging of stomata. The rationale 
is to facilitate comparability and usability across studies for re-
vealing patterns and mechanisms by increasing the reliability and 
predictive power of stomatal counts. More specifically, we outline 
an accessible methodology to obtain stomatal counts “from leaf to 
label” that can be applied beyond a laboratory setting and is also 
suitable for educational purposes. (b) We present a tutorial-styled 
detailed and replicable methodology for automatic stomata detec-
tion with deep neural networks and show its applicability of deep 
learning across the phylogeny of the angiosperms. Our aim is to 
motivate researchers from the ecology and evolution community 
to consider deep learning techniques for the automation of their 
workflows.

2  | MATERIAL S AND METHODS

2.1 | Dataset generation

2.1.1 | Specimens and species

We used mounted specimens from the African herbarium collection 
of Meise Botanic Garden which contains approximately 500,000 
herbarium specimens from Burundi, Rwanda, and Democratic 
Republic of the Congo, representing more than 80% of the existing 
collections from these countries (Stoffelen P., pers. comm., 2019). 
Five fully developed leaves per specimen were carefully detached 
and remounted afterward. The species for algorithm training were 
selected in the context of studying the effects of global change on 
the central African forest vegetation (Bauters et al., 2020). The spec-
imens used here mainly came from common tropical (timber) tree 
species such as Cola griseiflora, Mammea africana, and Erythrophleum 
suaveolens which are well represented in the collection and were 
recurrently collected throughout the last century (1902–2013; for 
complete species list, see Table  S1). These herbarium specimens 
were collected at the Yangambi Biosphere Reserve, situated within 
the Congo River Basin west of the City Kisangani in the Democratic 
Republic of the Congo.

2.1.2 | Leaf prints

Surfaces of plant leaves are very variable in texture, so depending on 
the species of study one may want to try different approaches for 
visualization of the stomata. Many methods for looking at stomata 
exist and can be categorized into two classes: the use of fresh leaf 
material or imprints. Important criteria for choosing a method are as 
follows: toxicity, availability of a laboratorium space, negative versus 
positive image, effect on stomatal movements, preferred or available 
microscopic visualization technique (e.g., light microscopy, scanning 
electron microscopy), slide preservation, damage to the leaf tissue, 
and ease of use. For this study, we opted for the traditional nail pol-
ish method because we needed a nondestructive technique for gen-
erating leaf prints as we are dealing with valuable historical dried 
plant material. However, for some thin-leaved species, this method 
was not suited. Also for our purposes, the preserving and archiving 
of impressions were of minor importance compared to the ease of 
use, as was the need for a positive replica or the effect of the tech-
nique on stomatal movements. For a comprehensive comparison of 
the quality of different techniques for creating stomatal impressions 
in combination with brightfield microscopy, we refer to Gitz and 
Baker (2009). Epidermal leaf impressions were made from the abax-
ial side of the leaves in the middle of the leaf, between the midvein 
and edge. This region of the leaf has been shown to contain guard 
cell lengths and stomatal densities comparable to the means of the 
entire leaf (Beaulieu, Leitch, Patel, Pendharkar, & Knight, 2008, and 
references therein). Transparent nail polish (Bourjois Crystal ball) 
was used to make the impressions which, once dried, were mounted 
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pointing upward with double-sided tape (Scotch™) on a microscope 
slide.

2.1.3 | Image acquisition

Three photomicrographs of 1,600  ×  1,200 pixels were taken per 
leaf print (dimensions = 344 × 258 µm; area view field = 0.09 mm2) 
using a digital microscope (VH-5000 Ver 1.5.1.1, KEYENCE 
CORPORATION) with full coaxial lightning and default factory set-
tings for shutter speed at × 1,000 lens magnification (VH-Z250R). 
A single photomicrograph was created by stacking of several digital 
images taken at different focal planes to increase the depth of the 
resulting image. All stomata that fell entirely within the view field 
were counted and converted to stomata per square millimeter to ob-
tain stomatal density.

2.2 | Model development

2.2.1 | Deep learning approach

A basic deep learning architecture is depicted in Figure 1c. It consists, 
from left to right, of an input layer, multiple stacked convolutional 
and pooling layers, a fully connected feedforward neural network, 
and an output layer. By alternating convolutional and pooling lay-
ers, the (raw) input (e.g., a RGB image) is progressively transformed 
into more abstract representations. Therefore, the convolutional 
layers convolve the input feature maps with a set of learnable fil-
ters (i.e., nonlinear transformations) to produce a stack of output 
feature maps (Zeiler & Fergus, 2014). The pooling layers are used to 
reduce the dimensionality of the feature maps by computing some 

aggregation function (typically the maximum or the mean) across 
small local regions of the input (Boureau et al., 2010). This results 
in a hierarchical set of features where higher-level (more abstract) 
features are defined in terms of lower-level (less abstract) features 
(Najafabadi et al., 2015).

The resulting feature maps are then concatenated and fed into 
a stack of fully connected neural layers to map these features onto 
the desired output.

Deep neural networks come with a lot of trainable parameters: 
an order of magnitude of a hundred million parameters is not un-
common. In order to properly adjust the weights, gradient descent 
in combination with the backpropagation procedure can be used 
(LeCun et al., 2015). By applying the chain rule on the stacked layers 
on both the convolutional and fully connected layers, the gradient of 
the objective with respect to the input can be computed. The back-
propagation equation can be applied repeatedly to propagate gradi-
ents through all modules, starting from the output at the top (where 
the network produces its prediction) all the way to the bottom 
(where the external input is fed) (LeCun et al., 2015). Today, adapted 
versions of the gradient descent optimization algorithm are used 
(see Ruder, 2016, for an overview). A particular popular optimizer is 
Adam (Kingma & Ba, 2014), an adaptive learning-rate method, with 
bias correction and momentum.

Because of their proven capabilities and state-of-the-art results 
in many domains, deep neural networks are popular. However, due 
to their huge amount of trainable parameters, overfitting to data re-
mains a major challenge. A toolbox of techniques to avoid overfitting 
exists, including the reduction of the model complexity by reduc-
ing the number of hidden layers or units, layer-wise pretraining and 
fine-tuning (Bengio, Lamblin, Popovici, & Larochelle, 2007), dropout 
(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014), 
and data augmentation (Simard, Steinkraus, & Platt, 2003).

F I G U R E  1   From leaf to label: a simple 
deep learning approach for automatic 
stomata detection. A photomicrograph (a) 
is divided into small overlapping patches 
(b) by using a sliding window approach. 
The deep learning architecture (c) is 
trained to label these patches. Positively 
labeled patches of a photomicrograph 
(d) are clustered which results in the 
detection (e)
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2.2.2 | Detection of stomata with deep learning

In this work, we assessed the performance of deep learning for the 
detection of stomata. While this task can be broadened to a generic 
object detection task for which multiple efficient methodologies 
were proposed (see Liu, Ouyang, et al., 2018, for an extensive re-
view), we focus on a simple methodology across multiple species 
which models the stomata detection task as classification task within 
a fixed window. This baseline approach is illustrated in Figure 1.

For generating the training set, we used herbarium specimens 
of 19 common tropical tree species belonging to 12 flowering plant 
families and eight orders (Figure 2, Table S1). The choice of training 
set was made in function of a running research project (COBECORE) 
to investigate the change in stomatal density and function over time 
in Central African tropical rainforest (Bauters et al., 2020). A total of 
431 micrographs were used for training, 1–53 training images per 
species, 3–115 per family, and 14–126 per order.

In order to detect the stomata in a picture, we applied a sim-
ple patch-based method (Cruz-Roa et al., 2014; Hou et  al.,  2016). 
Therefore, we divided each picture in multiple overlapping patches 

of size 120-by-120 pixels. This patch size is based on the average 
stomatal size observed in the training set. The patches were labeled 
as being positive or negative by an expert (Figure 3). Note the vari-
ability of the stomata in the training set as well the variability of the 
negative patches due to the occurrence of different artifacts in the 
data. In total, we extracted more than 12 thousand positive labeled 
patches and 72 thousand negative patches from the training set. 
Due to the apparent larger variability in the negative patches, more 
negative patches than positive patches were included.

The obtained patches were then used to train three different 
deep learning models: two basic architectures with three convo-
lutional layers followed by two dense layers and an output layer 
(Figure 1c) with, respectively, 180, 242, and 23,297,090 trainable 
parameters. Therefore, we varied the depth of the convolutional 
layers from 8–16–32 (basic shallow) and 32–64–128 (basic deep), 
and the size of the dense layers: 2  ×  32 neurons (basic shallow) 
and 2  ×  1,024 neurons (basic deep). One VGG19 (Simonyan & 
Zisserman,  2014) architecture with 47,297,602 parameters of 
which 27,273,218 were trained (i.e., the parameters from the 
fully connected layers) by fine-tuning them on our training set 

F I G U R E  2   Stomata microscope images of herbarium specimens of nine representative species of the training set used to train the 
classification algorithm: Cola griseiflora (a), Carapa procera (b), Celtis mildbraedii (c), Garcinia punctata (d), Mammea africana (e), Petersianthus 
macrocarpus (f), Prioria balsamifera (g), Erythrophleum suaveolens (h), Trichilia gigliana (i)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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and 20,024,384 parameters (i.e., the parameters from the convo-
lutional layers) obtained through pretraining on ImageNet (Deng 
et al., 2009). These parameters were optimized by using the Adam 
(Kingma & Ba,  2014) learning rule for which both the batch size 
and learning rate were tuned. Dropout and data augmentation, by 
random rotations, horizontal and vertical flips of the patches, were 
applied to avoid overfitting. Table  1 summarizes all the training 
parameters of the deep learning architecture. Our deep learning 
models were trained (or fine-tuned in the case of VGG19) over 
200 epochs (50 epochs for VGG19) to output two numbers be-
tween 0.0 and 1.0 indicating the absence or presence of a stoma. 
Intuitively, the output is either [0.0, 1.0] or [1.0, 0.0] depending 
on whether the patch contains the whole stoma or not. In reality, 
however, the network will output any number between 0.0 and 
1.0 depending on the model confidence. Consequently, one has 
to tune a threshold with a validation set which, in this case, con-
sisted of three plant species belonging to the order of Sapindales 
(Lannea acida, Lannea welwitschii, and Lannea schweinfurthii) and 
are relatively closely related to the species from the training set 
(see Table S1). Lastly, all positively labeled patches are clustered by 
using mean shift clustering (Comaniciu & Meer, 2002). This tech-
nique groups neighboring (or even overlapping) positively labeled 
patches from which the resulting stoma coordinates are derived. 
All software was implemented in Python 3.6. Keras (Chollet, 2015) 
and Tensorflow (Abadi et al., 2016) were used to implement the 
deep learning models. Training and testing were performed on a 
Linux (Ubuntu 18.04) workstation with an i7-5930k CPU, 64 GB 
RAM, and a Nvidia™ Titan Xp GPU.

To evaluate the performance of the model, we calculated the infor-

mation retrieval (IR) standard measures, precision 
(

=
TP

TP+FP

)

 and recall 

(

=
TP

TP+FN

)

. Precision decreases with the number of false positives (FP) 

and recall with the number of false negatives (FN). The F-score is the 
harmonic mean of precision and recall with a high F-score, meaning 
low false positives and low false negatives. Precision indices were cal-
culated for all annotated images used for training (denoted "training 
set" in Table S1), on 70 unseen images from a subset of the training set 
(unseen within the scope of training) and on 595 images from species 
not included in the training set (unseen beyond the scope of training), 
a range of 16 species from seven genera chosen from more and less 
related angiosperm orders as the samples used for training. The latter 
set was included to assess the performance of the model on other an-
giosperm species and to evaluate how well the model generalizes to 
these other species. We expected the deep learning model to perform 
better on species from the same angiosperm order as the training spe-
cies as related species are expected to resemble each other more in 

F I G U R E  3   Patches with positive (left) and negative (right) examples of stomata. Stomata that are not fully visible were labeled negative

TA B L E  1   Summary of the training parameters

Parameter
Basic 
shallow Basic deep VGG19

Number of parameters 180,242 23,297,090 47,297,602

Number of trainable 
parameters

180,242 23,297,090 27,273,218

Optimizer Adam Adam Adam

Parameters optimizer α = 5e−4 α = 5e−5 α = 5e−6

β1 = 0.9 β1 = 0.9 β1 = 0.9

β2 = 0.999 β2 = 0.999 β2 = 0.999

Batch size 32 64 128

Training epochs 200 200 50
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stomatal shape and size (Zhang et al., 2012). As stomatal shape can 
vary in relation to climate even between species within a genus (e.g., 
Pautov et al., 2017; Yukawa, Ando, Karasawa, & Hashimoto, 1992), we 
sampled for this dataset three species within each genus with one spe-
cies from tropical rainforest, one from tropical moist deciduous forest 
and one from tropical shrubland and desert (but only two climate re-
gions for the Asparagaceae and one for Orchidaceae) to average pre-
cision measures and be able to compare genera by controlling for 
provenance. Precision indices for the training set were calculated to 
assess the performance in function of the number of stomata used per 
species for training and to compare performance to the "unseen be-
yond the scope of training" set.

The output of the developed model for stomatal detection con-
sists of the coordinates of the detected stomata. To calculate stoma-
tal densities for scientific research questions, all stomata per image 
are counted and converted to the number of stomata per square 
millimeter. The accuracy (%) was calculated for 70 unseen images 
of species used in the training set (unseen within the scope of train-
ing) for which we compared manual and computed stomatal counts. 
Accuracy is defined as the ratio of the number of correctly classified 
items to the total number of items (Michie et al., 1994). Goodness of 
fit was determined by calculation of the coefficient of determination 
(R2) from a linear regression between computed and manual counts.

3  | RESULTS

3.1 | Efficacy of the nail polish method

A total of 49 species were sampled from the African herbarium 
of Meise Botanic Garden (Table  S1). The nail polish method was 

successfully applied in 78% of the species sampled. Generating im-
pressions failed in 16% of the species due to hairy or velvety leaf sur-
faces. In 7% of the species for which we managed to get leaf prints, 
we were unable to detect the stomata visually.

3.2 | Model selection and evaluation

The accuracy of all three architectures on an unseen dataset (i.e., the 
validation set) is depicted in Figure 4, illustrating the precision and re-
call for varying thresholds (0.05–0.95), as well as the F-score, which is 
an indication of the overall performance. One can observe that there is 
a trade-off between precision and recall. For example, one can choose 
to obtain maximal precision with very low recall or vice versa. From 
Figure 4, it is clear that with increasing trainable parameters, the per-
formance of the architecture increases, although the VGG19 architec-
ture only slightly outperforms the basic architectures. Furthermore, 
from Figure 4, one can observe that the VGG19 architecture is less 
sensitive to the choice of the threshold in comparison with the basic 
architecture. Moreover, VGG19 can be seen as a standard textbook 
approach, while the basic architecture was hand-tuned. For all these 
reasons, we will continue our analysis and discussion with the VGG19 
architecture. However, we want to point out that our choice is not 
the computationally most efficient. With less parameters, the basic 
architectures are less computationally demanding than VGG19. We 
refer to the work of Bianco, Cadene, Celona, and Napoletano (2018) 
for a benchmark study of deep learning architectures.

Figure 5 shows that there are slight variations of the performance 
on the validation set. For the VGG19 architecture, a threshold equal 
to 0.7 is a good trade-off between precision and recall and will result 
in an average F-score of 0.89. This is close to an average F-score of 

F I G U R E  4   Precision–recall curve for the detection of three species unseen during training for three different deep learning architectures 
(zoom on the right). The curve gives us insight on how to choose the decision threshold which ranged from 0.05 to 0.95 in steps of 0.05. To 
guide this decision process, the F iso-curves are shown as well
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0.87 for the plant species of the training set. For species for which 
250 stomata or more were used for training, precision, recall, and F-
score values of 0.8 and higher were obtained (Figure 6).

3.3 | Accuracy

The accuracy was calculated for 70 images of species within the 
scope of the training set to compare results of stomatal densities 
between computed and manual counts. Average accuracy was high 
(94%), and a strong correlation between the computed counts and 
the manual counts was observed among all the images (Figure  7, 
R2 = .96, p < .001). Figure 7 shows the reference line (1:1) with an in-
tercept within the 95% confidence interval (CI) around the intercept 
(−4.46 to 0.86) of the linear regression and with a slope value of 1 
slightly outside the 95% CI of the regression slope (1.01–1.11). For 
images containing many stomata (>60) stomatal number tends to be 
underestimated (Figure 7).

3.4 | Generalization to other species

In Figure  8, the overall performance of the VGG19 architecture 
on the "unseen beyond the scope of training set" (open circles) is 
shown for a confidence threshold of 0.7. Average precision, recall, 
and F-score for the training set are 0.84, 0.91, and 0.87, respectively. 
Performance indices for unseen species within the same angiosperm 
order as the training set (Malpighiales, Ericales) range between 0.75 
and 0.84 for precision, 0.57 and 0.87 for recall, and 0.64 and 0.79 for 
F-score. Performance indices for unseen species beyond the train-
ing set (Poales, Asparagales, Gentianales, Solanales) range between 
0.53 and 0.77 for precision, 0.63 and 0.94 for recall, and 0.57 and 
0.80 for F-score.

4  | DISCUSSION

In this work, we developed a leaf-to-label workflow that allows de-
tecting stomata on light microscope images from dried plant material 
such as that of herbarium specimens. Even though mostly used in 
fresh plant material (e.g., Wu & Zhao, 2017), the nail polish method 
proves to be a reliable, noninvasive, easy, and inexpensive method 
that can obtain qualitative leaf impressions from dried leaves on 
the majority of species (78%). We trained a deep learning architec-
ture for the detection of stomata in focus-stacked images of high 
resolution. However, we believe that traditional light microscopy 
could also be used for imaging given that the entire field of view is 
in focus. We illustrated that, even with a simple deep learning ap-
proach in which we model the object detection problem as a clas-
sification problem with a fixed patch size based, a F-score of 0.89 
can be reached on unseen taxa on the condition that they are in the 
phylogenetic scope of the training set. This is in line with the aver-
age results (F-score: 0.87) on the training set. The model on average 
did not perform better on unseen species within the same angio-
sperm order as the training set (F-score: 0.64–0.79) as compared to 
its performance on unseen species of other angiosperm orders (F-
score: 0.57–0.80). This result seems to indicate that the variation in 
stomatal structure and shape within flowering plant orders is simi-
lar to the variation between them. However, note that this test set 
includes at most a few species representing an angiosperm order 
and therefore does not include all variation within genera, families, 
and orders. The training focused mainly on taxa belonging to the 
core eudicots and one species of the basal angiosperms Polyalthia 
suaveolens (Magnoliales). The model performed on average better 
on unseen species from the core eudicots (F-score: 0.77) than on 
unseen species from the monocots (F-score: 0.59). The difference 
in stomatal shape between monocots and the dicots is apparent, es-
pecially the grasses (Poaceae), represented here by Chloris species, 

F I G U R E  5   Precision–recall curve for the fine-tuned VGG19 architecture on the three different species (zoom on the right)
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are known for their particular dumbbell-shaped guard cells as com-
pared to kidney-shaped cells of dicots (Rudall, Chen, & Cullen, 2017; 
Zeiger, Farquhar, & Cowan, 1987). Also, the orchid species included 
in the test set, Cyrtorchis chailluana has a stomatal shape not easily 
detected by our model (Figure 8), probably because of its particular 

circular shape and round opening [cf. stoma type II in Dendrobium 
(Yukawa et al., 1992)]. Also note that we did not include species with 
extremely large stomata typical for, for example, the Liliaceae, as this 
will decrease the performance of the model to detect the stomata 
(but see below).

While the model performs relatively well over a broad taxonomy, 
our approach has room for further improvement. First, the model 
performance is highly related to the variation (Figure 8), the quan-
tity (Figure 6), and quality of training images. The network presented 
in this paper is not trained to handle low-quality images. Therefore, 
high-quality images should be aimed to enable the network to per-
form optimally (see also Fetter et  al.,  2019). The quality (contrast, 
blurriness, etc.) of a set of pictures can be quantified using the image 
histogram and using PyImageQualityRanking software for ranking 
the images in a set and detecting outliers (Koho, Fazeli, Eriksson, & 
Hänninen, 2016). Based on this ranking, one can choose to leave out 
low-ranked images due to their insufficient quality. If low-quality im-
ages should still be processed, then the network should be trained 
accordingly.

Second, the performance of our model depends on the number 
of examples of stomata used during training (Figure 6). In general, 
if more examples are available of a species, the better the perfor-
mance is of the model for that species. In this case, even though 
overall accuracy of stomatal counts was very high (94%) for unseen 
pictures of seven species (Figure 7), the average accuracy for each 
of the species individually was highly correlated with the number of 

F I G U R E  6   Precision, recall, and F-score indices in function of the number of stomata used for each of the 19 species for training

F I G U R E  7   Accuracy of the computed stomatal counts per image 
(n = 70) from seven species included in the training set. The blue 
line with gray 95% CIs is the regression line with slope 1.056 and 
intercept −1.8 (R2 = .96, p < .001); the black line is the reference 
line (1:1)
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images and total number of stomata seen during training (results not 
shown) as was the case for the information retrieval (IR) standard 
measures (Figure 6). For example, only 69 stomata or three images 
for the species Irvingia grandifolia were used in training (Table  S1) 
rendering an average accuracy of 64%, that is, a reduction or in-
crease in stomatal density of 36%. Since a 28% reduction in stomatal 
density in transgenic poplars is enough to cause a 30% drop in tran-
spiration (Bertolino et al., 2019; Wang et al., 2016), we recommend 
at least 250 stomata for training depending on the level of differ-
ence in stomatal density one wants to detect. If small differences in 
stomatal density within a species are targeted, the general protocol 
described in this paper can be used. In order to obtain more accurate 
results, the threshold of the deep learning model (cf. Section 3.2) can 
be adjusted for each species separately. Furthermore, the accuracy 

for an individual species can be increased by fine-tuning the model 
by training the dense layers of the deep learning model.

Third, our patch-based approach is constrained by a patch size 
of 120-by-120 pixels which correspond to a window of 25 by 25 µm 
using the microscope settings as described above. Angiosperms on 
average have a stomatal length or guard cell length of 31  µm (cf. 
Beaulieu et  al.,  2008; Hodgson et  al.,  2010; Figure  S1). Although 
this patch size could be successfully applied to the majority of an-
giosperm species, the patch size limits both the aspect ratio and the 
scale of the input image. The simplest solution is to adjust magnifi-
cation during data collection, by increasing the magnification when 
stomata are too small to be detected and decreasing the magnifica-
tion when stomata extend beyond a patch size of 120-by-120 pixels. 
In our model, stomata between 60 and 120 pixels are best detected 

F I G U R E  8   Performance of the network in function of the phylogenetic relatedness of taxa used for training, validation, and testing. 
(a) Angiosperm phylogeny (modified from APG III, 2009) and diversity in the training set (full circles) and test set (open circles). The open 
diamond indicates the position within the angiosperm phylogeny of the taxa used for validation (Lannea species; see text). The numbers in 
the central frame denote the performance indices: precision, recall, and F-score. Average precision, recall, and F-score for the training set 
are 0.84, 0.91, and 0.87, respectively. Images (b, c, and d) visualize the performance of the network on unseen taxa belonging to the test 
set with (b) Cyrtorchis chailluana (Orchidaceae, Asparagales), (c) Lannea schweinfurthii (Anacardiaceae, Sapindales), and (d) Ipomoea eriocarpa 
(Convolvulaceae, Solanales). Green crosses denote the actual stomata, red x's the stomata recognized by the network with a confidence of 
0.7 or higher. Color gradient from green (low confidence) to yellow (high confidence)
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by the model. Another more elegant way of handling this problem 
is by including some region of interest pooling layer as discussed by 
Dai, Li, He, and Sun (2016) and He, Zhang, Ren, and Sun (2014), which 
would allow moving from the patch-based method to detect all sto-
mata in a spatial hierarchical way. This object detection pipeline can 
be improved further with Fast R-CNN (Girshick, 2015) and Faster 
R-CNN (Ren, He, Girshick, & Sun, 2015) which combine the idea of 
using a spatial hierarchical pooling with region-based convolutions 
into an end-to-end trainable deep learning model. Furthermore, if 
processing speed is an issue, one can opt for a single shot multibox 
detector approach (SSD). SSD discretizes the output space of bound-
ing boxes into a set of default boxes over different aspect ratios and 
scales per feature map location (Liu et al., 2016). At prediction time, 
the network generates scores for the presence of each object cat-
egory in each default box and produces adjustments to the box to 
better match the object shape.

Fourth, with the current advances in deep learning, the object 
detection pipeline can be improved further by using novel convolu-
tional neural network architectures such as Xception (Chollet, 2017) 
or ResNeXt (Xie, Girshick, Dollár, Tu, & He, 2017) as a backbone for 
feature extraction. See Bianco et al. (2018) for an in-depth analysis 
of the majority of the deep neural network architectures that deviate 
from the idea that simply stacking convolutional layers is sufficient.

To summarize, we illustrated that by using a simple deep learn-
ing architecture one can work out a simple leaf-to-label workflow 
that allows detecting stomata on light microscope images from 
dried plant material such as that of herbarium specimens. Our ap-
proach can be optimized depending on the availability of the data 
as well as by using more recent object detection pipelines. We rec-
ommend the survey paper of Liu, Ouyang, et al. (2018) and Huang 
et al.  (2017) for a thorough overview and benchmarking of object 
detector pipelines.

5  | CONCLUSIONS

The entire leaf-to-label pipeline presented here could be of use in 
different research areas with the need for stomatal count data of 
many specimens. It will allow ecologists to focus on the ecological 
questions rather than on the technical aspects of data analysis and 
more specifically deep learning, and computer scientists to pave new 
roads on some of the biological world's most complex units, such as 
ecosystems (Christin et al., 2019). Large-scale studies using stomata 
of fossils to reconstruct a changing environment in deep time (e.g., 
Franks, Berry, Lombardozzi, & Bonan, 2017; Mcelwain, Beerling, & 
Woodward, 1999), as well as work on the anthropogenic effect on 
stomatal density and size in agricultural crops (Zheng et al., 2013), 
could benefit from such an approach, that is, the use of a general 
deep learning model that can be tweaked and expanded for the 
detection of other objects such as epidermal cells. Especially the 
information locked in the archives of herbaria, the result of century-
long efforts of collecting, has shown to be of great value in several 

studies, as the digitization of herbaria specimens has the potential to 
produce data to facilitate the study of the natural world (Goodwin, 
Harris, Filer, Wood, & Scotland, 2015). The leaf-to-image approach 
described here is easy to perform and given that imaging technology 
is becoming faster and can be partially automated, the exploration of 
these sleeping beauties is within reach.
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