REGULAR PSEUDO-HYPEROVALS AND REGULAR PSEUDO-OVALS IN EVEN CHARACTERISTIC

J. A. THAS

ABSTRACT. S. Rottey and G. Van de Voorde characterized regular pseudo-ovals of \(PG(3n-1,q), q = 2^h, h > 1 \) and \(n \) prime. Here an alternative proof is given and slightly stronger results are obtained.

1. INTRODUCTION

Pseudo-ovals and pseudo-hyperovals were introduced in [10]; see also [12]. These objects play a key role in the theory of translation generalized quadrangles [6, 12]. Pseudo-hyperovals only exist in even characteristic. A characterization of regular pseudo-ovals in odd characteristic was given in [2]; see also [12]. In [8] a characterization of regular pseudo-ovals and regular pseudo-hyperovals in \(PG(3n-1,q), q \) even, \(q \neq 2 \) and \(n \) prime, is obtained. Here a shorter proof is given and slightly stronger results are obtained.

2. OVALS AND HYPEROVALS

A \(k \)-arc in \(PG(2,q) \) is a set of \(k \) points, \(k \geq 3 \), no three of which are collinear. Any non-singular conic of \(PG(2,q) \) is a \((q+1) \)-arc. If \(K \) is any \(k \)-arc of \(PG(2,q) \), then \(k \leq q + 2 \). For \(q \) odd \(k \leq q + 1 \) and for \(q \) even a \((q+1) \)-arc extends to a \((q+2) \)-arc; see [3]. A \((q+1) \)-arc is an oval; a \((q+2) \)-arc, \(q \) even, is a complete oval or hyperoval.

A famous theorem of B. Segre [9] tells us that for \(q \) odd every oval of \(PG(2,q) \) is a non-singular conic. For \(q \) even, there are many ovals that are not conics [3]; also, there are many hyperovals that do not contain a conic [3].

3. GENERALIZED OVALS AND HYPEROVALS

Arcs, ovals and hyperovals can be generalized by replacing their points with \(m \)-dimensional subspaces to obtain generalized \(k \)-arcs, generalized ovals and generalized hyperovals. These have strong connections to generalized quadrangles, projective planes, circle geometries, flocks and other structures. See [6, 12, 10, 11, 2, 7]. Below, some basic definitions and results are formulated; for an extensive study, many applications and open problems, see [12].

A generalized \(k \)-arc of \(PG(3n-1,q), n \geq 1 \), is a set of \(k \) \((n-1) \)-dimensional subspaces of \(PG(3n-1,q) \) every three of which generate \(PG(3n-1,q) \). If \(q \) is odd then \(k \leq q^n + 1 \), if \(q \) is even then \(k \leq q^n + 2 \). Every generalized \((q^n+1) \)-arc of \(PG(3n-1,q), q \) even, can be extended to a generalized \((q^n+2) \)-arc.
If \mathcal{O} is a generalized $(q^n + 1)$-arc in $\PG(3n - 1, q)$, then it is a pseudo-oval or generalized oval or $[n-1]$-oval of $\PG(3n - 1, q)$. For $n = 1$, a $[0]$-oval is just an oval of $\PG(2, q)$. If \mathcal{O} is a generalized $(q^n + 1)$-arc in $\PG(3n - 1, q)$, q even, then it is a pseudo-hyperoval or generalized hyperoval or $[n-1]$-hyperoval of $\PG(3n - 1, q)$. For $n = 1$, a $[0]$-hyperoval is just a hyperoval of $\PG(2, q)$.

If $\mathcal{O} = \{\pi_0, \pi_1, \ldots, \pi_{q^n}\}$ is a pseudo-oval of $\PG(3n - 1, q)$, then π_i is contained in exactly one $(2n - 1)$-dimensional subspace τ_i of $\PG(3n - 1, q)$ which has no point in common with $(\pi_0 \cup \pi_1 \cup \cdots \cup \pi_{q^n}) \setminus \pi_i$, with $i = 0, 1, \ldots, q^n$; the space τ_i is the tangent space of \mathcal{O} at π_i. For q even the $q^n + 1$ tangent spaces of \mathcal{O} contain a common $(n - 1)$-dimensional space $\pi_{q^n + 1}$, the nucleus of \mathcal{O}; also, $\mathcal{O} \cup \{\pi_{q^n + 1}\}$ is a pseudo-hyperoval of $\PG(3n - 1, q)$. For q odd, the tangent spaces of a pseudo-oval \mathcal{O} are the elements of a pseudo-oval \mathcal{O}^* in the dual space of $\PG(3n - 1, q)$.

4. Regular pseudo-ovals and pseudo-hyperovals

In the extension $\PG(3n-1, q^n)$ of $\PG(3n-1, q)$, consider n planes ξ_i, $i = 1, 2, \ldots, n$, that are conjugate in the extension \mathbb{F}_{q^n} of \mathbb{F}_q and which span $\PG(3n - 1, q^n)$. This means that they form an orbit of the Galois group corresponding to this extension and span $\PG(3n - 1, q^n)$.

In ξ_1 consider an oval $\mathcal{O}_1 = \{x_0^{(1)}, x_1^{(1)}, \ldots, x_{q^n}^{(1)}\}$. Further, let $x_i^{(1)}, x_i^{(2)}, \ldots, x_i^{(n)}$, with $i = 0, 1, \ldots, q^n$, be conjugate in \mathbb{F}_{q^n} over \mathbb{F}_q. The points $x_i^{(1)}, x_i^{(2)}, \ldots, x_i^{(n)}$ define an $(n - 1)$-dimensional subspace τ_i over \mathbb{F}_q for $i = 0, 1, \ldots, q^n$. Then, $\mathcal{O} = \{\pi_0, \pi_1, \ldots, \pi_{q^n}\}$ is a generalized oval of $\PG(3n - 1, q)$. These objects are the regular or elementary pseudo-ovals. If \mathcal{O}_1 is replaced by a hyperoval, and so q is even, then the corresponding \mathcal{O} is a regular or elementary pseudo-hyperoval.

All known pseudo-ovals and pseudo-hyperovals are regular.

5. Characterizations

Let $\mathcal{O} = \{\pi_0, \pi_1, \ldots, \pi_{q^n}\}$ be a pseudo-oval in $\PG(3n - 1, q)$. The tangent space of \mathcal{O} at π_i will be denoted by τ_i, with $i = 0, 1, \ldots, q^n$. Choose π_i, $i \in \{0, 1, \ldots, q^n\}$, and let $\PG(2n - 1, q) \subseteq \PG(3n - 1, q)$ be skew to π_i. Further, let $\tau_i \cap \PG(2n - 1, q) = \eta_i$ and $\langle \pi_i, \tau_i \rangle \cap \PG(2n - 1, q) = \eta_i$, with $j \neq i$. Then $\{\eta_0, \eta_1, \ldots, \eta_{q^n}\} = \Delta^*$ is an $(n - 1)$-spread of $\PG(2n - 1, q)$.

Now, let q be even and let π be the nucleus of \mathcal{O}. Let $\PG(2n - 1, q) \subseteq \PG(3n - 1, q)$ be skew to π. If $\zeta_j = \PG(2n - 1, q) \cap \langle \pi, \pi_j \rangle$, then $\{\zeta_0, \zeta_1, \ldots, \zeta_{q^n}\} = \Delta$ is an $(n - 1)$-spread of $\PG(2n - 1, q)$.

Next, let q be odd. Choose π_i, with $i \in \{0, 1, \ldots, q^n\}$. If $\pi_i \cap \tau_j = \delta_j$, with $j \neq i$, then $\{\delta_0, \delta_1, \ldots, \delta_{q^n} \} = \Delta^*$ is an $(n - 1)$-spread of π_i.

Finally, let q be even and let $\mathcal{O} = \{\pi_0, \pi_1, \ldots, \pi_{q^n+1}\}$ be a pseudo-hyperoval in $\PG(3n - 1, q)$. Choose π_i, with $i \in \{0, 1, \ldots, q^n + 1\}$, and let $\PG(2n - 1, q) \subseteq \PG(3n - 1, q)$ be skew to π_i. Let $\langle \pi_i, \tau_i \rangle \cap \PG(2n - 1, q) = \eta_j$, with $j \neq i$. Then $\{\eta_0, \eta_1, \ldots, \eta_{q^n+1}\} = \Delta^*$ is an $(n - 1)$-spread of $\PG(2n - 1, q)$.

Theorem 5.1 (Casse, Thas and Wild [2]). Consider a pseudo-oval \mathcal{O} with q odd. Then at least one of the $(n - 1)$-spreads $\Delta_0, \Delta_1, \ldots, \Delta_{q^n}, \Delta^*_0, \Delta^*_1, \ldots, \Delta^*_{q^n}$ is regular.
if and only if they all are regular if and only if the pseudo-oval O is regular. In such a case O is essentially a conic over \mathbb{F}_q^n.

Theorem 5.2 (Rottey and Van de Voorde [8]). Consider a pseudo-oval O in $\text{PG}(3n-1, q)$ with $q = 2^h$, $h > 1$, n prime. Then O is regular if and only if all $(n-1)$-spreads $\Delta_0, \Delta_1, \ldots, \Delta_{q^n}$ are regular.

6. ALTERNATIVE PROOF AND IMPROVEMENTS

Theorem 6.1. Consider a pseudo-hyperoval O in $\text{PG}(3n-1, q)$, $q = 2^h$, $h > 1$ and n prime. Then O is regular if and only if all $(n-1)$-spreads Δ_i, with $i = 0, 1, \ldots, q^n + 1$, are regular.

Proof. If O is regular, then clearly all $(n-1)$-spreads Δ_i, with $i = 0, 1, \ldots, q^n + 1$, are regular.

Conversely, assume that the $(n-1)$-spreads $\Delta_0, \Delta_1, \ldots, \Delta_{q^n+1}$ are regular. Let $O = \{\pi_0, \pi_1, \ldots, \pi_{q^n+1}\}$ and let $O = \{\beta_0, \beta_1, \ldots, \beta_{q^n+1}\}$ be the dual of O, with β_i being the dual of π_i.

Choose $\beta_i, i \in \{0, 1, \ldots, q^n + 1\}$, and let $\beta_i \cap \beta_j = \alpha_{ij}, j \neq i$. Then

$$\{\alpha_{i0}, \alpha_{i1}, \ldots, \alpha_{i,i-1}, \alpha_{i,i+1}, \ldots, \alpha_{i,q^n+1}\} = \Gamma_i$$

is an $(n-1)$-spread of β_i.

Now consider $\beta_i, \beta_j, \Gamma_i, \Gamma_j, \alpha_{ij}, j \neq i$. In Γ_j we next consider a $(n-1)$-regulus γ_j containing α_{ij}. The $(n-1)$-regulus γ_j is a set of maximal spaces of a Segre variety $S_{1:n-1}^1$; see Section 4.5 in [4]. The $(n-1)$-regulus γ_j and the $(n-1)$-spread Γ_i of β_i generate a regular $(n-1)$-spread $\Sigma(\gamma_j, \Gamma_i)$ of $\text{PG}(3n-1, q)$. This can be seen as follows. The elements of Γ_i intersect n lines U_1, U_2, \ldots, U_n which are conjugate in \mathbb{F}_q^n over \mathbb{F}_q, that is, they form an orbit of the Galois group corresponding to this extension. Let $\alpha_{ij} \cap U_l = \{w_l\}$, with $l = 1, 2, \ldots, n$. Now consider the transversals T_1, T_2, \ldots, T_n of the elements of γ_j, with T_l containing w_l. The n planes $T_l U_l = \theta_i$ intersect all elements of γ_j and Γ_i. The $(n-1)$-dimensional subspaces of $\text{PG}(3n-1, q)$ intersecting $\theta_1, \theta_2, \ldots, \theta_n$ are the elements of the regular $(n-1)$-spread $\Sigma(\gamma_j, \Gamma_i)$. The elements of this spread correspond to the points of a plane $\text{PG}(2, q^n)$, with its lines corresponding to the $(2n-1)$-dimensional spaces containing at least two (and then $q^n + 1$) elements of the spread. Hence the $q + 2$ elements of Θ containing an element of γ_j, say $\beta_i = \beta_{i1}, \beta_{i2}, \ldots, \beta_{i,q^n+2} = \beta_j$, correspond to lines of $\text{PG}(2, q^n)$. Dualizing, the elements $\pi_{i1}, \pi_{i2}, \ldots, \pi_{i,q^n+2}$ correspond to points of $\text{PG}(2, q^n)$.

Now consider β_{i1} and γ_j, and repeat the argument. Then there arise n planes θ_i intersecting all elements of γ_j and Γ_i. The $(n-1)$-dimensional subspaces of $\text{PG}(3n-1, q)$ intersecting $\theta_1, \theta_2, \ldots, \theta_n$ are the elements of the regular $(n-1)$-spread $\Sigma(\gamma_j, \Gamma_i)$. The elements of this spread correspond to the points of a plane $\text{PG}'(2, q^n)$, and the lines of this plane correspond to the $(2n-1)$-dimensional spaces containing $q^n + 1$ elements of the spread. Hence $\beta_{i1}, \beta_{i2}, \ldots, \beta_{i,q^n+2}$ correspond to lines of $\text{PG}'(2, q^n)$. Dualizing, the elements $\pi_{i1}, \pi_{i2}, \ldots, \pi_{i,q^n+2}$ correspond to points of $\text{PG}'(2, q^n)$.

First, assume that $\{\theta_1, \theta_2, \ldots, \theta_n\} \cap \{\theta'_1, \theta'_2, \ldots, \theta'_n\} = \emptyset$. Consider $\pi_{i1}, \pi_{i2}, \pi_{i3}, \pi_{i4}$. The planes of $\text{PG}(3n-1, q^n)$ intersecting these four spaces constitute a set \mathcal{N} of
maximal spaces of a Segre variety S_{2n-1} [1]. The planes $\theta_1, \theta_2, \cdots, \theta_n, \theta'_1, \theta'_2, \cdots, \theta'_n$ are elements of M. It follows that $(\theta_1 \cup \theta_2 \cup \cdots \cup \theta_n) \cap (\theta'_1 \cup \theta'_2 \cup \cdots \cup \theta'_n) = \emptyset$.

Consider any $(n-1)$-dimensional subspace $\pi \in \{\pi_{i_3}, \pi_{i_4}, \cdots, \pi_{i_{q+2}}\}$ of $\text{PG}(3n-1, q)$. We will show that π is a maximal subspace of S_{2n-1}. Let $\pi_i \cap \pi_j = \{t_{ij}\}$, $\pi'_i \cap \pi_j = \{t'_{ij}\}$, $i = 1, 2, \cdots, n, j = i_1, i_2, \cdots, i_{q+2}$. If $t_{ij}, t'_{ij}, t_{ij}, t'_{ij}$ distinct, then v_1, v_2, \cdots, v_n are conjugate and similarly v_1', v_2', \cdots, v_n' are conjugate. Hence $\langle v_1, v_2, \cdots, v_n \rangle = \langle v_1', v_2', \cdots, v_n' \rangle$ defines a $(n-1)$-dimensional space over F_q which intersects $\theta_1, \theta_2, \cdots, \theta'_n$ (over F_{q^n}). The points t_{ij}, with $j = i_1, i_2, \cdots, i_{q+2}$, generate a subspace of θ_i, and the points t'_{ij}, with $j = i_1, i_2, \cdots, i_{q+2}$, generate a subspace of θ'_i with $i = 1, 2, \cdots, n$. Let $q = 2^h$ and let F_2^v be the subfield of $F_{q^n} = F_{2^h}$ over which these subplanes are defined; so $v|hn$. Then $v < hn$ as otherwise the spreads of $\text{PG}(3n-1, q)$ defined by $\theta_1, \theta_2, \cdots, \theta_n$ and $\theta'_1, \theta'_2, \cdots, \theta'_n$ coincide, clearly not possible. The $(n-1)$-regulus γ_j implies that the subplanes contain a line over F_q, so $h|v$. As n is prime we have $v = h$, so $2^n = q$. Hence the $2n$ subplanes are defined over F_q. It follows that the $q+2$ elements $\pi_{i_1}, \pi_{i_2}, \cdots, \pi_{i_{q+2}}$ are maximal subspaces of the Segre variety S_{2n-1}. Hence π is a maximal subspace of S_{2n-1}. It follows that $\pi_{i_1}, \pi_{i_2}, \cdots, \pi_{i_{q+2}}$ are maximal subspaces of S_{2n-1}.

Now consider a $\text{PG}(2, q)$ which intersects $\pi_{i_1}, \pi_{i_2}, \cdots, \pi_{i_{q+2}}$. The $(n-1)$-dimensional spaces $\pi_{i_1}, \pi_{i_2}, \cdots, \pi_{i_{q+2}}$ are maximal spaces of S_{2n-1} which intersect $\text{PG}(2, q)$; they are maximal spaces of the Segre variety $S_{2n-1} \cap \text{PG}(3n-1, q)$ of $\text{PG}(3n-1, q)$.

Consider π_{i_1} and also a $\text{PG}(2n-1, q)$ skew to π_{i_1}. If we project $\pi_{i_2}, \pi_{i_3}, \cdots, \pi_{i_{q+2}}$ from π_{i_1} onto $\text{PG}(2n-1, q)$, then by the foregoing paragraph the $q+1$ projections constitute a $(n-1)$-regulus of $\text{PG}(2n-1, q)$. Similarly, we can project from π_{i_s}, s any element of $\{1, 2, \cdots, q+2\}$. Equivalently, if $s \in \{1, 2, \cdots, q+2\}$ then the spaces β_s, with $t = 1, 2, \cdots, s-1, s+1, \cdots, q+2$, form a $(n-1)$-regulus of β_s.

Now assume that the condition $\{\theta_1, \theta_2, \cdots, \theta_n\} \cap \{\theta'_1, \theta'_2, \cdots, \theta'_n\} = \emptyset$ is satisfied for any choice of $\beta_i, \beta_j, \gamma_j, \beta_{ij}$ in such a case every $(n-1)$-regulus contained in a spread Γ_s defines a Segre variety S_{2n-1} over F_q. Let us define the following design \mathcal{D}. The points of \mathcal{D} are the elements of \emptyset, a block of \mathcal{D} is a set of $q+2$ elements of \emptyset, containing at least one space of a $(n-1)$-regulus contained in some regular spread Γ_s, and incidence is containment. Then \mathcal{D} is a $4-(q^n+2, q+2, 1)$ design. By Kantor [5] this implies that $q = 2$, a contradiction.

Consequently, we may assume that for at least one quadruple $\beta_i, \beta_j, \gamma_j, \beta_{ij}$ we have

$$\{\theta_1, \theta_2, \cdots, \theta_n\} = \{\theta'_1, \theta'_2, \cdots, \theta'_n\}.$$
In such a case the q^n+2 elements of \mathcal{O} correspond to lines of the plane $\text{PG}(2, q^n)$. It follows that \mathcal{O} is regular.

Theorem 6.2. Consider a pseudo-oval \mathcal{O} in $\text{PG}(3n-1, q)$, with $q = 2^h$, $h > 1$ and n prime. Then \mathcal{O} is regular if and only if all $(n-1)$-spreads $\Delta_0, \Delta_1, \cdots, \Delta_{q^n}$ are regular.

Proof. If \mathcal{O} is regular, then clearly all $(n-1)$-spreads $\Delta_0, \Delta_1, \cdots, \Delta_{q^n}$ are regular. Conversely, assume that the $(n-1)$-spreads $\Delta_0, \Delta_1, \cdots, \Delta_{q^n}$ are regular. Let $\mathcal{O} = \{\pi_0, \pi_1, \cdots, \pi_{q^n}\}$, π_{q^n+1} be the nucleus of \mathcal{O}, let $\tilde{\mathcal{O}} = \mathcal{O} \cup \{\pi_{q^n+1}\}$, let $\tilde{\mathcal{O}}$ be the dual of \mathcal{O}, let $\bar{\mathcal{O}}$ be the dual of $\tilde{\mathcal{O}}$, and let β_i be the dual of π_i.

Choose $\beta_i, i \in \{0, 1, \cdots, q^n + 1\}$, and let $\beta_i \cap \beta_j = \alpha_{ij}, j \neq i$. Then
\begin{equation}
\{\alpha_{i0}, \alpha_{i1}, \cdots, \alpha_{i,i-1}, \alpha_{i,i+1}, \cdots, \alpha_{i,q^n+1}\} = \Gamma_i
\end{equation}
is an $(n-1)$-spread of β_i.

Now consider $\beta_i, \beta_j, \Gamma_i, \Gamma_j, \alpha_{ij}$, with $j \neq i$ and $i, j \in \{0, 1, \cdots, q^n\}$. In Γ, we next consider a $(n-1)$-regulus γ_j containing α_{ij} and α_{j,q^n+1}. The $(n-1)$-regulus γ_j is a set of maximal spaces of a Segre variety $S_{1,q^{n-1}}$. The $(n-1)$-regulus γ_j and the $(n-1)$-spread Γ_i of β_i generate a regular $(n-1)$-spread $\Sigma(\gamma_j, \Gamma_i)$ of $PG(3n-1,q)$. Such as in the proof of Theorem 6.1 we introduce the elements $U_i, u_i, T_i, \theta_i, l = 1, 2, \cdots, n$, and the plane $PG(2, q^n)$. The $q + 2$ elements of \hat{O} containing an element of γ_j, say $\beta_i = \beta_i, \beta_{i_2}, \cdots, \beta_{i_3}, \beta_j = \beta_{q^n+1}, \beta_{q^n+1} + 1$, correspond to lines of $PG(2, q^n)$. Dualizing, the elements $\pi_{i_1}, \pi_{i_2}, \cdots, \pi_{i_{q^n+1}}$ correspond to points of $PG(2, q^n)$.

Now consider β_{i_2} and γ_{j}, and repeat the argument. Then there arise n planes θ'_i of $PG(3n-1,q^n)$ intersecting all elements of γ_j and Γ_i, and a $(n-1)$-spread $\Sigma(\gamma_j, \Gamma_i)$ of $PG(3n-1,q^n)$. The elements of this spread correspond to the points of a plane $PG'(2, q^n)$. The spaces $\beta_{i_1}, \beta_{i_2}, \cdots, \beta_{i_{q^n+1}}, \beta_{q^n+1}$ correspond to lines of $PG'(2, q^n)$. Dualizing, the elements $\pi_{i_1}, \pi_{i_2}, \cdots, \pi_{i_{q^n+1}}, \pi_{i_{q^n+1}}$ correspond to points of $PG'(2, q^n)$.

First, assume that $\{\theta_1, \theta_2, \cdots, \theta_n\} \cap \{\theta'_1, \theta'_2, \cdots, \theta'_n\} = \emptyset$. Consider $\pi_{i_1}, \pi_{i_2}, \pi_{i_3}, \pi_{i_4}$. The planes of $PG(3n-1,q^n)$ intersecting these four spaces constitute a set M of maximal spaces of a Segre variety S_{2n-1}. The planes $\theta_1, \theta_2, \cdots, \theta_n, \theta'_1, \theta'_2, \cdots, \theta'_n$ are elements of M. It follows that $\{\theta_1 \cup \theta_2 \cup \cdots \cup \theta_n\} \cap \{\theta'_1 \cup \theta'_2 \cup \cdots \cup \theta'_n\} = \emptyset$. Let $\pi \in \{\pi_{i_1}, \pi_{i_2}, \cdots, \pi_{i_{q^n+1}}\}$. As in the proof of Theorem 6.1 one shows that π is a maximal subspace of S_{2n-1}. It follows that $\pi_{i_1}, \pi_{i_2}, \cdots, \pi_{i_{q^n+1}}, \pi_{i_{q^n+1}}$ are maximal subspaces of S_{2n-1}.

Next consider a $PG(2, q)$ which intersects $\pi_{i_1}, \pi_{i_2}, \pi_{i_3}, \pi_{i_4}$. The $(n-1)$-dimensional spaces $\pi_{i_1}, \pi_{i_2}, \cdots, \pi_{i_{q^n+1}}, \pi_{i_{q^n+1}}$ are maximal spaces of S_{2n-1} which intersect the plane $PG(2, q)$; they are maximal spaces of the Segre variety $S_{2n-1} \cap PG(3n-1,q^n)$. As in the proof of Theorem 6.1 it follows that the spaces $\beta_{q^n+1} \cap \beta_{i},$ with $t = 1, 2, \cdots, q + 1$, form a $(n-1)$-regulus of β_{q^n+1}.

Now assume that the condition $\{\theta_1, \theta_2, \cdots, \theta_n\} \cap \{\theta'_1, \theta'_2, \cdots, \theta'_n\} = \emptyset$ is satisfied for any choice of $\beta_1, \beta_2, \gamma_j, \beta_{i_2}, j \neq i$ and $i, j \in \{0, 1, \cdots, q^n\}$. Let $\alpha_1, \alpha_2, \alpha_3$ be distinct elements of Γ_{q^n+1}. Then $\beta_1, \beta_2, \gamma_j, \beta_{i_2}$ can be chosen in such a way that $\alpha_1 \in \beta_1, \alpha_2 \in \beta_2, \alpha_3 \in \gamma_j, \beta_{i_2} \cap \gamma_j$ with $\alpha_3 \in \beta_{i_2}$. Hence the $(n-1)$-regulus in β_{q^n+1} defined by $\alpha_1, \alpha_2, \alpha_3$ is subset of Γ_{q^n+1}. From [4], Theorem 4.23, now follows that the $(n-1)$-spread Γ_{q^n+1} of β_{q^n+1} is regular. By Theorem 6.1 the pseudo-hyperoval \hat{O} is regular, and so \hat{O} is regular. But in such a case the condition $\{\theta_1, \theta_2, \cdots, \theta_n\} \cap \{\theta'_1, \theta'_2, \cdots, \theta'_n\} = \emptyset$ is never satisfied, a contradiction.

Consequently, we may assume that for at least one quadruple $\beta_1, \beta_2, \gamma_j, \beta_{i_2}$ we have $\{\theta_1, \theta_2, \cdots, \theta_n\} = \{\theta'_1, \theta'_2, \cdots, \theta'_n\}$. In such a case the $q^n + 2$ elements of \hat{O} correspond to lines of the plane $PG(2, q^n)$. It follows that \hat{O}, and hence also \hat{O}, is regular.

Theorem 6.3. Consider a pseudo-hyperoval \hat{O} in $PG(3n-1,q), q = 2^h, h > 1$ and n prime. Then \hat{O} is regular if and only if at least $q^n - 1$ elements of $\{\Delta_0, \Delta_1, \cdots, \Delta_{q^n+1}\}$ are regular.
Proof. If \(\mathcal{O} \) is regular, then clearly all \((n-1)\)-spreads \(\Delta_i \), with \(i = 0, 1, \ldots, q^n + 1 \), are regular.

Conversely, assume that \(\rho \), with \(\rho \geq q^n - 1 \), elements of \(\{ \Delta_0, \Delta_1, \ldots, \Delta_{q^n + 1} \} \) are regular.

If \(\rho = q^n + 2 \), then \(\mathcal{O} \) is regular by Theorem 6.1; if \(\rho = q^n + 1 \), then \(\mathcal{O} \) is regular by Theorem 6.2.

Now assume that \(\rho = q^n \) and that \(\Delta_2, \Delta_3, \ldots, \Delta_{q^n + 1} \) are regular. We have to prove that \(\Delta_0 \) is regular. We use the arguments in the proof of Theorem 6.2. If one of the elements \(\alpha_1, \alpha_2, \alpha_3 \), say \(\alpha_1 \), in the proof of Theorem 6.2 is \(\beta_0 \cap \beta_1 \), then let \(\gamma_j \) contain \(\beta_j \cap \beta_1, \beta_j \cap \beta_0, \beta_j \cap \beta_1 \) and let \(\beta_{ij} \neq \beta_1, \beta_0 \), with \(i, j \in \{2, 3, \ldots, q^n + 1 \} \). Now see the proof of the preceding theorem.

Finally, assume that \(\rho = q^n - 1 \) and that \(\Delta_3, \Delta_4, \ldots, \Delta_{q^n + 1} \) are regular. We have to prove that \(\Delta_0 \) is regular. We use the arguments in the proof of Theorem 6.2. If exactly one of the elements \(\alpha_1, \alpha_2, \alpha_3 \), say \(\alpha_1 \), in the proof of Theorem 6.2 is \(\beta_0 \cap \beta_1 \) or \(\beta_0 \cap \beta_2 \), then proceed as in the preceding paragraph with \(\beta_{ij} \neq \beta_1, \beta_2 \). Now assume that two of the elements \(\alpha_1, \alpha_2, \alpha_3 \), say \(\alpha_1 \) and \(\alpha_2 \), are \(\beta_0 \cap \beta_1 \) and \(\beta_0 \cap \beta_2 \). Now consider all \((n-1)\)-reguli in \(\Delta_0 \) containing \(\alpha_1 \) and \(\alpha_3 \), and assume, by way of contradiction, that no one of these \((n-1)\)-reguli contains \(\alpha_2 \). The number of these \((n-1)\)-reguli is \(q^{n-2} - \frac{q^n}{q-1} \), and so \(q = 2 \), a contradiction. It follows that the \((n-1)\)-regulus in \(\beta_0 \) defined by \(\alpha_1, \alpha_2, \alpha_3 \) is contained in \(\Delta_0 \). Now we proceed as in the proof of Theorem 6.2.

7. Final remarks

7.1. The cases \(q = 2 \) and \(n \) not prime

For \(q = 2 \) or \(n \) not prime other arguments have to be developed.

7.2. Improvement of Theorem 6.3

Let \(\mathcal{D} = (P, B, \in) \) be an incidence structure satisfying the following conditions.

(i) \(|P| = q^n + 1 \), \(q \) even, \(q \neq 2 \);

(ii) the elements of \(B \) are subsets of size \(q + 1 \) of \(P \) and every three distinct elements of \(P \) are contained in at most one element of \(B \);

(iii) \(Q \) is a subset of size \(\delta \) of \(P \) such that any triple of elements in \(P \) with at most one element in \(Q \), is contained in exactly one element of \(B \).

Assumption: Any such \(\mathcal{D} \) is a \(3 - (q^n + 1, q + 1, 1) \) design whenever \(\delta \leq \delta_0 \) with \(\delta_0 \leq q - 2 \).

Theorem 7.1. Consider a pseudo-hyperoval \(\mathcal{O} \) in \(\text{PG}(3n-1, q) \), \(q = 2^h, h > 1 \) and \(n \) prime. Then \(\mathcal{O} \) is regular if and only if at least \(q^n + 1 - \delta_0 \) elements of \(\{ \Delta_0, \Delta_1, \ldots, \Delta_{q^n + 1} \} \) are regular.

Proof. Similar to the proof of Theorem 6.3.

7.3. Acknowledgement

We thank S. Rottey and G. Van de Voorde for several helpful discussions.
REFERENCES

[10] J. A. Thas. The m-dimensional projective space $S_m(M_n(GF(q)))$ over the total matrix algebra $M_n(GF(q))$ of the $(n \times n)$-matrices with elements in the Galois field $GF(q)$, *Rend. Mat.* 4 (1971) 459 - 532.

Ghent University, Department of Mathematics, Krijgslaan 281, B-9000 Ghent, Belgium

Email address: jat@cage.ugent.be