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Abstract

New formulas are given for the grand partition function of paraboson systems of order p
with n orbitals and parafermion systems of order p with m orbitals. These formulas allow
the computation of statistical and thermodynamic functions for such systems. We analyze and
discuss the average number of particles on an orbital, and the average number of particles in
the system. For some special cases (identical orbital energies, or equidistant orbital energies)
we can simplify the grand partition functions and describe thermodynamic properties in more
detail. Some specific properties are also illustrated in plots of thermodynamic functions.

1 Introduction

Parastatistics was introduced by Green in 1953 [1] as a generalization of ordinary Bose-Einstein
and Fermi-Dirac statistics. The Fock space V (p) of a system of n pairs of paraboson operators b±j
(j = 1, . . . , n) of order p (referred to as an n-paraboson system of order p), where p is a positive
integer, is characterized by the trilinear relations [1]

[{bξj , b
η
k}, b

ǫ
l ] = (ǫ− ξ)δjlb

η
k + (ǫ− η)δklb

ξ
j , (1.1)

and by the conditions

〈0|0〉 = 1, b−j |0〉 = 0, (b±j )
† = b∓j ,

{b−j , b
+
k }|0〉 = p δjk |0〉, (1.2)

with j, k, l ∈ {1, 2, . . . , n} and η, ǫ, ξ ∈ {+,−} (to be interpreted as +1 and −1 in the algebraic
expressions ǫ− ξ and ǫ− η).

Similarly, the trilinear relations [1]

[[f ξj , f
η
k ], f

ǫ
l ] =

1

2
(ǫ− η)2δklf

ξ
j −

1

2
(ǫ− ξ)2δjlf

η
k , (1.3)

where j, k, l ∈ {1, 2, . . . ,m}, together with the conditions

〈0|0〉 = 1, f−j |0〉 = 0, (f±j )† = f∓j ,

[f−j , f
+
k ]|0〉 = p δjk |0〉, (1.4)

define an m-parafermion system of order p. The corresponding Fock space is denoted by W (p).
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Using (1.2) and (1.4) the number operators Ni for the paraboson and parafermion systems are
defined by [2]

N̂i =
1

2
{b+i , b

−
i } −

p

2
, (1.5)

N̂i =
1

2
[f+i , f

−
i ] +

p

2
. (1.6)

A quantum state of the paraboson system is a vector ψ of the Fock space V (p) that is a common
eigenvector of the number operators (1.5),

N̂i ψ = Ni ψ (i = 1, . . . , n). (1.7)

The non-negative integers Ni are interpreted as occupation numbers, describing the number of
“particles on orbital i” when the system is in the state ψ. There is no restriction on these occupation
numbers: Ni ∈ N = {0, 1, 2 . . .}. When p = 1 there is (up to a normalization factor) a unique state
with occupation numbers (N1, N2, . . . , Nn) for any element of Nn. In fact, for p = 1 the paraboson
statistics reduces to the ordinary Bose-Einstein statistics. For p ≥ 2 there are in general multiple
states with the same occupation numbers, and the description of all states is non-trivial.

For parafermion systems of order p, the situation is similar but now the occupation numbers
in (1.7) satisfy Ni ∈ {0, 1, . . . , p}. This is known as the Pauli principle for the parafermion statistics
of order p: no more than p particles can be on the same orbital. For p = 1 parafermion statistics
is reduced to the ordinary Fermi-Dirac statistics.

Analyzing the structure of the Fock spaces V (p) and W (p) is a major problem. In princi-
ple, the paraboson and parafermion Fock spaces can be constructed by means of the so called
Green ansatz [1]. This reduces to finding a basis of an irreducible constituent of a p-fold ten-
sor product (see Theorem in [2] on p. 1158), which turns out to be difficult. More than five
decades after parastatistics was introduced the irreducible representations of the paraboson (1.1)
and parafermion (1.3) trilinear relations with an unique vacuum (1.2) and (1.4) were constructed
in [3] and [4] using group theoretical techniques.

In the recent years parastatistics became again a field of increasing interest. For example,
parabosons and parafermions were considered as candidates for the particles of dark matter/dark
energy [5, 6]. Furthermore, quantum simulation of parabosons [7] and parafermions [8] were pro-
posed, thus providing a tool of potential use of paraparticles in designing quantum information
systems. In order to clarify these possible applications of paraparticles they must also be investi-
gated from the point of view of statistical thermodynamics.

For this purpose, one should have proper forms of the grand partition function (GPF) of para-
boson and parafermion systems. Although these GPF’s are known in some expanded form, one
needs their expressions as generating functions in order to analyze statistical properties. Such
expressions are known only in some special cases (such as p = 1 and p ≥ n for the n-paraboson
system of order p). In the present paper, we shall deduce proper forms of the grand partition
function of paraboson and parafermion systems for all cases (i.e. for all values of p). This follows
from recent work on the characters of the Fock spaces V (p) and W (p) [3, 4]. Using these GPF’s,
we can investigate some thermodynamic properties of paraboson and parafermion statistics, such
as the average number of particles on an orbital, or the total number of particles in the system.

The structure of the paper is as follows. In Section 2 we briefly summarize some of the math-
ematical notions that are needed in this paper. These concern partitions, Young diagrams and
symmetric functions. Section 3 deals with statistical and thermodynamic properties of n-paraboson
systems of order p. Due to a new character formula from representation theory, one has a general
formula for the grand partition function for such systems. We discuss this formula and some re-
lated statistical functions. In particular, we show how it simplifies for two special cases (identical
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energy levels, and equidistant energy levels). For these two special cases, relevant thermodynamic
properties are illustrated by plotting some distribution functions. In Section 4 the same analysis
is performed for an m-parafermion system of order p. Also here, a new formula for the grand par-
tition function can be used to derive statistical and thermodynamic properties. Due to these new
formulas, we can derive a remarkable connection between the GPF’s for paraboson and parafermion
systems, at least in one of the special cases (identical energy levels). This is given in Section 5,
where we also give some new alternative formulas for parastatistic systems with p = 2 or p = 3.
The paper ends with a short summary and some conclusions.

2 Preliminaries and definitions

We need some basic notions on partitions and symmetric functions, see [9] as a standard reference.
A partition λ = (λ1, λ2, . . . , λn) of weight |λ| and length ℓ(λ) ≤ n is a sequence of non-negative
integers satisfying the condition λ1 ≥ λ2 ≥ · · · ≥ λn, such that their sum is |λ|, and λi > 0 if and
only if i ≤ ℓ(λ). To each such partition there corresponds a Young diagram F λ consisting of |λ|
boxes z = (i, j) ∈ Z

2, arranged in ℓ(λ) left-adjusted rows of lengths λi for i = 1, 2, . . . , ℓ(λ). The
first coordinate i (the row index) increases as one goes downwards, and the second coordinate j
(the column index) increases as one goes from left to right. For example, the Young diagram of
λ = (5, 4, 4, 2) is given by

The conjugate partition λ′ corresponds to the Young diagram of λ reflected about the main diagonal.
In other words, λ′j is the length of column j of F λ. For the above example, λ′ = (4, 4, 3, 3, 1). For

each box z = (i, j) in F λ one defines the contents c(z) and the hook length h(z):

c(z) = j − i, h(z) = λi + λ′j − i− j + 1. (2.1)

An important notion is the Frobenius notation [9] of a partition λ. If F λ has r = r(λ) boxes on
the main diagonal, r is said to be the rank of λ. In the above example, r = 3, denoted by crosses
in the diagonal boxes:

×
×

×

The arm lengths ak = λk−k and leg lengths bk = λ′k−k (k = 1, . . . , r) refer to the remaining boxes
to the right or below the kth diagonal box, where a1 > a2 > · · · > ar ≥ 0 and b1 > b2 > · · · > br ≥ 0.
The Frobenius notation of λ is then

λ =

(
a1 a2 · · · ar
b1 b2 · · · br

)

.

Note that for our example we have λ =
(
4 2 1
3 2 0

)
.

Partitions are used to label symmetric polynomials in n independent variables x = (x1, x2, . . . , xn).
Of particular importance are the Schur polynomials [9] or S-functions sλ(x). There are various
ways to define Schur polynomials. For a partition λ with ℓ(λ) ≤ n, one has

sλ(x) =
det(x

λj+n−j
i )1≤i,j≤n

det(xn−j
i )1≤i,j≤n

. (2.2)
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If ℓ(λ) > n, one puts sλ(x) = 0. Clearly, for the zero partition λ = (0) (which is the only partition
with Frobenius rank r = 0) one has s(0)(x) = 1.

For symmetric polynomials in general, and for Schur polynomials in particular, there are many
interesting series or generating functions. A famous example is

∑

λ

sλ(x1, . . . , xn) =
∑

λ

sλ(x) =
1

∏n
i=1(1− xi)

∏

1≤j<k≤n(1− xjxk)
, (2.3)

due to Cauchy and Littlewood [10]. In the left hand side of (2.3), the (infinite) sum runs over the
set of all possible partitions λ. The right hand side can be interpreted as a generating function.

When the variables (x1, x2, . . . , xn) take a special form, the Schur polynomial simplifies. We
need two such simplifications in this paper. The first case is when all xi’s are equal, i.e. x1 = x2 =
· · · = xn = x. Then (see [9], p. 45)

sλ(x, · · · , x
︸ ︷︷ ︸

n times

) =
( ∏

(i,j)∈λ

n+ j − i

λi + λ′j − i− j + 1

)

x|λ| =
(∏

z∈λ

n+ c(z)

h(z)

)

x|λ|. (2.4)

The second case is when the consecutive ratios of the xi’s is constant, i.e. for x1 = x, x2 = qx, · · · ,
xi = qi−1x, · · · , xn = qn−1x (see [9], p. 44)

sλ(x, qx, · · · , q
n−1x) = qn(λ)

(∏

z∈λ

1− qn+c(z)

1− qh(z)

)

x|λ|, (2.5)

where
n(λ) =

∑

i≥1

(i− 1)λi.

3 Thermodymanic properties of paraboson systems

We will assume that the n-paraboson system of order p governed by (1.1)–(1.2) is in a thermal
and diffusive contact and in a thermal and diffusive equilibrium with a much bigger reservoir. We
denote by τ = kBT its (fundamental) temperature, by µi the chemical potential and by ǫi the
energy for the particles on orbital i. Then the grand partition function of the system is the sum
of the Gibbs factors with respect to all states of the system [11]. From the results in [2, 12–14]
it follows that the structure of the GPF for a system corresponding to quantum statistics based
on the permutation group and defined in terms of an algebra of creation a+i and annihilation a−i
(i = 1, 2, · · · , n) operators, is in general given by

Z(x1, x2, · · · , xn) =
∑

λ

′
sλ(x1, x2, · · · , xn), (3.1)

where the prime on the sum on the RHS of (3.1) indicates the possible restrictions on the partitions
λ and

xi = exp(
µi − ǫi
τ

). (3.2)

The GPF corresponding to a particular quantum statistics based on the permutation group is
obtained by specifying the restrictions in the RHS of (3.1).

For the n-paraboson system of order p the sum in (3.1) is for those partitions whose length l(λ)
is less than or equal to p

ZpB(n, p) =
∑

λ, l(λ)≤p

sλ(x1, x2, · · · , xn). (3.3)
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Surprisingly, proper forms of ZpB(n, p) as a generating function were not known so far, apart from
the trivial case p = 1 and p ≥ n [15–20], even though the cases 1 < p < n are the most interesting
for investigating thermodynamic properties of the system.

GPF’s of the form (3.3) consist of a sum over all possible states of the system (including mul-
tiplicities). Hence they are equal to the character of the corresponding Fock space V (p). These
spaces V (p) are representations of osp(1|2n), and their characters have been determined and an-
alyzed in [3]. Following that analysis, we are able to deduce generating functions of ZpB(n, p) for
the missing cases.

3.1 General GPF for n-paraboson systems

Using the character formulas for the paraboson Fock spaces of order p given in [3], one can
rewrite (3.3) in the following form:

ZpB(n, p) =
E(n;0,p)

∏

i(1− xi)
∏

j<k(1− xjxk)
, (3.4)

for any positive integer p. Herein, E(n;0,p) is a polynomial in the variables xi, hence (3.4) is a proper
generating function for the GPF. The explicit form of E(n;0,p) is given by

E(n;0,p) ≡ E(n;0,p)(x1, . . . , xn) =
∑

η

(−1)cηsη(x). (3.5)

Herein, the sum runs over all partitions η of the form

η =

(
a1 a2 · · · ar

a1 + p a2 + p · · · ar + p

)

(3.6)

in Frobenius notation, and
cη = a1 + a2 + · · ·+ ar + r. (3.7)

The subscript in E(n;0,p) refers to the fact that 0 is added at the top and p added at the bottom

of self-conjugate partitions

(
a1 · · · ar
a1 · · · ar

)

in (3.6). The number of variables x1, . . . , xn is finite,

thus the Schur polynomial sη(x) cancels when the length ℓ(η) > n, and therefore the expression
E(n;0,p) is also finite. As a simple example for n = 4 and p = 2,

E(4;0,2) = 1− s(1,1,1) + s(2,1,1,1) − s(2,2,2,2), (3.8)

with all Schur polynomials in four variables (x1, x2, x3, x4). For general n and p it is not so hard
to compute E(n;0,p), and one ends up with a finite alternating sum of Schur functions like in (3.8).

The finite sums E(n;0,p) simplify in some special cases, see [3]:

E(n;0,1) =
∏

1≤j<k≤n

(1− xjxk), (3.9)

E(n;0,n−1) = 1− x1x2 · · ·xn, (3.10)

E(n;0,p) = 1, for p ≥ n. (3.11)

The first special case p = 1 corresponds to the grand partition function for ordinary bosons:

ZpB(n, 1) =
1

∏

i(1− xi)
. (3.12)
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The third special case yields

ZpB(n, p) =
1

∏

i(1− xi)
∏

j<k(1− xjxk)
for p ≥ n (3.13)

and this is also one of the known cases [17]. The second special case p = n−1 gives a new interesting
expression

ZpB(n, n− 1) =
(1− x1x2 · · ·xn)

∏

i(1− xi)
∏

j<k(1− xjxk)
. (3.14)

When a grand partition function Z = Z(x1, . . . , xn) for a system is known, many thermodynamic
functions such as entropy, heat capacity, particle distributions . . . can be computed from Z [11].
Here, we will be dealing with the average number of particles l̄i on the ith orbital and the average
number of particles N̄ in the system, given by the following general formulas [11]:

l̄i = xi∂xi
(lnZ), (3.15)

N̄ =
n∑

i=1

xi∂xi
(lnZ). (3.16)

Applying these general formulas for the n-paraboson system of order p, one finds the following
expressions:

• For p ≥ n (3.13) and (3.15)–(3.16) give

l̄i =
xi

1− xi
+

n∑

j=1
j 6=i

xixj
1− xixj

, N̄ =
n∑

i=1

xi
1− xi

+ 2
n∑

j<i

xixj
1− xixj

. (3.17)

• For p = 1, the case (3.12) of ordinary bosons:

l̄i =
xi

1− xi
, N̄ =

n∑

i=1

xi
1− xi

. (3.18)

• For p = n− 1, using (3.14):

l̄i =
xi

1− xi
+

n∑

j=1
j 6=i

xixj
1− xixj

−
x1x2 · · ·xn

1− x1x2 · · ·xn
,

N̄ =
n∑

i=1

xi
1− xi

+ 2
n∑

j<i

xixj
1− xixj

−
nx1x2 · · ·xn

1− x1x2 · · ·xn
. (3.19)

For the remaining cases p ∈ {2, 3, . . . , n−2} not much simplifications take place, and the expressions
still contain E(n;0,p):

l̄i =
xi

1− xi
+

n∑

j=1
j 6=i

xixj
1− xixj

+
xi

E(n;0,p)

∂E(n;0,p)

∂xi
,

N̄ =
n∑

i=1

xi
1− xi

+ 2
n∑

j<i

xixj
1− xixj

+
n∑

i=1

xi
E(n;0,p)

∂E(n;0,p)

∂xi
. (3.20)

In the following subsections we shall consider two special cases where the GPF and the ther-
modynamic functions simplify.
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3.2 n-paraboson systems with identical energy levels

Let us consider the case when all orbitals have the same energy, and let us furthermore assume
that they also have the same chemical potential, i.e. µ1 = µ2 = · · · = µn = µ. Therefore x1 = x2 =
· · · = xn = x, with

x = exp(
µ− ǫ

τ
). (3.21)

The thermodynamic functions for this example follow from the above considered formulas, under
the specification xi = x (i = 1, . . . , n). It will be convenient to use the notation Z̆ and Ĕ(n;0,p) for
this:

Z̆pB(n, p) = ZpB(n, p)|xi=x, Ĕ(n;0,p) = E(n;0,p)(x, x, . . . , x). (3.22)

Observe that thanks to (2.4), the expressions for Ĕ(n;0,p) simplify drastically. For instance, following
the earlier example (3.8), one has

Ĕ(4;0,2) = 1− 4x3 + 4x5 − x8, (3.23)

and thus

Z̆pB(4, 2) =
1− 4x3 + 4x5 − x8

(1− x)4(1− x2)6
. (3.24)

As more general examples, we mention:

• For p ≥ n:

Z̆pB(n, p) =
1

(1− x)n(1− x2)n(n−1)/2
, (3.25)

l̄i =
x

1− x
+

(n− 1)x2

1− x2
, N̄ =

nx(1 + nx)

1− x2
. (3.26)

• For p = 1 (bosons):

Z̆pB(n, 1) =
1

(1− x)n
, l̄i =

x

1− x
, N̄ =

nx

1− x
. (3.27)

• For p = n− 1:

Z̆pB(n, n− 1) =
1− xn

(1− x)n(1− x2)n(n−1)/2
, (3.28)

l̄i =
x(1 + nx)

1− x2
−

xn

1− xn
, N̄ =

nx(1 + nx)

1− x2
−

nxn

1− xn
. (3.29)

Let us consider in more detail the dependence on the energy of the average number of particles
in the system, i.e. the distribution function. We will denote N̄ as N̄(n, p) to specify that we are
dealing with an n-paraboson system of order p. In particular we want to examine the behavior of
N̄(n, p) for different values of p. In such a context, it is common to take as variable

y =
ǫ− µ

τ
, (3.30)

which is the orbital energy in units of τ ; hence we have x = exp(−y). In Figure 1 we plot N̄(n = 4, p)
for p = 1, 2, 3, 4, 5, . . .. The lowest curve is for p = 1 and yields the Bose distribution function.
The curve for p = 2 is higher, then follow the curves for p = 3 and p = 4. The curves for p > 4
coincide with that of p = 4, following (3.26). So compared to an n-boson system, for a fixed energy
the average number of particles for an n-paraboson system with p > 1 is higher and increases as p
increases.
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3.3 n-paraboson systems with equidistant energy levels

The next interesting case to consider is when the orbitals have equidistant energies ǫi. Let the gap
between the different energy levels be ∆ > 0. Then

ǫi = ǫ1 + (i− 1)∆ (i = 1, 2, . . . , n). (3.31)

We also assume that µ1 = µ2 = · · · = µn = µ. Under these conditions the different orbitals
correspond to different energy levels. According to notation (3.2), we have

xi = exp

(
µ− ǫi
τ

)

= exp

(
µ− ǫ1
τ

)

exp

(

−
∆

τ

)i−1

= xqi−1, (3.32)

where we have used

x = x1 = exp

(
µ− ǫ1
τ

)

and q = exp

(

−
∆

τ

)

. (3.33)

Under the specialization (3.32) and (3.33) the GPF’s and the average number of particles l̄i on the
ith orbital can again be simplified. We will now use a different notation for the specializations:

Z̃pB(n, p) = ZpB(n, p)|xi=xqi−1 , Ẽ(n;0,p) = E(n;0,p)(x, qx, q
2x, . . . , qn−1x). (3.34)

Using (2.5), the expressions for Ẽ(n;0,p) again simplify a lot. For our earlier example (3.8), one finds

Ẽ(4;0,2) = 1− q3(1 + q + q2 + q3)x3 + q6(1 + q + q2 + q3)x5 − q12x8. (3.35)

and thus

Z̃pB(4, 2) =
1− q3(1 + q + q2 + q3)x3 + q6(1 + q + q2 + q3)x5 − q12x8

∏4
i=1(1− xqi−1)

∏

1≤j<k≤4(1− x2qj+k−2)
. (3.36)

As before, let us also list some general examples:

• For p ≥ n:

Z̃pB(n, p) =
1

∏n
i=1(1− xqi−1)

∏

j<k(1− x2qj+k−2)
, (3.37)

l̄i =
xqi−1

1− xqi−1
+ x2

n+i−2∑

j=i−1
j 6=2i−2

qj

1− x2qj
. (3.38)

• For p = 1 (bosons):

Z̃pB(n, 1) =
1

∏n
i=1(1− xqi−1)

, l̄i =
xqi−1

1− xqi−1
. (3.39)

• For p = n− 1:

Z̃pB(n, n− 1) =
1− xnqn(n−1)/2

∏n
i=1(1− xqi−1)

∏

j<k(1− x2qj+k−2)
, (3.40)

l̄i =
xqi−1

1− xqi−1
+ x2

n+i−2∑

j=i−1
j 6=2i−2

qj

1− x2qj
−

xnqn(n−1)/2

1− xnqn(n−1)/2
. (3.41)
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Let us investigate the behavior of the average number of particles on orbital i as a function of
the energy gap ∆. This is illustrated in Figure 2, where the “population” of the orbitals l̄i (p = 5,
n = 5 and i = 1, 2, 3, 4, 5) is given as a function q = exp(−∆/τ) (and for a chosen fixed value of
x; here x = exp(−0.5)). Clearly, as i increases, l̄i decreases. So, the “population” of the orbitals
depends on their level i. If q = exp(−∆/τ) << 1, i.e. for large gaps between the energy levels or
for very low temperature, the particles are primarily found on the first orbital, i.e. the one with
the lowest energy. For any value of q (0 < q < 1) one has l̄1 > l̄2 > l̄3 > l̄4 > l̄5. For small values
of q, l̄1 is large and the other average occupation numbers close to zero. The averages on the other
orbitals become larger when q increases.

4 Thermodynamic properties of parafermion systems

The study of the GPF and of thermodynamic properties of parafermion statistics is similar, and
we shall give less details than in the paraboson case. Consider an m-parafermion system of or-
der p (1.3)-(1.4). For such systems, the GPF is of type (3.1) with the sum restricted to partitions
λ for which λ1 ≤ p [17–19], namely

ZpF(m, p) =
∑

λ, ℓ(λ′)≤p

sλ(x1, x2, · · · , xm). (4.1)

Contrary to the paraboson case, this is a finite sum, so the GPF is already in proper form. However,
it will be useful to develop an alternative expression for ZpF(m, p). Since the GPF is again equal
to the character of the corresponding Fock space W (p), we can use the character formula given
in [21] or [22]. One finds for any positive integer p,

ZpF(m, p) =
E(m;p,0)

∏

i(1− xi)
∏

j<k(1− xjxk)
, (4.2)

where
E(m;p,0) =

∑

µ

(−1)dµsµ(x), (4.3)

with the sum over all partitions µ of the form

µ =

(
b1 + p b2 + p · · · br + p
b1 b2 · · · br

)

(4.4)

in Frobenius notation, and
dµ = b1 + b2 + · · ·+ br + r. (4.5)

Without going into the details of the theory, let us mention that for p = 1 the expression (4.3)
simplifies,

E(m;1,0) =
m∏

i=1

(1− x2i )
∏

1≤j<k≤m

(1− xjxk) (4.6)

and thus

ZpF(m, 1) =
m∏

i=1

(1 + xi), (4.7)

which is the GPF for an ordinary m-fermion system.
Let us next turn to the thermodynamic functions, the average number of particles l̄i on the

ith orbital and the average number of particles N̄ in the system. The general formulas follow
from (3.15)–(3.16), applied to the current GPF (4.1) or (4.2) and will not be displayed in detail.
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To describe some properties of these thermodynamic functions, let us as before consider two
special situations.

First, consider the m-parafermion system of order p with identical energy levels. As in subsec-
tion 3.2, all orbitals have the same energy and the same chemical potential, thus x1 = · · · = xm = x.
Under this specialization, the GPF and E(m;p,0) will be denoted by Z̆ and Ĕ(m;p,0):

Z̆pF(m, p) = ZpF(m, p)|xi=x, Ĕ(m;p,0) = E(m;p,0)(x, x, . . . , x). (4.8)

When all xi’s are equal, the distribution l̄i is independent of i. As a generic example, we plot
the distribution functions l̄i for the case m = 4 and for p = 1, 2, 3, 4, 5 in Figure 3 (as before, the
variable is y as in (3.30)). Note that the average number of particles on the ith orbital, l̄i, does not
exceed p – the order of the statistics, which confirms the Pauli principle for parafermion statistics.
For p = 1, the distribution function coincides with the Fermi-Dirac distribution.

Secondly, consider the m-parafermion system of order p with equidistant energy levels for the
m orbitals. Following the notation of subsection 3.3, the energy gap is ∆, the orbital energies
ǫi = ǫ1 + (i− 1)∆, µ1 = µ2 = · · · = µm = µ and xi = xqi−1 with x and q given in (3.33). We will
use the following notation for the specializations:

Z̃pF(m, p) = ZpF(m, p)|xi=xqi−1 , Ẽ(m;p,0) = E(m;p,0)(x, qx, q
2x, . . . , qm−1x). (4.9)

The behavior of the average number of particles on orbital i as a function of the energy gap ∆
is illustrated in Figure 4. We plot again the “population” of the orbitals l̄i (p = 5, m = 5 and
i = 1, 2, 3, 4, 5) as a function q = exp(−∆/τ) (and for a fixed value x = exp(−0.5)). The phenomena
are comparable to the paraboson case with equidistant energy levels. For any value of q (0 < q < 1)
one has l̄1 > l̄2 > l̄3 > l̄4 > l̄5. For small values of q, l̄1 is large and the other average occupation
numbers small. The averages on the other orbitals become larger when q increases.

5 Remarkable properties of GPF’s for paraboson and parafermion

systems

In the case of identical energy levels there is a significant relation between the GPF of a paraboson
system and the GPF of a parafermion system. For this, notice that

Ĕ(n;0,p) = E(n;0,p)(x, x, . . . , x) =
∑

η

(−1)cηsη(x, x, . . . , x), (5.1)

where the sum runs over partitions with Frobenius form (3.6), whereas

Ĕ(m;p,0) = E(m;p,0)(x, x, . . . , x) =
∑

µ

(−1)dµsµ(x, x, . . . , x), (5.2)

where the sum now runs over partitions with Frobenius form (4.4). The partitions appearing in
these two sums are conjugate to each other, and from (2.4) it is clear that

sλ(x, · · · , x) = sλ′(x, x, · · · , x), (5.3)

provided the number of x’s in the left hand side is N + ℓ(λ) and the number of x’s in the right
hand side is N + ℓ(λ′) (for any non-negative integer N). Using furthermore sλ(x1, x2, . . . , xk) = 0
for ℓ(λ) > k, one deduces:

Ĕ(n;0,p) = Ĕ(n+p;p,0). (5.4)
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Since

Z̆pB(n, p) =
Ĕ(n;0,p)

(1− x)n(1− x2)n(n−1)/2
, (5.5)

Z̆pF(m, p) =
Ĕ(m;p,0)

(1− x)m(1− x2)m(m−1)/2
, (5.6)

one finds the following remarkable relation:

Z̆pB(n, p) =
Z̆pF(n− p, p)

(1− x)p(1− x2)np−p(p+1)/2
, for p = 1, 2, . . . , n (5.7)

(p = n can formally be included as ZpF(0, p) = 1). This is a surprising result: the GPF for a
paraboson system can be computed from that of a parafermion system (in the case of identical
energy levels). The same then holds for the thermodynamic functions in this situation.

Let us next turn to some special values for p. For p = 2 one computes, e.g. from (4.1), using (2.4):

Z̆pF(1, 2) = 1 + x+ x2,

Z̆pF(2, 2) = 1 + 2x+ 4x2 + 2x3 + x4,

Z̆pF(3, 2) = 1 + 3x+ 9x2 + 9x3 + 9x4 + 3x5 + x6,

Z̆pF(4, 2) = 1 + 4x+ 16x2 + 24x3 + 36x4 + 24x5 + 16x6 + 4x7 + x8,

Z̆pF(5, 2) = 1 + 5x+ 25x2 + 50x3 + 100x4 + 100x5 + 100x6 + 50x7 + 25x8 + 5x9 + x10.

It is not difficult to see that there is a general formula for p = 2, although it falls outside the scope
of this paper to prove this:

Z̆pF(m, 2) =
m∑

k=1

(
m

k

)2

x2k +
m∑

k=1

(
m

k

)(
m

k − 1

)

x2k−1. (5.8)

We have obtained a similar general result for p = 3, which we just mention here:

Z̆pF(m, 3) =
1

m+ 2
(1 + x)m

(
m∑

k=0

(
m

k

)(
m+ 2

k + 1

)

x2k

)

. (5.9)

So far, we have not been able to find such alternative expressions for p ≥ 4. Note, by the way,
that the above formulas are confirmed by substituting x = 1 and comparing with the dimension
formulas for the m-parafermion Fock spaces [4, eq. (3.11)]:

dimW (2) =
1

2

(
2m+ 2

m+ 1

)

, dimW (3) =
2m

m+ 2

(
2m+ 2

m+ 1

)

. (5.10)

6 Conclusions

Parastatistics was proposed many years ago as an extension of ordinary Bose-Einstein or Fermi-
Dirac statistics, and depends on the introduction of an integer parameter p called the order of
statistics. Paraboson and parafermion systems of order p = 1 just coincide with boson and fermion
systems, but for p > 1 the behaviour of the systems is different.

Parastatistics was studied by many people, but a complete account of statistical and thermo-
dynamic properties of paraboson and parafermion systems of order p was never given (even though
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many special cases have been published). The reason for this is that a general grand partition
function was not known, at least not in a form that can be used to compute such properties.

Over the last couple of years, there have been many mathematical developments that shed a
new light on this topic. In particular, new forms of the character of paraboson and parafermion
Fock spaces were obtained [3,4,21]. This allows the presentation of new and interesting expressions
for the corresponding grand partition functions, given in this paper. Using these grand partition
functions for n-paraboson systems and m-parafermion systems of order p, we have computed and
discussed some thermodynamic properties of these systems, such as the average number of particles
and orbital distributions.

Two specific cases have been considered in further detail. The case with identical energy
levels per orbital leads to simplifications of the thermodynamic functions, and the corresponding
distribution functions are reminiscent of the Bose-Einstein (for paraboson systems) and Fermi–Dirac
(for parafermion systems) distributions. But there are also some striking differences, as illustrated
e.g. in Figures 1 and 3. The second specific case, with equidistant energy levels, also yields some
interesting physical interpretations, e.g. concerning the orbital distribution (see Figures 2 and 4).

One of our significant results is the relation between the GPF of n-paraboson systems of order
p and the GPF of (n − p)-parafermion systems of order p (in the case of identical energy levels).
Such a relation could be established only due to the new forms of these GPF’s. Another outcome
are the closed form expressions for these GPF’s for p = 2 and p = 3. We consider the last as an
interesting result as paraparticles of order p = 2 are recognized as candidates to be associated with
dark matter and/or dark energy [5].
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Figure 1: Graphs of the average number of particles N̄(n, p) in terms of the variable y = (ǫ−µ)/τ ,
for fixed n = 4, and p = 1, 2, 3, 4, 5, . . ., for the n-paraboson system of order p, in the case where
the n energy levels are equal. The graph of N̄(4, 1) is the closest to the y-axis, then N̄(4, 2), etc.
The Bose-Einstein distribution coincides with N̄(4, 1).
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Figure 2: Graphs of the average number of particles l̄i on orbital i, as a function of q (i.e. depending
on the energy gap). The plot is for an n-paraboson system of order p, with n = 5 and p = 5. The
graph of l̄i is indicated by i (i = 1, 2, 3, 4, 5).
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Figure 3: Graphs of the average number of particles l̄i on orbital i, in terms of the variable
y = (ǫ − µ)/τ , for fixed m = 4, and p = 1, 2, 3, 4, 5, for the m-parafermion system of order p, in
the case where the m energy levels are equal (and thus l̄i does not depend on i). The Fermi-Dirac
distribution coincides with p = 1.
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Figure 4: Graphs of the average number of particles l̄i on orbital i, as a function of q (i.e. depending
on the energy gap). The plot is for an m-parafermion system of order p, with m = 5 and p = 5.
The graph of l̄i is indicated by i (i = 1, 2, 3, 4, 5).
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