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The great clinical significance of biofilm-associated infections and their inherent
recalcitrance to antibiotic treatment urgently demand the development of novel
antibiofilm strategies. In this regard, antimicrobial peptides (AMPs) are increasingly
recognized as a promising template for the development of antibiofilm drugs. Indeed,
owing to their main mechanism of action, which relies on the permeabilization of
bacterial membranes, AMPs exhibit a strong antimicrobial activity also against multidrug-
resistant bacteria and slow-growing or dormant biofilm-forming cells and are less prone
to induce resistance compared to current antibiotics. Furthermore, the antimicrobial
potency of AMPs can be highly increased by combining them with conventional
(antibiotics) as well as unconventional bioactive molecules. Combination treatments
appear particularly attractive in the case of biofilms since the heterogeneous nature
of these microbial communities requires to target cells in different metabolic states (e.g.,
actively growing cells, dormant cells) and environmental conditions (e.g., acidic pH,
lack of oxygen or nutrients). Therefore, the combination of different bioactive molecules
acting against distinct biofilm components has the potential to facilitate biofilm control
and/or eradication. The aim of this review is to highlight the most promising combination
strategies developed so far to enhance the therapeutic potential of AMPs against
bacterial biofilms. The rationale behind and beneficial outcomes of using AMPs in
combination with conventional antibiotics, compounds capable of disaggregating the
extracellular matrix, inhibitors of signaling pathways involved in biofilm formation (i.e.,
quorum sensing), and other peptide-based molecules will be presented and discussed.

Keywords: antimicrobial peptides, bacterial biofilms, combination therapies, antibiofilm strategies, synergistic
interactions

INTRODUCTION

Over the last years, growing efforts have been devoted to the identification of novel therapeutic
strategies capable of coping with biofilm-associated infections. Indeed, bacteria organized in
biofilm display a dramatically reduced susceptibility (up to 1000 times) to conventional antibiotics
compared to their planktonic counterparts, causing a high rate of treatment failure and persistence

Abbreviations: AHLs, N-acyl homoserine lactones; AI-2, autoinducer-2; AMPs, antimicrobial peptides; BLSs, biofilm-like
structures; CRAMP, cathelicidin-related antimicrobial peptides; DHBA, 2,3-dihydroxybenzoic acid; eDNA, extracellular
DNA; EDTA, ethylenediaminetetraacetic acid; EPS, extracellular polymeric substances; FLIP7, fly larvae immune peptides
7; GS, gramicidin S; hBD, human β-defensin; LPS, lipopolysaccharide; NO, nitric oxide; PIA, polysaccharide intercellular
adhesin; PMB, polymyxin B; QS, quorum sensing; QSIs, quorum sensing inhibitors; RIP, RNA III-inhibiting peptide; 1Tb,
temporin 1Tb.
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of many types of infections (e.g., lung infections in cystic fibrosis
patients, wound infections, biomaterial-associated infections)
(Parsek and Singh, 2003). Several mechanisms are responsible
for the enhanced antibiotic-tolerance of biofilms including: (i)
reduced diffusion or sequestration of antimicrobials through the
biofilm extracellular matrix; (ii) presence of slow-growing and
even dormant cells (“persisters”) highly refractory to the action
of antibiotics targeting bacterial metabolism; (iii) exchange of
mobile genetic elements encoding resistance determinants due to
cell vicinity (Høiby et al., 2010; Lebeaux et al., 2014).

The use of AMPs as novel antibiofilm agents holds
considerable promise and represents an increasingly explored
research area (Di Luca et al., 2015). As substantial components
of the innate immunity, AMPs are widely distributed throughout
the microbial, animal, and plant kingdoms. The majority of
AMPs are short (12–50 amino acids), cationic, and amphipathic
molecules endowed with a bacterial membrane-perturbing
mechanism of action. Due to the low specificity of their
molecular target, AMPs exhibit a broad-spectrum of activity,
reduced propensity to induce resistance and high potential
to target metabolically dormant cells (Batoni et al., 2016;
Grassi et al., 2017a). Several studies have demonstrated the
ability of AMPs to interfere with various stages of biofilm
formation by preventing the initial adhesion of bacterial cells
to surfaces, by targeting planktonic cells before they enter into
the biofilm structure or by destroying mature biofilms through
the detachment and/or killing of biofilm-embedded bacteria
(Segev-Zarko et al., 2015). Many tested AMPs have been shown
to be more effective in inhibiting the early phases of biofilm
development than in eradicating established biofilms. This is
partially due to the multiple interactions that such molecules
may establish with components of the extracellular matrix that
surrounds and protects cells in mature biofilms (e.g., DNA,
polysaccharides, proteins) (Batoni et al., 2016). To improve the
antibiofilm properties of AMPs, current focus is on combining
them with conventional antibiotics and/or other antimicrobial
compounds (Pletzer et al., 2016; Walkenhorst, 2016). Indeed,
the identification of synergistic (peptide-based) combinations
has the potential to decrease the effective concentration of
the active molecules and to extend their spectrum of action,
thereby reducing possible toxic side effects and the spread of
resistance, often linked to monotherapy regimens (Walkenhorst,
2016). In addition to these general advantages, the use of
combination therapies seems to be particularly indicated in the
case of biofilms as their complex architecture requires to target
cells in different metabolic states and environmental conditions
(Batoni et al., 2016). The present article provides a global
overview of the most encouraging AMP-based combinations
against biofilms and the possible mechanisms of the synergistic
action. Particular attention is focused on combinatorial strategies
involving the use of AMPs with: (i) conventional antibiotics, (ii)
compounds capable of disaggregating the biofilm extracellular
matrix or inhibiting its synthesis, (iii) inhibitors of QS and/or
other signaling pathways implicated in biofilm formation, and
(iv) other AMPs and/or peptide-based molecules. Examples of
combinations involving the use of AMPs in conjunction with
other compounds against bacterial biofilms are reported in

Table 1, while putative mechanisms of synergism are illustrated
in Figure 1.

COMBINATION OF AMPs WITH
CONVENTIONAL ANTIBIOTICS

A large body of evidence highlighted the beneficial effect of
using AMPs in conjunction with conventional antibiotics, often
leading to enhanced activity against multidrug-resistant strains
and expanded spectrum of action of antibiotics (Maisetta et al.,
2009; Wakabayashi et al., 2009; Gopal et al., 2014; Mishra et al.,
2015; Ribeiro et al., 2015; Rudilla et al., 2016) (Table 1).

Promotion of Antibiotic Uptake by AMPs
Mishra et al. (2015) have recently succeeded in extending
the spectrum of vancomycin toward Gram-negative bacteria
through the covalent linkage of the antibiotic with a cathelicidin-
related antimicrobial peptides (CRAMP). Due to its ability to
translocate across the outer membrane, it is likely that CRAMP
functioned as a carrier peptide for the transfer of vancomycin into
the periplasm of Gram-negative bacteria (Figure 1A). Beyond
this peculiar synergistic effect, it is commonly recognized that
perturbation of bacterial membranes caused by AMPs plays a
key role in enhancing the intracellular uptake and efficacy of
numerous antibiotics (Dosler and Mataraci, 2013; Mohamed
et al., 2016) (Figure 1B). In this regard, co-administration
of tobramycin and the chimeric peptide G10KHc has proved
effective against biofilms of Pseudomonas aeruginosa, resulting
in a nearly 10,000-fold increase in the bactericidal activity of the
antibiotic. G10KHc was demonstrated to mediate internalization
of a small-molecule dye (propidium iodide) providing strong
evidence that sublethal doses of the peptide could promote
the uptake of small molecules, such as tobramycin, into
P. aeruginosa cells by inducing membrane damage (Eckert
et al., 2006). Similarly, the enhancing effect of the cathelicidin
BMAP-28 on vancomycin activity observed against Gram-
positive cocci has been attributed to the increased access of
the antibiotic through the cytoplasmic membrane. Interestingly,
the use of peptide-coated ureteral stents in combination
with intraperitoneal vancomycin resulted in reduced biofilm
formation by Staphylococcus aureus and Enterococcus faecalis
in a rat model of urinary infection, suggesting that AMP-
based combinations may represent new opportunities for the
prevention of implant-associated infections (Orlando et al.,
2008).

AMP Potentiation of Antibiotics by
Interfering with Signaling Pathways
Involved in Biofilm Formation
In addition to facilitating antibiotic uptake, some AMPs have
been found to potentiate the antibiofilm activity of currently
available antibiotics by interfering with signaling molecules that
are involved in biofilm formation and maintenance (Figure 1C).
In this regard, de la Fuente-Nuñez et al. (2014, 2015) have
designed three optimized antibiofilm peptides (i.e., IDR-1018,
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TABLE 1 | Antibiofilm combination strategies involving AMPs or peptide-based molecules.

Peptide(s) Combined compound(s) Bacterial specie(s) Proposed mechanism Reference

BMAP-28 Vancomycin Enterococcus faecalis,
Staphylococcus aureus

AMP-mediated uptake Orlando et al., 2008

CRAMP Vancomycin Salmonella enterica serovar
Typhimurium

AMP-mediated uptake Mishra et al., 2015

G10KHc Tobramycin Pseudomonas aeruginosa AMP-mediated uptake Eckert et al., 2006

DJK-5 and DJK-6 Ciprofloxacin, ceftazidime,
tobramycin

Acinetobacter baumannii, Klebsiella
pneumoniae, Escherichia coli,
Pseudomonas aeruginosa

Degradation of (p)ppGpp de la Fuente-Nuñez et al., 2015

IDR-1018 Ciprofloxacin Pseudomonas aeruginosa Degradation of (p)ppGpp Reffuveille et al., 2014

AMP38 Imipenem Pseudomonas aeruginosa – Rudilla et al., 2016

DJK-6 Imipenem, meropenem Klebsiella pneumoniae – Ribeiro et al., 2015

HPMA Ciprofloxacin Acinetobacter baumannii – Gopal et al., 2014

Lactoferrin Ciprofloxacin Porphyromonas gingivalis – Wakabayashi et al., 2009

Nisin Penicillin Enterococcus faecalis – Tong et al., 2014

Tachyplesin III Piperacillin/tazobactam Pseudomonas aeruginosa – Minardi et al., 2007

Nisin DHBA Staphylococcus aureus Inhibition of PIA synthesis Ahire and Dicks, 2015

Temporin 1Tb L-cysteine Staphylococcus epidermidis Inhibition of PIA synthesis Maisetta et al., 2016

Human β-defensin-3 DNase I Haemophilus influenzae Matrix degradation Jones et al., 2013

KSL-W Dispersin B Acinetobacter baumanii, Klebsiella
pneumoniae, Staphylococcus
aureus, Staphylococcus
epidermidis

Matrix degradation Gawande et al., 2014

TN-5 Alginate lyase Pseudomonas aeruginosa Matrix degradation Bahar et al., 2015

Temporin 1Tb EDTA Staphylococcus epidermidis Matrix destabilization Maisetta et al., 2016

TB_KKG6A and TB_L1FK EDTA Pseudomonas aeruginosa,
Staphylococcus aureus

Matrix destabilization; cell
wall perturbation

Grassi et al., 2017b

Human β-defensin-2 Nitric oxide Pseudomonas aeruginosa Biofilm dispersal Ren et al., 2016

Daptomycin FS3 Staphylococcus aureus Inhibition of quorum
sensing

Cirioni et al., 2013

DD13 RNA III-inhibiting peptide Staphylococcus aureus,
Staphylococcus epidermidis

Inhibition of quorum
sensing

Balaban et al., 2004

Gramicidin S Polymyxin B (PMB) Pseudomonas aeruginosa PMB-mediated
translocation through the
outer membrane

Berditsch et al., 2015

Citropin 1.1, temporin A,
analog of tachyplesin I

Colistin Pseudomonas aeruginosa,
Staphylococcus aureus

– Jorge et al., 2017

Nisin Colistin, polymyxin B Pseudomonas aeruginosa – Field et al., 2016

DJK-5, and DJK-6) capable of degrading the stress-related
signaling nucleotide (p)ppGpp. The effect of such peptides on
(p)ppGpp levels substantially increased the ability of several
antibiotics to inhibit biofilm formation and treat mature biofilms
formed by multidrug-resistant pathogens, reducing the effective
antibiotic concentrations up to 64 times (Reffuveille et al., 2014;
de la Fuente-Nuñez et al., 2015). Surprisingly, the antibiofilm
peptide DJK-6 displayed strong synergy with carbapenems
also against biofilms of carbapenemase-producing Klebsiella
pneumoniae, highlighting the usefulness of AMPs in repurposing
conventional antibiotics (Ribeiro et al., 2015).

COMBINATION OF AMPs WITH
ANTI-MATRIX COMPOUNDS

Biofilm bacteria are enclosed in a self-produced extracellular
matrix constituted by a complex mixture of extracellular

polymeric substances (EPS). EPS components, such as
exopolysaccharides, exoproteins, and extracellular DNA
(eDNA), mediate cell-to-cell and cell-to-surface connections,
playing a crucial role in biofilm formation and stabilization.
In addition, they create a physical barrier that protects
biofilm cells against host immune system and antimicrobial
agents (Flemming and Wingender, 2010). Electrostatic
repulsion and sequestration by matrix polymers have been
demonstrated to decrease the bioavailability of AMPs and
to reduce their antibiofilm potential (Batoni et al., 2016).
Nevertheless, several studies have succeeded in potentiating
the antibiofilm activity of AMPs by combining them with
compounds capable of inhibiting the synthesis of EPS
components in forming biofilms (Table 1 and Figure 1D)
and/or promoting matrix disaggregation in preformed biofilms
(Table 1 and Figure 1E) (Fleming and Rumbaugh, 2017). Specific
examples of these combinations are provided in the following
paragraphs.
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FIGURE 1 | Possible mechanisms of the synergistic activity of AMP-based combinations against bacterial biofilms. AMPs can potentiate the antibiofilm effect of
conventional antibiotic by: (A) extending antibiotic spectrum of action; (B) promoting antibiotic intracellular uptake through membrane destabilization; (C) interfering
with signaling molecules involved in biofilm formation. Compounds able to target the biofilm EPS can potentiate AMP activity by: (D) inhibiting matrix production in
forming biofilms; (E) causing matrix disaggregation in preformed biofilms. (F) QSIs can facilitate the killing of early surface-colonizing bacteria by AMPs by interfering
with signaling molecules implicated in biofilm formation. (G) AMPs may synergize with other AMPs with mechanisms still largely unknown. MI, matrix inhibitor; QSI,
quorum sensing inhibitor. Dashed lines indicate killing of bacteria or inhibition/disaggregation of biofilm matrix.

Combination of AMPs with
Matrix-Inhibiting Compounds
Inhibition of extracellular matrix biosynthesis may positively
influence the antibiofilm effect of AMPs by favoring their
interaction with bacterial cells prior to bacterial incorporation
into the protective EPS (Figure 1D).

Sulfhydryl Compounds
Treatment of forming biofilms of S. aureus with sulfhydryl
compounds (e.g., dithiothreitol, β-mercaptoethanol, L-cysteine)
has proved to reduce the production of the PIA, a major
component of staphylococcal EPS involved in intercellular
aggregation during biofilm formation. The proposed mechanism
of action was the downregulation of the ica operon that
encodes essential enzymes for PIA biosynthesis (Wu et al.,
2011). The matrix-inhibiting effect of L-cysteine has been recently
exploited to enhance the efficacy of the frog skin-derived peptide
temporin 1Tb (1Tb) against forming biofilms of Staphylococcus
epidermidis. The combination demonstrated a striking ability
to reduce the total biofilm biomass of a PIA-positive strain of
S. epidermidis at levels much higher than L-cysteine or 1Tb used
alone (Maisetta et al., 2016).

Iron Chelators
Iron chelators have also been reported to prevent biofilm
formation by staphylococci by reducing PIA biosynthesis

(Lin et al., 2012). Chelation of iron by 2,3-dihydroxybenzoic acid
(DHBA) has been demonstrated to prevent S. aureus from
forming a stable biofilm and to promote the bactericidal activity
of the bacteriocin nisin against planktonic cells prior to their
aggregation. Furthermore, incorporation of nisin and DHBA
into polymeric nanofibers has proved to be a suitable approach
to ensure a long-lasting inhibitory effect against S. aureus and
prevent chronic wound infections (Ahire and Dicks, 2015).

Combination of AMPs with
Matrix-Disaggregating Compounds
Dispersal of preformed biofilms by matrix-disaggregating
compounds represents another valuable approach to facilitate the
targeting of biofilm-associated bacteria by AMPs (Figure 1E).
Combining matrix disassembly with the bactericidal action of
AMPs has the potential not only to facilitate the killing of biofilm-
detaching cells but also to avoid their dispersal to other sites with
consequent risk of secondary or systemic infections.

Matrix-Degrading Enzymes
Various classes of matrix-degrading enzymes (e.g., proteases,
deoxyribonucleases, glycoside hydrolases) have displayed a
remarkable ability to disperse preformed biofilms of multiple
bacterial species (Chaignon et al., 2007; Kaplan, 2010). The
use of DNAse I has been reported to enhance the ability of
the human β-defensin-3 (hBD-3) both in preventing biofilm

Frontiers in Microbiology | www.frontiersin.org 4 December 2017 | Volume 8 | Article 2409

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02409 December 5, 2017 Time: 16:46 # 5

Grassi et al. Combinations Enhancing AMP-Efficacy against Biofilms

formation of non-typeable Haemophilus influenzae and in killing
biofilm-associated cells, highlighting the effectiveness of the
enzyme in favoring peptide diffusion through the disassembled
matrix (Jones et al., 2013). Analogously, degradation of
matrix polysaccharides with dispersin B, a β-N-acetyl-
glucosaminidase produced by the periodontal pathogen
Aggregatibacter actinomycetemcomitans, has been shown to
enhance the susceptibility of biofilm-forming bacteria to the
synthetic peptide KSL-W. When formulated as a wound gel, the
combination peptide-dispersin B exhibited strong synergism
against mature biofilms of methicillin-resistant S. aureus,
S. epidermidis, K. pneumonia, and Acinetobacter baumannii,
suggesting its possible application in the treatment of chronic
wound infections (Gawande et al., 2014).

Chelating Agents
Another dispersal strategy consists in the use of molecules
capable of physically destabilizing the biofilm matrix structure,
such as the chelating agent EDTA (Lebeaux et al., 2015). In
this regard, we have recently reported that the sequestration
of matrix-stabilizing ions (e.g., magnesium, calcium) by EDTA
is effective in disaggregating S. epidermidis biofilms, causing
significant enhancement of the antibiofilm activity of 1Tb.
Accordingly, when combined with EDTA, the peptide was
able to eradicate mature biofilms formed in vitro on silicone
catheters, indicating the potential use of such a combination
in the lock therapy of colonized central venous access devices
(Maisetta et al., 2016). In addition, due to the perturbing action
of EDTA on the outer membrane of Gram-negative bacteria,
peptide-EDTA combinations could also exert a direct synergistic
effect on biofilm-embedded cells. For instance, the combination
of some optimized analogs of 1Tb with EDTA resulted in a
potentiated antibacterial activity against both planktonic cultures
and biofilms of P. aeruginosa (Grassi et al., 2017b). Interestingly,
EDTA was also able to markedly potentiate the activity of another
recently described semi-synthetic AMP (lin-SB056-1) against
mature biofilms of P. aeruginosa. Importantly, the peptide/EDTA
combination almost completely inhibited the formation of
biofilm-like structures (BLSs) in an artificial sputum medium
closely resembling the complex environment found in the lung
of cystic fibrosis patients, suggesting its possible employment in
the treatment of P. aeruginosa infections (Maisetta et al., 2017).

Nitric Oxide
Exploiting natural dispersal signals to induce biofilm disassembly
has also emerged as a promising route of investigation. The
signaling molecule NO has been identified as a key mediator
of biofilm dispersal controlling the transition from a sessile to
a planktonic phenotype. In a wide range of bacterial species,
NO-mediated dispersal has been associated with a decrease
in the intracellular levels of the second messenger cyclic
di-GMP (c-di-GMP), which leads to activation of EPS-degrading
enzymes and bacterial motility (Barraud et al., 2015). Using a
recently developed electrochemical NO-releasing catheter, Ren
et al. (2016) have demonstrated a strong enhancing effect of
physiological levels of NO on the activity of human β-defensin-2
(hBD-2) against preformed biofilms of P. aeruginosa.

COMBINATION OF AMPs WITH
QUORUM SENSING INHIBITORS

Bacteria coordinate gene expression in a cell density-dependent
manner by producing and detecting small extracellular signaling
molecules (autoinducers) in a process known as QS (Waters
and Bassler, 2005). A variety of organic molecules have been
associated with cell-to-cell communication, including AHLs in
Gram-negative bacteria, oligopeptides in Gram-positive bacteria,
and autoinducer-2 (AI-2) acting as universal interspecies signal.
Detection of a threshold level of these molecules induces
group-based behaviors in the bacterial population, among
which are virulence factor production and biofilm formation
(Davies et al., 1998). Considering its involvement in bacterial
pathogenesis, inhibition of QS has emerged as a valuable
approach to control infections without applying selective
pressure for the development of resistance (Rasko and Sperandio,
2010). A large number of QSIs have been identified that can
interfere with bacterial communication by preventing signal
generation, degrading signaling molecules, and/or impeding
signal reception (Kalia, 2013). The use of QSIs has been widely
demonstrated to improve the antibiofilm activity of numerous
conventional antibiotics both in vitro and in vivo (Brackman
et al., 2011; Christensen et al., 2012). Balaban et al. (2004) have
exploited the inhibitory activity of QSIs on biofilm formation
to enhance the efficacy of a membrane-active dermaseptin
derivative (DD13). Construction of a chimeric peptide composed
of DD13 and the RNA III-inhibiting peptide (RIP), known to
disrupt QS mechanisms in staphylococci, was reported to exert
a potent antibiofilm activity in a rat graft infection model with
methicillin-resistant S. aureus and S. epidermidis. Although both
individual compounds were able to reduce biofilm formation,
the chimeric construct (DD13-RIP) displayed higher efficiency in
inhibiting staphylococcal colonization ensuring almost sterility
at the lowest doses (Balaban et al., 2004). Coating of vascular
grafts with FS3, a recently designed derivative of RIP (Baldassarre
et al., 2013), has been shown to markedly increase the effect of
the lipopeptide daptomycin administered intraperitoneally in a
rat model of staphylococcal infection, confirming the relevance
of QSIs as enhancers of peptide-based molecules (Cirioni et al.,
2013) (Table 1 and Figure 1F). Therefore, therapeutic strategies
aimed at interfering not only with the viability of biofilm-
associated cells but also with their virulence represent an
encouraging solution to favor bacterial eradication by the host
immune system and mitigate the outcome of the infection.

COMBINATION OF AMPs WITH OTHER
AMPs OR PEPTIDE-BASED MOLECULES

Natural AMP-based defense systems have evolved to act
synergistically against microorganisms in the host environment.
Synergism between AMPs has evolved as a natural strategy to
ensure host protection against a broad-spectrum of pathogens,
thereby explaining the presence of a wide array of AMPs
within a single host (Yan and Hancock, 2001). Although the
mechanisms underlying these synergistic interactions remain
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elusive, several studies have suggested that the organization
of different AMPs in functional complexes may promote
their cooperative antibacterial action. For example, the natural
complex fly larvae immune peptides 7 (FLIP7) isolated from
Calliphora vicina maggots has been shown to ensure a broad-
spectrum antibiofilm activity due to the simultaneous presence
of four distinct families of AMPs (i.e., defensins, cecropins,
diptericins, and proline-rich peptides). Indeed, only the complex
as a whole led to significant destruction of mature biofilms
formed by both Escherichia coli and S. aureus, offering sub stantial
advantages compared to a single-molecule approach (Gordya
et al., 2017).

Despite prefiguring wide therapeutic opportunities,
antibiofilm strategies involving the combination of different
AMPs are just beginning to be explored (Table 1 and Figure 1G).
Berditsch et al. (2015) have recently defined a synergistic
interaction between two cyclic membrane-active peptides,
polymyxin B (PMB) and gramicidin S (GS), against both forming
and mature biofilms of P. aeruginosa strain PAO1. Interaction
of PMB with the LPS of Gram-negative bacteria has been
proposed to facilitate the translocation of GS through the outer
membrane of P. aeruginosa, enhancing the overall bactericidal
effect against biofilm-forming cells. Similar synergistic and
additive effects have been achieved by combining the polypeptide
colistin with citropin 1.1, temporin A, and a linear analog of
tachyplesin I. Although optimization of possible cytotoxic effects
seems necessary, colistin-AMP combinations resulted to be
effective also against double-species biofilms of P. aeruginosa
and S. aureus, suggesting their potential for the treatment of
polymicrobial biofilm-related infections (e.g., wound infections)
(Jorge et al., 2017).

CONCLUSION AND FUTURE
PERSPECTIVES

Currently, the treatment of biofilm-associated infections
represents a major challenge of modern medicine. Antibiotic
therapy alone often fails in eradicating bacterial biofilms

and generally requires high concentrations and/or repeated
administrations of the drug, increasing the risk of adverse
reactions and selection of resistance. The development of drug
combinations involving the use of AMPs may represent a
promising anti-biofilm strategy. Nevertheless, more research is
needed for the in-depth evaluation of the synergistic properties
of AMP-based combinations in order to take full advantage
of their therapeutic potential. Indeed, despite the abundance
of possible antibiofilm combinations, most synergism studies
involving AMPs have been limited to the planktonic state (Jorge
et al., 2012). Combinations of AMPs with lysostaphin (Desbois
and Coote, 2011), bacteriophage-derived endolysins (Briers et al.,
2014), and antimicrobial polymers (Piras et al., 2015), proved
to be highly active against planktonic cells, represent promising
candidates to be tested also against forming and mature biofilms.
Furthermore, additional improvement and standardization of
the methods used to determine synergism against biofilms are
required to allow a reliable comparison of different combination
strategies and a homogenous interpretation of the results.
Standardized laboratory protocols along with the development
of automated systems for data screening and processing may
provide a more accurate understanding and prediction of
synergistic interactions. Finally, progress needs to be made in
validating in vitro studies in physiologically relevant biofilm
model systems. Such studies will greatly contribute in translating
peptide-based combinations into multifunctional antibiofilm
drugs.
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