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Tellurium (Te) is one of the elements with highest extinction coefficient κ at the 13.5 nm 

extreme-ultraviolet (EUV) wavelength. It is being considered as an alternative absorber 

material for binary photomask in EUV lithography. The absorber material is required to 

remain chemically stable during EUV exposure, at elevated temperatures up to 150°C, 

during mask cleaning, and in the low hydrogen pressure environment that is present in the 

EUV scanner. However, Te is known to react with oxygen and hydrogen, forming less 

EUV absorbing TeO2 and more volatile H2Te respectively. Since the melting temperature 

of Te is only 449.5°C at normal pressure, alloying Te with a more stable metal might result Th
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in a high κ material that will remain thermally and chemically stable over a wider range of 

operating conditions.  

In this paper, we report on the stability assessment of metal telluride (M-Te) alloys for 

EUV absorber material. We combined Te with high κ metals, noble metals, and etchable 

metals. High κ and noble M-Te materials are both thermally more stable than etchable M-

Te, but they cannot be patterned easily for use in an EUV photomask. High κ M-Te exhibit 

poly-crystal morphology at room temperature compared to quasi-amorphous noble M-Te, 

though both can crystallize at a higher temperature. Hydrogen stability and cleaning 

solution stability of M-Te materials are improved considerably compared to Te, but their 

higher surface reactivity cannot be completely mitigated without the addition of an inert 

capping layer. Furthermore, etchable M-Te alloys are easily oxidized during deposition, 

resulting in lower electron density and hence lower κ. Nevertheless, M-Te alloys may be a 

way to stabilize Te for usage as EUV absorber material. 
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I. INTRODUCTION 

Extreme ultraviolet (EUV) lithography utilizes light at 13.5 nm wavelength to 

enable patterning of electronic devices, starting at the 7 nm technology node. The EUV 

photomask is one of the critical components of the scanner, as it contains the pattern to be 

printed on wafer. State-of-the-art EUV photomasks are comprised of a reflective multilayer 

(ML) mirror, which contains 40 bilayers of Mo/Si, capped with a 2 nm protective Ru layer, 

and a 60 nm patterned Ta-based absorber. To reduce mask topography-induced 3D (M3D) 

effects while maintaining a reasonable contrast between the absorber and the mirror, a 

thinner absorber would require an alternative absorber material 1. For binary absorbers, a 

material with high EUV absorption and low phase deformation is preferred. This translates 

to a material with a high extinction coefficient κ and refractive coefficient n matching that 

of vacuum, i.e. close to 1.  

As shown in Figure 1, silver (Ag) has the highest EUV absorption, but also a large 

n mismatch with vacuum. Other high κ materials, such as nickel (Ni) 2-3 and cobalt (Co) 2, 

have previously been investigated as potential EUV absorber materials. The poly-

crystalline morphology of Ni, and Co, increases line-edge-roughness (LER). Elements 

such as tin (Sn) and indium (In) have low mechanical strength, while antimony (Sb) forms 

toxic SbH3 in H2 atmosphere, the latter being present in EUV scanners 4. Lastly, there is 

tellurium (Te), which is among the three highest EUV absorbing elements at 13.5 nm 

wavelength 5. Furthermore, the refractive index of Te is relatively close to vacuum. 

Next to its desirable optical properties, Te also reacts easily with hydrogen and 

oxygen, forming H2Te and TeO2 respectively 6. With a melting point at 449.5°C under 

normal temperature and pressure, Te is thermally less stable than most metallic absorber 
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candidates. Its chemical reactivity gives Te 7 a patterning advantage as absorber material 

over many EUV absorbing metals, such as Ni 2, Co 2, Pt 7, Ir 8, Rh 8, etc. These metals are 

too chemically stable to form volatile by-products during halogen-based plasma etching. 

Although alternative patterning techniques, such as Atomic Layer Etch (ALE) 9, are 

emerging, they are currently not ready for high volume manufacturing, and they are mainly 

used for isotropical etching of layer thicknesses under 10 nm. 

By alloying Te with more stable metals, we attempt to engineer an absorber 

material with high EUV absorption, which is durable under mask usage and cleaning 

conditions, but still reactive enough to allow patterning. Metal telluride alloys have been 

investigated for absorbers in the past 10-11, but not as a means to improve durability. 

Alternative absorbers promise to reduce M3D effects for beyond 5 nm technology 

nodes (minimum metal pitch < 24 nm). They are required for insertion with future EUV 

systems with high numerical aperture of 0.55 12. 

In this paper, we explain our choice of M-Te materials to investigate in Section II, 

through the combination of Te with either high κ metals, noble metals, or etchable metals. 

In Section III, we report on the stability assessment of M-Te as EUV absorber material, 

including thermal stability, stability in hydrogen environment, stability in wet cleaning 

solutions, and stability against oxidation. Section IV summarizes our results. 

 

II. ENGINEERING METAL TELLURIDES 

We investigated three groups of materials: high κ M-Te, noble M-Te, and etchable 

M-Te. Figure 1 shows the optical constants at 13.5 nm wavelength of the elements 
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composing the investigated M-Te’s, in comparison with the current absorber material 

TaBN. 

 

FIG. 1. Optical constants of selected elements at 13.5 nm wavelength. The elements 

composing the investigated M-Te are represented as diamonds, connected with dashed 

lines. The nine highest κ elements are colored black. The current absorber material TaBN 

is represented by a grey diamond 13. The optical constants are based on Henke’s data 5. 

High κ M-Te can be alloyed with Ni, Co, or Fe, as these metals are mechanically stable, 

and have reasonably high extinction coefficients κ. Out of these metals, Ni is the most stable, 

forming a thin (< 3 nm) passivating surface NiO layer 2, and has the highest κ. Co forms a 

thicker surface oxide with higher chemical reactivity 2, which suggests easier patterning 

compared to Ni.  

Noble M-Te are alloyed with elements from the platinum-group (elements including 

Pt, and similar, such as Ru, Rh, Pd, Os, Ir), for their high chemical and thermal stability. Their 

extinction coefficients κ, while lower than those of NiCoFe transitional metals, can range from 

relatively high (Pt) to medium (Ir, Rh) to low (Ru). These elements also have a relatively low 
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refraction coefficient n < 0.92, which results in higher imaging sensitivity to phase 

deformation, especially when coupled with low EUV absorption.  

The etchable M-Te are alloyed with metals that are easily etched with halogen plasma. 

Ta offers the advantage that it is a commonly used material in the mask industry, while Al 

offers reduced phase deformation at EUV wavelength due to a refractive coefficient n matched 

to vacuum. However, we expect that etchable metals will not lead to much higher EUV 

absorption compared to the current absorber material TaBN.  

The M-Te compositions were chosen based on thermodynamic phase diagrams for 

thermally stable Te-rich alloys, with Te ratio between 40 at% and 80 at%. They are summarized 

in Table I. NiTe2 and FeTe2 were tested as high κ M-Te materials. NiTe2 was furthermore 

doped with 10 at% W or Pt to investigate the effect of dopants on crystallinity. The noble 

M-Te materials include PtTe, IrTe, Ir3Te8, Rh6Te5, and Rh0.9Te2. The stabilizing effect of 

a 5 nm metal capping layer was tested for PtTe and Rh0.9Te2, using a Pt- and Rh-cap 

respectively. The etchable M-Te materials include TaTe2, AlTe, and Al2Te3. The goal of 

engineering M-Te alloys, is to identify a stable, uniform, and quasi-amorphous 

composition, with high EUV absorption, and selective plasma etchability. 

The M-Te samples were deposited with 30 nm nominal film thicknesses by means of 

physical vapour deposition (PVD). The substrates were 6” Si wafers with 100 nm SiO2 grown 

through wet oxidation (500 nm SiO2 for Ir-Te and Rh-Te). The M-Te materials were deposited 

using a rotating wafer drum, that sequentially pass through the metal and Te direct current 

(DC) plasma’s at Ar pressures of 5.10−3 mbar, resulting in alternating monolayers that 

instantaneously intermix. 

For completeness, we would like to address potential health and safety concerns of 

Te, an element not unknown in the semiconductor industry 14-16. The largest risk of Te in 
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the working environment include inhalational exposure to gaseous H2Te or TeO2 dust, and 

absorption through skin contact 17. A characteristic sign of tellurium intoxication is the 

development of a garlic odor of the breath, caused by exhalation of (CH3)2Te. A possible 

etch byproduct TeF6 has been mentioned to be toxic by inhalation in animal tests 17. 

 

III. EXPERIMENTAL RESULTS 

In the following sections, we compare the high κ M-Te, noble M-Te, and etchable M-

Te for their potential as alternative photomask material. These requirements include thermal 

stability, stability in a hydrogen environment, stability in wet solutions, and stability against 

oxidation, as detailed in Luong, et al. (2018) 18. 

Table 1 summarizes the experimentally verified density and composition for each 

sample. Density has been determined from X-ray reflectivity (XRR). Composition is 

determined with Rutherford Backscattering Spectroscopy (RBS), a technique which is very 

sensitive to heavy elements, though less so for oxygen. Therefore, other characterization 

techniques, such as Electron Recoil Detection (ERD) and Energy Dispersive Spectrometry 

(EDS), were used to determine the composition in oxidized M-Te. The etchable M-Te’s, 

i.e., TaTe2, AlTe, and Al2Te3, deviate most from nominal composition due to oxidation, 

and will be discussed later in Section D on stability against oxidation. 
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TABLE I. Density and elemental composition of metal tellurides 

 

Density (g/cm³) 

Composition (%) 

Technique Metal Tellurium Dopant Oxygen 

H
ig

h
 κ

 M
-T

e 

NiTe2 7.17 RBS 35.4 64.6 - - 

NiTe2-Pt 8.92 RBS 33.4 55.4 11.2 - 

NiTe2-W 8.24 RBS 31.0 55.9 13.1 - 

FeTe2 7.07 EDS 33.0 56.9 - 10.1 

        

N
o

b
le

 M
-T

e 

PtTe 11.54 RBS 50.0 50.0 - - 

IrTe 11.69 RBS 47.5 52.5 - - 

Ir3Te8 9.69 RBS 27.8 72.2 - - 

Rh6Te5 9.03 RBS 57.7 42.3 - - 

Rh0.9Te2 8.18 RBS 43.5 56.5 - - 

        

E
tc

h
ab

le
 M

-T
e TaTe2 6.27 EDS 15.0 12.5 - 72.5 

AlTe 3.09 ERD 25.0 18.8 - 56.2 

Al2Te3 3.69 ERD 21.7 30.1 - 48.2 

 

A. Thermal stability 

The thermal stability of each M-Te material encompasses the assessment of its 

structural stability, stability of the as-deposited quasi-amorphous morphology against 

crystallization, and compositional stability, such as volatile formation of Te byproducts at 

elevated temperatures, as in the case during mask manufacturing or during EUV exposure. 

With in-situ X-ray diffractometry (IS-XRD) an accelerated lifetime analysis of the M-Te 
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materials was carried out at temperatures up to 500°C. In practice, EUV photomasks would 

rarely be exposed to temperatures higher than 150°C due to Mo/Si ML mirror degradation 19. 

Cross-section Transmission Electron Microscopy (TEM) was also used to verify the as-

deposited morphology. The composition stability was monitored with X-ray fluorescence 

(XRF). 

Figure 2 presents the poly-crystallinity of elemental Te as-deposited, which can 

result in higher line edge roughness (LER) after patterning. A more preferable quasi-

amorphous morphology with nanometer grain sizes can be achieved by alloying Te with 

other elements. Given enough energy though, the quasi-amorphous can crystallize to a 

poly-crystalline phase at a higher temperature or over time. 

 

FIG. 2. Cross-section Bright Field Scanning TEM (BF-STEM) image of Te, showing the 

poly-crystalline morphology. 

Therefore, we monitored the M-Te crystallization during anneal from RT up to 

500°C with IS-XRD at a ramp rate of 0.2°C/s under He flow. Figure 3 shows the IS-XRD 

measurements of high κ M-Te, noble M-Te, and etchable M-Te. The color scale uses red 
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for the highest XRD intensity, white for medium, and blue for low intensity. A high color 

gradient from blue for the lowest intensity towards red for highest intensity represents a 

sharp crystalline peak, corresponding to a poly-crystalline morphology. Furthermore, a 

gradual color gradient signifies a broad peak, corresponding to nano-crystalline or -

amorphous morphology. High κ M-Te, such as NiTe2 and FeTe2, are polycrystalline as 

deposited. However, with the correct dopant, such as NiTe2-W, an amorphous morphology 

can be achieved as-deposited, and crystallization occurs only above 300°C. For the noble 

M-Te and etchable M-Te, the absence of peaks at RT means an amorphous structure as-

deposited. A poly-crystalline phase starts forming above 200°C, for PtTe, Rh0.9Te2, AlTe, 

and Al2Te3, and above 300°C for Rh6Te5.  
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FIG. 3. (Color online) IS-XRD showing changes in crystalline phases as a function of 

temperature for high κ M-Te: FeTe2, NiTe2, NiTe2-W, NiTe2-Pt; for noble M-Te: PtTe, 

Rh0.9Te2, Rh6Te5,  IrTe, Ir3Te8; and etchable M-Te: AlTe, Al2Te3, TaTe2. 
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The exceptions are IrTe, Ir3Te8, and TaTe2, which stay amorphous from RT up to 

500°C. In case crystallization does occur, a high crystallization temperature Tcrys is 

preferable, as the material would remain amorphous for a longer time before crystallization 

would occur at lower constant working temperatures. 

In some M-Te’s, in which the metal is prone to oxidation (cfr. Section III.D), such 

as FeTe2, TaTe2, AlTe, and Al2Te3, the crystalline peaks can disappear around 350°C. 

We investigated the g at 210°C through Kissinger thermal analysis 20, as it is 

expected to have the highest κ out of all tested noble M-Te 1. The activation energy EACT 

was determined as 2.01 eV, which allows us to estimate the duration for PtTe (110) XRD 

peak formation at 27° 2θ for a given temperature, as shown in Figure 3-e. The lifetime of 

quasi-amorphous PtTe is determined as the time where 60% of the material has crystallized 

and is plotted versus temperature in Figure 4. Based on the kinetic analysis, PtTe has been 

determined to remain quasi-amorphous for at least 1 year under a constant temperature of 

120°C, which is well above the current mask surface temperature during EUV exposure. 

Furthermore, the photomask backside can be cooled down in-situ to control its thermal 

load. A detailed report on the kinetic analysis will be covered in a forthcoming paper 21. 
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FIG. 4. (a) Simulated PtTe crystallization fraction as function of time. (b) Time to 60% 

PtTe crystallization fraction as function of temperature. 

Apart from crystallization, surface Te can also start melting at 449.5°C at normal 

pressure, or start forming volatile hydrogen byproducts under vacuum. Therefore, we 

monitored Te content in the M-Te samples before, and after subsequent thermal loading 

cycles with XRF. Figure 5 shows the relative Te content of PtTe, TaTe2, AlTe and Al2Te3 

to as-deposited, after 3 hours at 250°C, and after subsequent annealing up to 500°C. All 

M-Te’s lost more than 90% of their original Te intensity when annealed to 500°C. 

However, at 250°C the etchable TaTe2 and Al2Te3 already exhibit more than 30% Te 
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intensity loss after 3 hours. For these materials, this indicates either that the surface is Te-

rich, or that Te diffusion from bulk to the surface is easier. Additionally, we verified 

pronounced oxidized Al, Ta, and Te peaks with Angle Resolved X-ray Photospectroscopy 

(AR-XPS). Therefore, we believe there is preferential binding of Ta and Al to O, resulting 

in weaker Ta-Te and Al-Te bonds, and hence higher Te reactivity in these M-Te alloys. On 

the other hand, NiTe2-W, PtTe, and AlTe exhibit limited Te loss in this condition. For 

NiTe2-W and PtTe, a chemically stable surface, such as Pt or NiO, could reduce surface 

reactivity, while W-doping could reduce Te diffusion from bulk to surface. AlTe lost less 

Te compared to Al2Te3 due to smaller Te content.  

 

FIG. 5. X-Ray Fluorescence (XRF) intensity of Te in NiTe2-W, PtTe, TaTe2, AlTe, and 

Al2Te3 after 3 hours at 250°C, and after subsequent annealing to 500°C relative to the 

as-deposited reference sample. 

Based on these experiments, we can conclude that noble M-Te, and in particular, 

the Ir-Te alloys are the most thermally stable, as its amorphous morphology remains at 

higher temperature. High κ M-Te crystallizes at a certain temperature, but using specific 

dopants can postpone crystallization to higher temperatures, such as in the case of NiTe2-

W. Etchable M-Te lose Te more easily under thermal load, though in the case of TaTe2 the 

morphology will not change. 
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B. Hydrogen stability 

Hydrogen stability assessment was performed to mimic scanner condition. In the first 

experiment, the samples were exposed at 15 Pa for 24 hours in an H2/H* environment, created 

by a hot tungsten filament 22. The resulting elemental composition change was compared to 

a reference sample using RBS and ERD, which is expressed in Thin Film Units (1 TFU = 

1015 atoms/cm2). A second experiment performed at PTB, exposed the samples at a lower H2 

pressure of maximum 3 Pa, in combination with high power EUV light up to 250W 

corresponding to a power density of 5W/cm2 23. PtTe samples were exposed for 30 minutes, 

after which the surface and bulk compositions were determined with AR-XPS. 

The results of the first hydrogen stability assessment experiment are shown in 

Figure 6. A relative TFU larger than 100% might indicate a composition variation for a 

specific element between the reference and the tested sample.  

The reference Te has reacted away after 24 hours in H2/H*. For the M-Te alloys, 

three groups can be distinguished: materials in which after reaction with H2/H* (1) neither 

metal nor Te is reduced more than 20% (NiTe2-Pt, FeTe2, PtTe, PtTe/Pt, Rh0.9Te2/Rh, and 

TaTe2); (2) only Te is reduced more than 20% (NiTe2 and Al2Te3); and (3) both metal and 

Te is reduced more than 20% (NiTe2-W, IrTe, Ir3Te8, and Rh6Te5). For group (3) materials 

an irregularly blotched surface can be observed, which indicates a heterogeneous surface  

reaction. However, Figure 6-b shows that by using a thin metallic capping layer, such as 5 

nm Rh-capped Rh0.9Te2 (Rh0.9Te2/Rh) and 5 nm Pt-capped PtTe (PtTe/Pt), the surface Te 

reaction can be inhibited. Dopants could also impact surface reaction. 10 at% Pt reduces 

surface Te reaction in NiTe2. On the other hand, 10 at% W deteriorates the hydrogen 
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stability of NiTe2. Possibly this is caused by W replacing some of the surface Ni, hereby 

inhibiting the formation of stable NiO. Even for group (1) M-Te, where the relative TFU 

is close to 100%, some visible surface reaction can still be observed, such as speckle 

formation, pitting (NiTe2-Pt), or discoloration (TaTe2). 

 

FIG. 6. (Color online) (a) M-Te samples are measured with RBS before and after 24 

hours in H2/H* environment at 15 Pa. The Thin Film Unit (1 TFU = 1015 atoms/cm2) 

difference relative to the condition before the H2/H* test is compared between different 

M-Te. (b) Images of Rh6Te5, Rh0.9Te2/Rh, NiTe2-Pt and TaTe2: reference sample on the 

left versus the sample after H2/H* test on the right. The blue substrate is SiO2. 
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To mimic the environment in the reticle chamber, no H* will be actively formed, 

and the H2 pressure should be lower than 15 Pa, this in combination with simultaneous 

EUV exposure. 

 

FIG. 7. (Color online) PtTe after different combinations of EUV power and H2 pressure. 

(a) Surface, and (b) bulk composition were determined with AR-XPS. Pt 4f and Te 3d 

metallic and oxide peaks are used for quantification. AR-XPS can probe as deep as 10 

nm from the sample surface. (c) Images of PtTe: reference, after 24 hours at 15 Pa H2/H*, 

after 30 minutes at 250W EUV 3 Pa H2, and after 30 minutes at 80W EUV 1 Pa H2. 

250 W and 80 W correspond to a power density of 5 and 1.6 W/cm2 respectively. 
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The AR-XPS measurements in Figure 7-a show that the reference PtTe surface is 

Te-rich, which is predominantly oxidized. Under EUV exposure without H2 flow, the 

composition becomes slightly less Te-rich, while no significant difference is observed in 

the metal:oxide ratio. However, the largest impact is caused by the presence of H2. 

Especially the surface composition changes from Te-rich towards a ratio closer to 1:1 

Pt:Te, due to reaction of unbound surface Te with H2. The bulk composition also changes 

slowly from a 1:1 Pt:Te ratio towards a slightly Pt-rich composition. Furthermore, the 

amount of metallic Pt and Te increases with higher H2 pressure, due to reduction of 

oxidized Pt and Te by H2. The PtTe bulk after 250 W EUV exposure and 3 Pa H2 seems to 

be more oxidized, which could be attributed to the increased surface roughness, allowing 

more material to be reoxidized. An increase in surface roughness is also observed with 

higher H2 pressure, as shown in Figure 7-c. These results are expected due to high reactivity 

of Te with H2, but they also show that alloying Te with a suitable metal can limit Te 

reaction towards the surface. While such pronounced surface roughness could complicate 

patterning absorbers with these materials, there are options to stabilize their chemical 

reactivity, and to further optimize processing for low roughness.  

 

C. Stability in solutions 

To test the material stability during photomask cleaning process, we have determined 

the dissolution rate in cleaning solutions with Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS) on an Agilent 7500cs instrument. Two baseline solutions in photomask cleaning 

processes were tested: deionized water (DIW) at pH 5.7 and 1% ammonium hydroxide solution 

(NH4OH) at pH 11.4 24. We did not test acidic cleaning solutions as they generally have higher 

reactivity with metals, and they cause peeling of the protective Ru-capping layer on the Mo/Si 
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ML mirror 24. The sample surface was submerged for 27 hours, with solutions being collected 

for analysis and new solution being added at 1, 2, 3, and 27 hours. The dissolved Te 

concentration in DIW and in NH4OH was monitored over time, using 125Te signal for 

quantification. A 70 nm TaBN mask sample was also tested as reference. 

Elemental Te exhibited limited thickness loss in DIW, and dissolved almost 

completely in NH4OH cleaning solutions within 90 minutes. According to Pourbaix 25, Te 

is expected to react in either very alkaline solutions to Te2- or Te2
2- , and in aerated water 

to TeO2. A layer of TeO2 is sparingly soluble at pH 4 to 7, with a calculated minimum 

solubility of 8.1 ng Te /ml at pH 5.45 based on historical results 25. However, experimental 

values for Te solubility have been reported three magnitudes higher around 5.3 x 103 ng 

Te /ml at pH 7 25. Te would remain inert in aqueous solutions free from oxidizing agents.  

We tested noble M-Te materials, as they showed no clear chemical reaction after 

one day submersion, such as discoloration, or significant thickness loss as determined with 

XRR. The dissolution behavior of IrTe in DIW is shown as example in Figure 8-a. A 

sample is submerged subsequently with fresh solution, once every hour for the first 3 hours, 

and then one final time for 24 hours. After submersion the solutions are collected and 

analyzed with ICP-MS.  

A non-linear dissolution rate is observed, where most material is dissolved within 

the first hour, and where the dissolution slows down over time. When the solvent is 

renewed between each data point, the additional mass dissolved is only marginal after 

subsequent renewal, regardless of submersion time. This implies that the dissolution is 

limited by the available dissolvable material on the surface. Also, Te dissolves more 

quickly from the alloy than the metallic element. The slope of dissolved mass over the first 

hour, normalized to the solvent volume, is shown in Figure 8-b for noble M-Te materials.  
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FIG. 8. (Color online) (a) Non-linear dissolution behavior of IrTe in DIW over time, with 

Ir and Te depicted by diamond and triangle markers respectively; (b) Comparison of the 

concentration in ng per ml solvent after 1 hour submersion between noble M-Te and 

TaBN. 

The TaBN mask sample dissolved very little due to the low Ta solubility in aqueous 

solutions, and due to the passivating TaBO top layer. As for the M-Te, more material 

dissolves in NH4OH, compared to DIW; and Te is more soluble than metals. Elementary 

noble metals have the lowest solubility, but it increases when alloyed with the more 

reactive Te, especially in NH4OH. Pt-based M-Te is more soluble than RhxTey, which in 

turn is more soluble than IrxTey. Surprisingly, increasing the Te-to-metal ratio increases 

neither metal nor Te solubility significantly with the tested M-Te compositions. The 
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presence of Te on the surface likely compromises the formation of a passivating native 

metal oxide surface layer. Indeed, a 5 nm metal capping layer reduces both metal and Te 

solubility in DIW, and even more in NH4OH, as shown in Figure 9. The effect of a capping 

layer has a larger effect on PtTe, likely due to its higher solubility than Rh0.9Te2. 

 

FIG. 9. Comparison of the concentration in ng per ml after 1 hour submersion between 

uncapped M-Te and M-Te capped with a 5 nm thick metallic layer.  

The Te solubility values from this experiment are closer to the experimental values 

reported Erdmann, et al. (2017) 26, than to the calculated Te solubility. This is possibly due 

to diffusion of oxidizing agents from ambient into the solutions. To simulate real mask 

cleaning processes, while considering non-linear solubility, the dissolution time can be 

lowered to 30 minutes and shorter, but the impact on repeatability will need to be assessed. 

 

D. Oxidation stability 

Stability against oxidation is important for alternative absorber candidates, as the 

extinction coefficient κ is directly proportional to the electron density of the material 1. 

Oxidation usually decreases the material density, as well as reducing the high κ element 

ratio, resulting in less EUV absorption. A small degree of oxidation can be allowed if the 

absorber material forms a self-limiting native oxide layer, such as is the case with Ni 2. 
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Elemental Te however oxidizes easily in ambient air, as shown on the High Annular 

Angular Dark Field Scanning Transmission Microscopy (HAADF-STEM) image shown 

in Figure 10-a, where contrast is proportional to the square atomic charge <Z2>. The area 

with darker contrast in the Te layer indicate the presence of lighter elements, such as 

oxygen. Figure 10-a shows that the Te layer is mostly oxidized, with few metallic Te grains. 

On the other hand, PtTe is more resistant to oxidation than Te. On Figure 10-b there is less 

contrast in the PtTe layer and the surface is also smoother. The brighter grains are richer in 

Pt than the PtTe layer. 

 

FIG. 10. Cross-section HAADF-STEM images of (a) Te and (b) PtTe. Darker area in the 

indicate the presence of lighter elements, such as O in the Te layer, or Te and O in the 

PtTe layer. 

According to Table I, all tested noble M-Te, and most high κ M-Te are resistant to 

oxidation, with Te oxidation only occurring in the first few monolayers on the surface. 

FeTe2 and the etchable M-Te however, are more prone to oxidation, with the latter easily 

oxidizing throughout the full layer when left in ambient air. In Figure 11, the Ta4f and 

Te3d peaks are measured with AR-XPS for TaTe2. No metallic Ta peaks were observed. 

The metallic Te peaks are smaller than the oxidized Te peaks, and more metallic Te can be 

found towards the bulk. Although XPS is only sensitive to the top 10 nm, XRR corroborates 
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a low TaTe2 density similar to the theoretical density of Ta2O5 and Te/TeO2, as shown in 

Figure 11-c. We can conclude that a Ta:Te ratio of 1:2 is very sensitive to oxidation. 

 

FIG. 11. (Color online) AR-XPS of (a) Ta, and (b) Te peaks in TaTe2, showing 

predominantly oxidized peaks. (c) Experimentally determined density of TaTe2 (black 
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bar) , compared to theoretical density of crystalline Ta, TaTe2, Ta2O5, Te, and TeO2 

(white bars). 

M-Te can also be prone to oxidation over time, which will need to be monitored. 

Depending on the ease of oxidation, a top surface capping layer might be sufficient as 

passivation. Ideally the absorber sidewall should also be capped, but this would complicate 

mask processing, and its effect on oxidation is smaller compared to a top surface capping 

layer as long as the sidewall area is smaller compared to top surface area. 

 

IV. SUMMARY 

The optical properties of Te make it promising as an alternative EUV absorber for 

binary photomasks, as a high extinction coefficient κ allows the implementation of thinner 

absorbers, resulting in M3D reduction. We have shown that by alloying Te with certain 

metals, its thermal stability, stability in hydrogen environment, oxidation stability, and 

stability in cleaning solutions can be improved significantly compared to elemental Te. The 

crystalline structure of Te can be avoided as-deposited and postponed over time by pushing 

towards higher crystallization temperature. Nevertheless, the improved alloys do not yet 

show the full stability and process capability that is needed. Te will be lost from M-Te as 

its temperature approaches the normal melting temperature of elemental Te at 449.5 °C, 

although in mask making processes temperatures are usually not higher than 150 °C. The 

Te stability against hydrogen reaction, oxidation and in cleaning solutions is limited, 

especially near surfaces where Te reactivity is higher than in bulk. The solubility of M-Te 

materials in tested aqueous solutions is non-linear, and Te dissolves more quickly in basic 

solutions. Most etchable M-Te are also prone to oxidation, resulting in lower density, lower 
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κ, and lower EUV absorption compared to noble and high κ M-Te materials. Provided the 

Te reactivity is limited towards a few monolayers, a top surface capping layer should be 

considered to improve M-Te stability. Currently, there seems to be a trade-off between the 

two most critical properties: optical constants and plasma etchability. M-Te alloys with the 

highest κ contain metals that cannot easily form volatile by-products, and vice versa. Issues 

with morphology, roughness, and chemical stability, could be mitigatable through 

optimizing processing parameters, dopants, and capping layer.  

TABLE II. Tested M-Te are ranked to absorber requirements. Best result per 

requirement is stated in bold. Best material per group is between brackets. 

Absorber 

requirements 

Elemental Te High κ M-Te Noble M-Te Etchable M-Te 

Optical constants  

(high κ) 
Highest Highest (NiTe2-Pt) High (Pt-Te) Low (TaTe2) 

Morphology/  

Thermal stability/ 

Poly-cryst. as-dep; 

Melting temp 

~449.5°C 

Q.-amorph. as-dep 

only;  

Te-loss ~500°C 

(NiTe2-W) 

Q.-amorph. 

~500°C;  

Te-loss ~500°C  

(Ir-Te)  

Q.-amorph. 

~500°C;  

Te-loss <500°C 

(TaTe2) 

Hydrogen stability Low High (NiTe2-Pt) Limited (Pt-Te) High (TaTe2) 

Cleaning stability 

Reacts with DIW 

and NH4OH 

Reacts with NH4OH 

(all) 

Highest (Ir-Te) High (TaTe2) 

Oxidation stability Low High (NiTe2-Pt) 

Highest (Pt-Te & 

Ir-Te) 

Limited (TaTe2) 

Plasma etchability 

No optimized Te 

etch, but halogen 

plasma etchable 

No developed Ni 

etch 

No developed 

Pt/Ir etch 

Developed Ta 

etch 
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Table II summarizes and ranks the M-Te classes according to the required 

properties for EUV absorbers. High κ M-Te’s have the potential for highest extinction 

coefficient, but would require a different alkaline cleaning solution than NH4OH. Noble 

M-Te’s rank best or second best for most properties, but have higher H2 reactivity. While 

only TaTe2 is sufficiently stable of those tested, with relatively lower scores for κ, thermal, 

and oxidation stability compared to other tested M-Te materials, it is also the only 

candidate that can be etched with existing halogen plasma technology. Therefore, the 

development of Ta-Te-X alloys in the short term could yield an alternative absorber 

material with higher κ and n better matched to vacuum compared TaBN, while 

simultaneously a new plasma etch technology can be developed for Ni, Pt, or Ir, to resolve 

this bottleneck. Cleaning solutions need to be developed for alloys, which can address 

solubility difference between elements, and uncapped sidewalls. Emerging etch 

technologies need to be able to provide solutions for the formation of volatile by-products, 

remaining selective to the Ru capping layer, and minimizing the litho-etch bias. 
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LIST OF TABLES 

TABLE I. Density and elemental composition of metal tellurides 

 

Density (g/cm³) 

Composition (%) 

Technique Metal Tellurium Dopant Oxygen 
H

ig
h

 κ
 M

-T
e 

NiTe2 7.17 RBS 35.4 64.6 - - 

NiTe2-Pt 8.92 RBS 33.4 55.4 11.2 - 

NiTe2-W 8.24 RBS 31.0 55.9 13.1 - 

FeTe2 7.07 EDS 33.0 56.9 - 10.1 

        

N
o

b
le

 M
-T

e 

PtTe 11.54 RBS 50.0 50.0 - - 

IrTe 11.69 RBS 47.5 52.5 - - 

Ir3Te8 9.69 RBS 27.8 72.2 - - 

Rh6Te5 9.03 RBS 57.7 42.3 - - 

Rh0.9Te2 8.18 RBS 43.5 56.5 - - 

        

E
tc

h
ab

le
 M

-T
e TaTe2 6.27 EDS 15.0 12.5 - 72.5 

AlTe 3.09 ERD 25.0 18.8 - 56.2 

Al2Te3 3.69 ERD 21.7 30.1 - 48.2 
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TABLE II. Tested M-Te are ranked to absorber requirements. Best result per requirement 

is stated in bold. Best material per group is between brackets. 

Absorber 

requirements 

Elemental Te High κ M-Te Noble M-Te Etchable M-Te 

Optical constants  

(high κ) 
Highest 

Highest (NiTe2-

Pt) 

High (Pt-Te) Low (TaTe2) 

Morphology/  

Thermal stability/ 

Poly-cryst. as-dep; 

Melting temp 

~449.5°C 

Q.-amorph. as-dep 

only;  

Te-loss ~500°C 

(NiTe2-W) 

Q.-amorph. 

~500°C;  

Te-loss ~500°C  

(Ir-Te)  

Q.-amorph. 

~500°C;  

Te-loss <500°C 

(TaTe2) 

Hydrogen stability Low High (NiTe2-Pt) Limited (Pt-Te) High (TaTe2) 

Cleaning stability 

Reacts with DIW 

and NH4OH 

Reacts with 

NH4OH (all) 

Highest (Ir-Te) High (TaTe2) 

Oxidation stability Low High (NiTe2-Pt) 

Highest (Pt-Te & 

Ir-Te) 

Limited (TaTe2) 

Plasma etchability 

No optimized Te 

etch, but halogen 

plasma etchable 

No developed Ni 

etch 

No developed 

Pt/Ir etch 

Developed Ta 

etch 
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LIST OF FIGURES 

FIG. 1. Optical constants of selected elements at 13.5 nm wavelength. The elements 

composing the investigated M-Te are represented as diamonds, connected with dashed 

lines. The nine highest κ elements are colored black. The current absorber material TaBN 

is represented by a grey diamond 13. The optical constants are based on Henke’s data 5. 

FIG. 2. Cross-section Bright Field Scanning TEM (BF-STEM) image of Te, showing the 

poly-crystalline morphology. 

FIG. 3. (Color online) IS-XRD showing changes in crystalline phases as a function of 

temperature for high κ M-Te: FeTe2, NiTe2, NiTe2-W, NiTe2-Pt; for noble M-Te: PtTe, 

Rh0.9Te2, Rh6Te5,  IrTe, Ir3Te8; and etchable M-Te: AlTe, Al2Te3, TaTe2. 

FIG. 4. (a) Simulated PtTe crystallization fraction as function of time. (b) Time to 60% 

PtTe crystallization fraction as function of temperature. 

FIG. 5. X-Ray Fluorescence (XRF) intensity of Te in NiTe2-W, PtTe, TaTe2, AlTe, and 

Al2Te3 after 3 hours at 250°C, and after subsequent annealing to 500°C relative to the as-

deposited reference sample. 

FIG. 6. (Color online) (a) M-Te samples are measured with RBS before and after 24 hours 

in H2/H* environment at 15 Pa. The relative Thin Film Unit (1 TFU = 1015 atoms/cm2) 

difference between before and after H2/H* test is compared between different M-Te. (b) 

Images of Rh6Te5, Rh0.9Te2/Rh, NiTe2-Pt and TaTe2: reference sample on the left versus 

the sample after H2/H* test on the right. The SiO2 substrate is coloured blue. 

FIG. 7. (Color online) PtTe after different combinations of EUV power and H2 pressure. 

(a) Surface, and (b) bulk composition were determined with AR-XPS. Pt 4f and Te 3d 

metallic and oxide peaks are used for quantification. AR-XPS can probe as deep as 10 nm 
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from the sample surface. (c) Images of PtTe: reference, after 24 hours at 15 Pa H2/H*, after 

30 minutes at 250W EUV 3 Pa H2, and after 30 minutes at 80W EUV 1 Pa H2. 250 W and 

80 W correspond to a power density of 5 and 1.6 W/cm2 respectively. 

FIG. 8. (Color online) (a) Non-linear dissolution behavior of IrTe in DIW over time, with 

Ir and Te depicted by diamond and triangle markers respectively; (b) Comparison of the 

concentration in ng per ml solvent after 1 hour submersion between noble M-Te and TaBN. 

FIG. 9. Comparison of the concentration in ng per ml solvent after 1 hour submersion 

between uncapped M-Te and M-Te capped with a 5 nm thick metallic layer. 

FIG. 10. Cross-section HAADF-STEM images of Te. Darker area in the indicate the 

presence of lighter elements, such as O in the Te layer, or Te and O in the PtTe layer. 

FIG. 11. (Color online) AR-XPS of (a) Ta, and (b) Te peaks in TaTe2, showing 

predominantly oxidized peaks. (c) Experimentally determined density of TaTe2 (black bar), 

compared to theoretical density of crystalline Ta, TaTe2, Ta2O5, Te, and TeO2 (white bars). 
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