Advanced search
1 file | 1.44 MB Add to list

Predicting pharmaceutical particle size distributions using kernel mean embedding

Daan Van Hauwermeiren (UGent) , Michiel Stock (UGent) , Thomas De Beer (UGent) and Ingmar Nopens (UGent)
Author
Organization

Downloads

  • 8654434.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 1.44 MB

Citation

Please use this url to cite or link to this publication:

MLA
Van Hauwermeiren, Daan, et al. “Predicting Pharmaceutical Particle Size Distributions Using Kernel Mean Embedding.” PHARMACEUTICS, vol. 12, 2020.
APA
Van Hauwermeiren, D., Stock, M., De Beer, T., & Nopens, I. (2020). Predicting pharmaceutical particle size distributions using kernel mean embedding. PHARMACEUTICS, 12.
Chicago author-date
Van Hauwermeiren, Daan, Michiel Stock, Thomas De Beer, and Ingmar Nopens. 2020. “Predicting Pharmaceutical Particle Size Distributions Using Kernel Mean Embedding.” PHARMACEUTICS 12.
Chicago author-date (all authors)
Van Hauwermeiren, Daan, Michiel Stock, Thomas De Beer, and Ingmar Nopens. 2020. “Predicting Pharmaceutical Particle Size Distributions Using Kernel Mean Embedding.” PHARMACEUTICS 12.
Vancouver
1.
Van Hauwermeiren D, Stock M, De Beer T, Nopens I. Predicting pharmaceutical particle size distributions using kernel mean embedding. PHARMACEUTICS. 2020;12.
IEEE
[1]
D. Van Hauwermeiren, M. Stock, T. De Beer, and I. Nopens, “Predicting pharmaceutical particle size distributions using kernel mean embedding,” PHARMACEUTICS, vol. 12, 2020.
@article{8655315,
  articleno    = {271},
  author       = {Van Hauwermeiren, Daan and Stock, Michiel and De Beer, Thomas and Nopens, Ingmar},
  issn         = {1999-4923},
  journal      = {PHARMACEUTICS},
  language     = {eng},
  pages        = {26},
  title        = {Predicting pharmaceutical particle size distributions using kernel mean embedding},
  url          = {http://dx.doi.org/10.3390/pharmaceutics12030271},
  volume       = {12},
  year         = {2020},
}

Altmetric
View in Altmetric