Advanced search
1 file | 2.61 MB Add to list

Dynamic simulation of N2O emissions from a full-scale partial nitritation reactor

Author
Organization
Abstract
This study deals with the potential and the limitations of dynamic models for describing and predicting nitrous oxide (N2O) emissions associated with biological nitrogen removal from wastewater. The results of a three-week monitoring campaign on a full-scale partial nitritation reactor were reproduced through a state-of-the-art model including different biological N2O formation pathways. The partial nitritation reactor under study was a SHARON reactor treating the effluent from a municipal wastewater treatment plant sludge digester. A qualitative and quantitative comparison between experimental data and simulation results was performed to identify N2O formation pathways as well as for model identification. Heterotrophic denitrifying bacteria and ammonium oxidizing bacteria (AOB) were responsible for N2O formation under anoxic conditions, whereas under aerated conditions the AOB were the most important N2O producers. Relative to previously proposed models, hydroxylamine (NH2OH) had to be included as a state variable in the AOB conversions in order to describe potential N2O formation by AOB under anoxic conditions. An oxygen inhibition term in the corresponding reaction kinetics was required to fairly represent the relative contribution of the different AOB pathways for N2O production. Nevertheless, quantitative prediction of N2O emissions with models remains a challenge, which is discussed.
Keywords
Biotechnology, Environmental Engineering, Bioengineering, Biomedical Engineering, Biological nitrogen removal, Digester effluent, Dynamic simulation, Greenhouse gas emission, Wastewater treatment, WASTE-WATER TREATMENT, NITROUS-OXIDE PRODUCTION, AMMONIA-OXIDIZING BACTERIA, SHARON PROCESS, NITRIC-OXIDE, MODEL, OXIDATION, REMOVAL, NITRIFICATION, HYDROXYLAMINE

Downloads

  • (...).pdf
    • full text (Published version)
    • |
    • UGent only
    • |
    • PDF
    • |
    • 2.61 MB

Citation

Please use this url to cite or link to this publication:

MLA
Mampaey, Kris, et al. “Dynamic Simulation of N2O Emissions from a Full-Scale Partial Nitritation Reactor.” BIOCHEMICAL ENGINEERING JOURNAL, vol. 152, 2019.
APA
Mampaey, K., Spérandio, M., van Loosdrecht, M. C. M., & Volcke, E. (2019). Dynamic simulation of N2O emissions from a full-scale partial nitritation reactor. BIOCHEMICAL ENGINEERING JOURNAL, 152.
Chicago author-date
Mampaey, Kris, Mathieu Spérandio, Mark C.M. van Loosdrecht, and Eveline Volcke. 2019. “Dynamic Simulation of N2O Emissions from a Full-Scale Partial Nitritation Reactor.” BIOCHEMICAL ENGINEERING JOURNAL 152.
Chicago author-date (all authors)
Mampaey, Kris, Mathieu Spérandio, Mark C.M. van Loosdrecht, and Eveline Volcke. 2019. “Dynamic Simulation of N2O Emissions from a Full-Scale Partial Nitritation Reactor.” BIOCHEMICAL ENGINEERING JOURNAL 152.
Vancouver
1.
Mampaey K, Spérandio M, van Loosdrecht MCM, Volcke E. Dynamic simulation of N2O emissions from a full-scale partial nitritation reactor. BIOCHEMICAL ENGINEERING JOURNAL. 2019;152.
IEEE
[1]
K. Mampaey, M. Spérandio, M. C. M. van Loosdrecht, and E. Volcke, “Dynamic simulation of N2O emissions from a full-scale partial nitritation reactor,” BIOCHEMICAL ENGINEERING JOURNAL, vol. 152, 2019.
@article{8651366,
  abstract     = {This study deals with the potential and the limitations of dynamic models for describing and predicting nitrous oxide (N2O) emissions associated with biological nitrogen removal from wastewater. The results of a three-week monitoring campaign on a full-scale partial nitritation reactor were reproduced through a state-of-the-art model including different biological N2O formation pathways. The partial nitritation reactor under study was a SHARON reactor treating the effluent from a municipal wastewater treatment plant sludge digester. A qualitative and quantitative comparison between experimental data and simulation results was performed to identify N2O formation pathways as well as for model identification. Heterotrophic denitrifying bacteria and ammonium oxidizing bacteria (AOB) were responsible for N2O formation under anoxic conditions, whereas under aerated conditions the AOB were the most important N2O producers. Relative to previously proposed models, hydroxylamine (NH2OH) had to be included as a state variable in the AOB conversions in order to describe potential N2O formation by AOB under anoxic conditions. An oxygen inhibition term in the corresponding reaction kinetics was required to fairly represent the relative contribution of the different AOB pathways for N2O production. Nevertheless, quantitative prediction of N2O emissions with models remains a challenge, which is discussed.},
  articleno    = {107356},
  author       = {Mampaey, Kris and Spérandio, Mathieu and van Loosdrecht, Mark C.M. and Volcke, Eveline},
  issn         = {1369-703X},
  journal      = {BIOCHEMICAL ENGINEERING JOURNAL},
  keywords     = {Biotechnology,Environmental Engineering,Bioengineering,Biomedical Engineering,Biological nitrogen removal,Digester effluent,Dynamic simulation,Greenhouse gas emission,Wastewater treatment,WASTE-WATER TREATMENT,NITROUS-OXIDE PRODUCTION,AMMONIA-OXIDIZING BACTERIA,SHARON PROCESS,NITRIC-OXIDE,MODEL,OXIDATION,REMOVAL,NITRIFICATION,HYDROXYLAMINE},
  language     = {eng},
  pages        = {10},
  title        = {Dynamic simulation of N2O emissions from a full-scale partial nitritation reactor},
  url          = {http://dx.doi.org/10.1016/j.bej.2019.107356},
  volume       = {152},
  year         = {2019},
}

Altmetric
View in Altmetric
Web of Science
Times cited: