
Noname manuscript No.
(will be inserted by the editor)

Secant Update Version of Quasi-Newton PSB with
Weighted Multisecant Equations

Nicolas Boutet · Rob Haelterman ·
Joris Degroote

Received: date / Accepted: date

Abstract Quasi-Newton methods are often used in the frame of non-linear
optimization. In those methods, the quality and cost of the estimate of the
Hessian matrix has a major influence on the efficiency of the optimization
algorithm, which has a huge impact for computationally costly problems.

One strategy to create a more accurate estimate of the Hessian consists
in maximizing the use of available information during this computation.
This is done by combining different characteristics. The Powell-Symmetric-
Broyden method (PSB) imposes, for example, the satisfaction of the last secant
equation, which is called secant update property, and the symmetry of the
Hessian [22].

Imposing the satisfaction of more secant equations should be the next step
to include more information into the Hessian. However, Schnabel proved that
this is impossible [25]. Penalized PSB (pPSB), works around the impossibility
by giving a symmetric Hessian and penalizing the non-satisfaction of the
multiple secant equations by using weight factors [13]. Doing so, he loses the
secant update property.

In this paper, we combine the properties of PSB and pPSB by adding
to pPSB the secant update property. This gives us the Secant Update
Penalized PSB (SUpPSB). This new formula that we propose also avoids
matrix inversions, which makes it easier to compute. Next to that, SUpPSB
also performs globally better compared to pPSB.

Keywords non-linear optimization · quasi-Newton formulae · weighted
multiple secant equations · symmetric gradient

Nicolas Boutet · Joris Degroote
Ghent University, Dept. Flow, Heat and Combustion Mechanics, Sint-Pietersnieuwstraat 41,
9000 Ghent, Belgium
E-mail: nicolas.boutet@ugent.be

Nicolas Boutet · Rob Haelterman
Royal Military Academy, Dept. Mathematics, Renaissancelaan 30, 1000 Brussels, Belgium

2 Nicolas Boutet et al.

Mathematics Subject Classification (2010) 90C53, 49M15

1 Introduction

The evolution of numerical methods, the development of specific tools and the
increasing computational power make it possible to solve heavier and more
complex problems in multiple domains. This complexity often increases when
different systems interact such as fluid and structure, heat and electricity, heat
and chemical reagent.

Being able to solve a given complex problem often leads to a new question:
which value of the parameters should we take in order to optimize some
objective function? For instance, if we are able to compute the air flow, the
deformation and the lift for a drone blade, how should we design the blade in
order to minimize the power consumption?

This kind of problem can be expressed as

min
x
g(x) (1.1)

with g : DF ⊂ Rn → R, which is called the objective function.
This leads to the root finding problem

∇g(x) = f(x) = 0 (1.2)

There exist plenty of methods for solving this root finding problem. In
this paper, we work with methods developed from Broyden’s method [5,6,
15] by adding some characteristics such as the symmetry of the Hessian of
g(x)/ Jacobian of f(x) (Powell-Symmetric-Broyden method or PSB [22,23],
generalized PSB [25]) or the least squares approximation of the Hessian of
g(x)/ Jacobian of f(x) (Quasi-Newton Least Squares Method [8,14], penalized
PSB [13]). The PSB-like methods are described in more detail in section 2.

In our study, we assume the problem has the following characteristics:
(1) The value of the objective function g(x) can be calculated with some code,

which can be composed of subproblems that can be solved separately. For
instance, one subproblem can describe the lift of a drone propeller blade
based on its geometry while another describes the deformation of the blade
due to the lift.

(2) The analytic form of g(x) is unknown which prevents the use of Newton’s
method, for instance.

(3) The gradient of the problem ∇g(x) can be estimated with specific methods
(e.g. with the adjoint state method [9,12,21] or a Monte Carlo estimation
in high dimension [20]).

(4) Evaluating g(x) and ∇g(x) is computationally costly because of the size
of the problem (high dimensional) or because of the complexity of the root
finding problem even when it is of limited dimension. This means that the
required number of evaluations (or ‘function calls’) to reach convergence
is a good proxy of the performance of an algorithm. This also reduces the
interest of line-search techniques.

Secant Update PSB with Weighted Multisecant Equations 3

2 Method development

2.1 Maximize used information

In order to find a solution to the root finding problem f(x) = 0, taking into
account the characteristic (2) above, we use Quasi-Newton methods. A step
is then given by xi+1 = xi − αi[Bi]

−1f(xi). We define a given step of the
optimization algorithm (optimization path) by using the subscript i. f(xi) is
then the gradient of the objective function calculated at the i-th point of the
optimization path. [Bi]

−1 is the inverse of an approximation of the Jacobian
matrix Jf (xi) of f evaluated for xi. αi is the step length; its default value is 1
but it can be changed when using line search.

Based on the characteristic (4) above, some methods have been developed
that tend to maximize the amount of information that is used at each
optimization step. A first idea has been to force the approximation of the
Jacobian matrix to fulfill the last secant equation xi = xi−1 + [Bi]

−1(f(xi)−
f(xi−1)). These methods, for example Broyden’s method [5,6,15], are called
Secant Update Methods.

Going further, it is possible to impose multiple secant equations xi =
xi−k +[Bi]

−1(f(xi)− f(xi−k)) for k = 1, 2, . . . , m ≤ n and m ≤ i. m being the
maximal number of secant equations that are imposed. This equation can also
be expressed as Bi+1Si − Yi = 0 where Si contains in its columns successively
the vectors sk = xi − xi−k and Yi the differences yk = f(xi) − f(xi−k). This
multisecant construction is the basis, for example, of the Quasi-Newton Least
Squares Method and its inverse [8,14].

Instead of working with [Bi]
−1 being the inverse of an approximation of

the Jacobian matrix, one can also work directly with the estimate of inverse
of the Jacobian [Hi]. Note that while H = B−1, its estimate [H] is in most
of the cases different than the inverse of the estimate of the Jacobian [B]−1.
The step is then xi+1 = xi − αi[Hi]f(xi) where [Hi] is the approximation of
the inverse of the Jacobian matrix Jf (xi) evaluated for xi.

Methods using formulas based on [Bi]
−1 are called “direct” methods in the

present paper. When the formula uses [Hi], we will call it an “inverse” method.

2.2 PSB-like methods

2.2.1 Broyden’s Method

In this paper, we will work with least change methods. This means that the
new estimate of the Hessian matrix is chosen to be as close a possible to the
previous one. One of the first least change methods has been developed by
Broyden in 1965. This is Broyden’s first formula (also called Broyden’s Good

4 Nicolas Boutet et al.

formula) [5,6]. Bi+1, which is given in Formula 1, is chosen such that:

arg min
Bi+1

1
2 ‖Bi −Bi+1‖2Fr

such that Bi+1si − yi = 0

As the conditions Bi+1si − yi = 0 is generally not sufficient to give one
single solution, the arg min is used in order to reduce the remaining degrees
of freedom by selecting the approximation being the closest to the previous
approximation according to a given norm.

Formula 1: Broyden’s Good - Direct Broyden

Let Bi ∈ Rn×n, yi and si ∈ Rn×1. Let Bi+1 such that:

– Bi+1si = yi
– ‖Bi+1 −Bi‖Fr is minimal

Then, Bi+1 is given by:

Bi+1 = Bi +
(yi −Bisi)sTi

sTi si
= Bi +

wisTi
sTi si

with wi = yi −Bisi.

The second Broyden’s method is similar to the first one, but instead of
taking the Jacobian closest to the previous one, it takes the inverse of the
Jacobian which is the closest to the previous one. The formula is built in the
same way as for Broyden’s first method. This gives Formula 2.

Formula 2: Broyden’s Bad - Inverse Broyden

Let Hi ∈ Rn×n, yi and si ∈ Rn×1. Let Hi+1 such that:

– Hi+1yi = si
– ‖Hi+1 −Hi‖Fr is minimal

Then, Hi+1 is given by:

Hi+1 = Hi +
(si −Hiyi)yT

i

yT
i yi

= Hi +
viyT

i

yT
i yi

with vi = si −Hiyi.

The name “good” and “bad” initially comes from Broyden, because the first
one seemed to give better results [4]. However, depending on the problem, the
“bad” method can give better results than the “good” one. Both are used in
more recent applications.

Secant Update PSB with Weighted Multisecant Equations 5

2.2.2 Powell-Symmetric-Broyden (PSB)

When trying to solve the optimization problem (1.1), we can use one extra
piece of information. Indeed, the Jacobian of (1.2) is in fact the Hessian of
(1.1). So, if the function is of class C2, we know that the Jacobian matrix is
symmetric and its estimate should be symmetric too.

If we enforce the symmetry and the satisfaction of the last secant equation,
the problem is then to find an update of the estimate of the Hessian such that:

arg min
Bi+1

1
2 ‖Bi −Bi+1‖2Fr

such that Bi+1si − yi = 0

Bi+1 −BT
i+1 = 0

This symmetric Secant-Update formulation leads to the Powell-Symmetric-
Broyden method (PSB) [22,23]. The formula is given as Formula 3.

Formula 3: PSB

Let Bi ∈ Rn×n, yi and si ∈ Rn×1. Let Bi+1 such that:

– Bi+1 = BT
i+1

– Bi+1si = yi
– ‖Bi+1 −Bi‖Fr is minimal

Then, Bi+1 is given by:

Bi+1 = Bi +
wisTi
sTi si

+
siwT

i

sTi si
−

wT
i si

(sTi si)2
sisTi

with wi = yi −Bisi.

Applying the same development but using Hi = B−1
i instead of Bi leads to

the dual (or inverse) version of PSB. To our knowledge, this formula has never
been published. However, as the formula is simply obtained by switching yi

and si, we give the formula of IPSB in Formula 4.

2.2.3 Generalized PSB (gPSB)

Similarly to the construction of the Quasi-Newton Least Squares Method
starting from Broyden’s method [14,15], one can start from the PSB and add
the multisecant property. The problem is then to solve:

arg min
Bi+1

1
2 ‖Bi −Bi+1‖2Fr

such that Bi+1Si − Yi = 0
Bi+1 −BT

i+1 = 0

6 Nicolas Boutet et al.

Formula 4: IPSB

Let Hi ∈ Rn×n, yi and si ∈ Rn×1. Let Hi+1 such that:

– Hi+1 = HT
i+1

– Hi+1yi = si
– ‖Hi+1 −Hi‖Fr is minimal

Then, Hi+1 is given by:

Hi+1 = Hi +
viyT

i

yT
i yi

+
yivT

i

yT
i yi

−
vT
i yi

(yT
i yi)

2
yiy

T
i

with vi = si −Hiyi.

This has been done by Schnabel who called his method generalized PSB
or gPSB[25]:

Bi+1 = Bi + YiS
+
i −BiSiS

+
i + (S+

i)TYi − (S+
i)TST

i B
T
i

− (S+
i)TY T

i SiS
+
i + (S+

i)TST
i B

T
i SiS

+
i

In this formula, we used S+
i = (ST

i Si)
−1ST

i .
Schnabel has however proven that his formula only exists if Y T

i Si is
symmetric. It is the case, for example, when the equation (1.2) is quadratic
but this is a very restrictive condition.

2.2.4 Penalized PSB (pPSB)

As it is, in general, impossible to satisfy the symmetry and the multiple secant
equations at the same time, Gratton et al. proposed to force the symmetry and
to penalize the non-satisfaction of the secant equations [13]. As mentioned in
their introduction, this approach can be used in a stochastic context in which
secant equations are enforced on average, which is not the case in our problem
setting. They then solved the system

arg min
Bi+1

1
2 ‖Bi −Bi+1‖2Fr + 1

2

m∑
k=1

ωk ‖Bi+1sk − yk‖
2
2

such that Bi+1 −BT
i+1 = 0

where ωk (k = 1, . . . ,m with m ≤ i) are the positive weights applied to the
non-satisfaction of the multiple secant equations and have to be chosen by the
user.

The formula they found is given in Formula 5. Here again, it is possible to
develop an inverse version for the update of Hi = B−1

i instead of Bi and this
leads to the formula of IpPSB in Formula 6.

These formulas have, to our eyes, several disadvantages:

– There are two m×m matrices that have to be inverted.

Secant Update PSB with Weighted Multisecant Equations 7

Formula 5: pPSB

Let Bi ∈ Rn×n, Yi and Si ∈ Rn×m with m ≤ n, m ≤ i, sk is the k-th column of Si,
yk the k-th column of Yi and Si full-ranked. Let ωk positive scalar weight parameters
for k = 1, . . . ,m. Let Bi+1 such that:

– Bi+1 = BT
i+1

– ‖Bi −Bi+1‖2Fr +
m∑

k=1
ωk ‖Bi+1sk − yk‖

2
2 is minimal

Then, Bi+1 is given by:

Bi+1 = Bi + Wi(2Ω−1 + ST
i Si)

−1ST
i + Si(2Ω−1 + ST

i Si)
−1WT

i + SiΩ
1
2 X2Ω

1
2 ST

where X2 solves

(I + Ω
1
2 ST

i SiΩ
1
2)X2 + X2(I + Ω

1
2 ST

i SiΩ
1
2) = −Ω

1
2 ST

i WiΩ
1
2 X1 −X1Ω

1
2 WT

i SiΩ
1
2

with

– Wi = Yi −BiSi

– Ω = diag(ωk), a diagonal matrix having ωk as elements
– X1 = (2I + Ω

1
2 ST

i SiΩ
1
2)−1

Formula 6: IpPSB

Let Hi ∈ Rn×n, Yi and Si ∈ Rn×m with m ≤ n, m ≤ i, yk the k-th column of Yi, sk
the k-th column of Si and Yi full-ranked. Let ωk positive scalar weight parameters for
k = 1, . . . ,m. Let Hi+1 such that:

– Hi+1 = HT
i+1

– ‖Hi −Hi+1‖2Fr +
m∑

k=1

ωk ‖Hi+1yk − sk‖22 is minimal

Then, Hi+1 is given by:

Hi+1 = Hi + Vi(2Ω−1 + Y T
i Yi)

−1Y T
i + Yi(2Ω−1 + Y T

i Yi)
−1V T

i + YiΩ
1
2 X2Ω

1
2 Y T

i

where X2 solves

(I + Ω
1
2 Y T

i YiΩ
1
2)X2 + X2(I + Ω

1
2 Y T

i YiΩ
1
2) = −Ω

1
2 Y T

i ViΩ
1
2 X1 −X1Ω

1
2 V T

i YiΩ
1
2

with

– Vi = Si −HiYi

– Ω = diag(ωk), a diagonal matrix having ωk as elements
– X1 = (2I + Ω

1
2 Y T

i YiΩ
1
2)−1

– The solution requires to solve a Lyapunov equation (in order to find the
value ofX2) which adds a numerical step in the process. This can be solved,
for instance, with the Bartels-Stewart algorithm which has a complexity of
O(n3) [3,16].

8 Nicolas Boutet et al.

– The formula does not have the Secant Update property as the most recent
secant equation may be left unsatisfied because of the use of penalization
factors.

2.3 Secant Update penalized PSB

Working on a non-stochastic problem, we want to try to improve the penalized
PSB formula by enforcing the most recent secant equation (Secant Update).
Due to the numerical limitation of previous formula, we want to find a
analytical expression fulfilling the last secant equation. So we start with the
following optimization problem:

arg min
Bi+1

1
2 ‖Bi −Bi+1‖2Fr + 1

2

m∑
k=2

ωk ‖Bi+1sk − yk‖
2
2

such that Bi+1 −BT
i+1 = 0

Bi+1s1 − y1 = 0

(2.1)

We take the Lagrangian of the system (2.1):

L(Bi+1,λ,M) =
1

2
‖Bi −Bi+1‖2Fr +

1

2

m∑
k=2

ωk ‖Bi+1sk − yk‖
2
2

+ λT (Bi+1s1 − y1) +

n−1∑
j=1

n∑
k=j+1

µj,k(Bj,k
i+1 −B

k,j
i+1)

where Bj,k
i+1 is the scalar corresponding to the j-th row and k-th column of

matrix Bi+1.
Taking the partial derivative in function of Bj,k

i+1 (j = 1, . . . , n; k =
j + 1, . . . , n), λ and µj,k (j = 1, . . . , n − 1; k = j + 1, . . . , n), we find the
following system:

Bi+1 −Bi +

m∑
k=2

ωk(Bi+1sk − yk)sTk + λsT1 +M = 0

Bi+1s1 − y1 = 0

Bi+1 −BT
i+1 = 0

(2.2a)

(2.2b)

(2.2c)

with

Mi,j =

 µi,j i < j
−µj,i j < i

0 i = j

Secant Update PSB with Weighted Multisecant Equations 9

Combining (2.2a) and (2.2c), using symmetry of Bi+1 and anti-symmetry
of M , gives

0 = Bi+1 −BT
i+1

= −Bi +

m∑
k=2

ωk(Bi+1sk − yk)sTk

+ λsT1 +M +BT
i −

m∑
k=2

ωksk(sTkB
T
i+1 − yT

k)− s1λT −MT

−2M =−Bi +

m∑
k=2

ωk(Bi+1sk − yk)sTk + λsT1

+BT
i −

m∑
k=2

ωksk(sTkB
T
i+1 − yT

k)− s1λT

M =
Bi −BT

i

2
+

m∑
k=2

ωk
yksTk − skyT

k

2

−
m∑

k=2

ωk

Bi+1sksTk − sksTkB
T
i+1

2
+
s1λT − λsT1

2

We then substitute M in (2.2a). Defining B̄i =
Bi+BT

i

2 , this leads to

Bi+1 = B̄i −
s1λT + λsT1

2
−

m∑
k=2

ωk

(
Bi+1sksTk + sksTkB

T
i+1

2
− yksTk + skyT

k

2

)
(2.3)

We now use equation (2.2b) pre-multipled by sT1 :

0 = sT1 Bi+1s1 − sT1 y1

= sT1 B̄is1 − (sT1 s1)(λT s1)− sT1 y1 −
m∑

k=2

ωk

(
(yT

1 sk)(sTk s1)− (sT1 yk)(sTk s1)
)

(sT1 s1)(λT s1) =− sT1 y1 + sT1 B̄is1 −
m∑

k=2

ωk

(
(yT

1 sk)(sTk s1)− (sT1 yk)(sTk s1)
)

(λT s1) =− sT1 w̄1

sT1 s1
−

m∑
k=2

ωk

(
(yT

1 sk)(sTk s1)

sT1 s1
− (sT1 yk)(sTk s1)

sT1 s1

)

In the last step, we have used w̄1 = y1 − B̄is1.

10 Nicolas Boutet et al.

Equations (2.2b) and (2.2c) can also be combined as BT
i+1s1 = y1. We

reuse the last result to replace λT s1 and equation (2.3) to replace Bi+1.

y1 = Bi+1s1

= B̄i
T s1 −

λ(sT1 s1)

2

+
s1
2

(
sT1 w̄1

sT1 s1
+

m∑
k=2

ωk

(
(yT

1 sk)(sTk s1)

sT1 s1
− (sT1 yk)(sTk s1)

sT1 s1

))

−
m∑

k=2

ωk

(
Bi+1sk(sTk s1)

2
+
sk(sTk y1)

2
− sk(yT

k s1) + yk(sTk s1)

2

)

λ = − 2w̄1

sT1 s1
+
s1(sT1 w̄1)

(sT1 s1)2
+

m∑
k=2

ωk

(
s1(yT

1 sk)(sTk s1)

(sT1 s1)2
− s1(sT1 yk)(sTk s1)

(sT1 s1)2

− sk(sTk y1)

sT1 s1
− Bi+1sk(sTk s1)

sT1 s1
+
sk(yT

k s1) + yk(sTk s1)

sT1 s1

)

Finally, we can express equation (2.2a) with only known variables, starting
from equation (2.3):

Bi+1 = BT
i+1

= B̄i −
s1λT + λsT1

2
−

m∑
k=2

ωk

(
Bi+1sksTk + sksTkB

T
i+1

2
− yksTk + skyT

k

2

)

= B̄i +
s1w̄T

1

sT1 s1
− (w̄T

1 s1)s1sT1
2(sT1 s1)2

+
w̄1sT1
sT1 s1

− (sT1 w̄1)s1sT1
2(sT1 s1)2

−
m∑

k=2

ωk

(
(sT1 sk)(sTk y1)− (sT1 yk)(sTk s1)

(sT1 s1)2
s1sT1

)

+

m∑
k=2

ωk

(
(yT

1 sk)s1sTk
2sT1 s1

− (sT1 yk)s1sTk
2sT1 s1

− (sT1 sk)s1yT
k

2sT1 s1

)

+

m∑
k=2

ωk

(
(sTk y1)sksT1

2sT1 s1
− (yT

k s1)sksT1
2sT1 s1

− (sTk s1)yksT1
2sT1 s1

)

+

m∑
k=2

ωk

(
Bi+1sksT1 (sTk s1) + (sTk s1)s1sTkB

T
i+1

2(sT1 s1)2

)

−
m∑

k=2

ωk

(
Bi+1sksTk + sksTkB

T
i+1

2
− yksTk + skyT

k

2

)

Secant Update PSB with Weighted Multisecant Equations 11

Simplifying and putting terms together gives:

Bi+1X +XTBT
i+1 = B̄i +

s1w̄T
1 + w̄1sT1
sT1 s1

+

m∑
k=2

ωk
yksTk + skyT

k

2

−
m∑

k=2

ωk

((
(sT1 yk)− (yT

1 sk)
)
s1sTk

2sT1 s1

)

−
m∑

k=2

ωk

((
(yT

k s1)− (sTk y1)
)
sksT1

2sT1 s1

)

−
m∑

k=2

ωk

(
(sT1 sk)s1yT

k + (sTk s1)yksT1
2sT1 s1

)

−
m∑

k=2

ωk

(
(sT1 sk)(sTk y1)− (sT1 yk)(sTk s1)

(sT1 s1)2

)
s1sT1

− (w̄T
1 s1) + (sT1 w̄1)

2(sT1 s1)2
s1sT1

where

X =
1

2

(
I +

m∑
k=2

ωk(sksTk −
sksT1 (sTk s1)

sT1 s1
)

)

On the right side, we have a sum of rank 1 matrices as each term has the
form of uvT .

We can now finally express the formula for Secant Update penalized PSB,
which is given in Formula 7. We can also work with Hi+1 = B−1

i+1 instead
of Bi+1 and switching Yi and Si which will give the dual or inverse formula
(Formula 8).

One may believe that there is almost no difference between pPSB and
SUpPSB. One can expect that it is possible to simulate the results of SUpPSB
by letting the weight of the last equation to be much larger than the other
weights in pPSB. However, the calculation ofX1 in pPSB requires the inversion
of X−1

1 = (2I + Ω
1
2ST

i SiΩ
1
2). If one wants to simulate the Secant Update

property, one should take a large value for ω1, which is the first element on
the diagonal matrix Ω. Looking at the elements of matrix X−1

1 , we see that the
element at the intersection of its first column and that first row is proportional
to ω1, and that the rest of the matrix does not contain any term in function of
ω1. Taking ω1 much larger than the other ωi leads then to a matrix that is ill-
conditioned. As we take the inverse of this matrix, this can lead to numerical
problems. Even as those problems can be mitigated by preconditioning the
matrix, for example with Ruiz’s algorithm [24], taking a ratio of several orders
of magnitude between the greatest and the smallest coefficient is a risk of
losing numerical precision. SUpPSB avoids this risk.

In addition to imposing the most recent equation (Secant Update), we have
shown that we have a formulation for SUpPSB where no matrix inversion is

12 Nicolas Boutet et al.

Formula 7: SUpPSB

Let Bi ∈ Rn×n, Yi and Si ∈ Rn×m with m ≤ n, m ≤ i, sk is the k-th column of Si,
yk the k-th column of Yi and Si full-ranked. Let ωk positive scalar weight parameters
for k = 2, . . . ,m. Let Bi+1 such that:

– Bi+1s1 = y1
– Bi+1 = BT

i+1

– ‖Bi −Bi+1‖2Fr +
m∑

k=2
ωk ‖Bi+1sk − yk‖

2
2 is minimal

Then, Bi+1 is the solution of the Lyapunov equation :

Bi+1X1 + XT
1 BT

i+1 = X2

where

X1 =
1

2

(
I +

m∑
k=2

ωk(sksTk −
sksT1 (sTk s1)

sT1 s1
)

)

and

X2 = B̄i +
s1w̄T

1 + w̄1sT1
sT1 s1

−
(w̄T

1 s1) + (sT1 w̄1)

2(sT1 s1)2
s1sT1 +

m∑
k=2

ωk
yksTk + skyT

k

2

−
m∑

k=2

ωk

((
(sT1 yk)− (yT

1 sk)
)
s1sTk

2sT1 s1

)
−

m∑
k=2

ωk

((
(yT

k s1)− (sTk y1)
)
sksT1

2sT1 s1

)

−
m∑

k=2

ωk

(
(sT1 sk)s1yT

k + (sTk s1)yksT1
2sT1 s1

)

−
m∑

k=2

ωk

(
(sT1 sk)(sTk y1)− (sT1 yk)(sTk s1)

(sT1 s1)2

)
s1sT1

with

– B̄i =
Bi+BT

i
2

– w̄i = yi − B̄isi

needed. This makes an important difference for the numerical evaluation of
the Hessian matrix or its inverse.

Note however that we still have a Lyapunov equation to solve in order to
find the solution.

3 Numerical experiments

This section is devoted to numerical experiments. Our tests are executed in
three phases. In a first phase, we test the reliability and the robustness of the
formulas on small dimensional problems. In a second step, we compare the
results of the algorithms on a selection of high dimensional problems. Finally,
we use the formulas on a real high dimensional application.

Secant Update PSB with Weighted Multisecant Equations 13

Formula 8: ISUpPSB

Let Hi ∈ Rn×n, Si and Yi ∈ Rn×m with m ≤ n, m ≤ i, yk the k-th column of Yi, sk
the k-th column of Si and Yi full-ranked. Let ωk positive scalar weight parameters for
k = 2, . . . ,m. Let Hi+1 such that:

– Hi+1y1 = s1
– Hi+1 = HT

i+1

– ‖Hi −Hi+1‖2Fr +
m∑

k=2
ωk ‖Hi+1yk − sk‖22 is minimal

Then, Hi+1 is the solution of the Lyapunov equation :

Hi+1X1 + XT
1 HT

i+1 = X2

where

X1 =
1

2

(
I +

m∑
k=2

ωk(yky
T
k −

ykyT
1 (yT

k y1)

yT
1 y1

)

)

and

X2 = H̄i +
y1v̄T

1 + v̄1yT
1

yT
1 y1

−
(v̄T

1 y1) + (yT
1 v̄1)

2(yT
1 y1)2

y1y
T
1 +

m∑
k=2

ωk
skyT

k + yksTk
2

−
m∑

k=2

ωk

((
(yT

1 sk)− (sT1 yk)
)
y1yT

k

2yT
1 y1

)
−

m∑
k=2

ωk

((
(sTk y1)− (yT

k s1)
)
ykyT

1

2yT
1 y1

)

−
m∑

k=2

ωk

(
(yT

1 yk)y1sTk + (yT
k y1)skyT

1

2yT
1 y1

)

−
m∑

k=2

ωk

(
(yT

1 yk)(yT
k s1)− (yT

1 sk)(yT
k y1)

(yT
1 y1)2

)
y1y

T
1

with

– H̄i =
Hi+HT

i
2

– v̄i = si − H̄iyi

3.1 Reliability and robustness

We have chosen to use the testing method proposed by Moré, Burton and
Garbow [18]. The purpose is to test the reliability and the robustness of an
algorithm by testing it on multiple small dimensional problems. The test
functions are commonly used unconstrained test problems with standardized
starting points. The used problems are given in Table 1. If needed to be
defined, the values of the dimension parameter were chosen according to what
exists in the literature [1,7,10,19,26]. The programs are written in Matlab.

14 Nicolas Boutet et al.

Table 1: Test Problems

No n Name No n Name

1 2 Rosenbrock function 19 11 Osborne 2 function
2 2 Freudenstein and Roth function 20 9 Watson function
3 2 Powell badly scaled function 21 10 Extended Rosenbrock function
4 2 Brown badly scaled function 22 4 Extended Powell singular function
5 2 Baele function 23 4 Penalty function I
6 2 Jennrich and Sampson function 24 4 Penalty function II
7 3 Helical valley function 25 10 Variably dimensioned function
8 3 Bard function 26 10 Trigonometric function
9 3 Gaussian function 27 (p.m. not avail. in the Matlab library)

10 3 Meyer function 28 10 Discrete boundary value function
11 3 Gulf R&D function 29 10 Discrete integral equation function
12 3 Box three-dimensional function 30 10 Broyden tridiagonal function
13 4 Powell singular function 31 10 Broyden banded function
14 4 Wood function 32 10 Linear function - full rank
15 4 Kowalik and Osborne function 33 10 Linear function - rank 1
16 4 Brown and Dennis function 34 10 Linear function - 0 columns & rows
17 5 Osborne 1 function 35 (p.m. not avail. in the Matlab library)
18 6 Biggs EXP6 function

3.1.1 Evaluation method

As we are testing multiple algorithms on multiple test problems, we have to
find a way for analyzing the data. We therefor use the perfomance profile
proposed by Dolan and Moré [11]. The performance profile for a solver
ρ(τ) : τ ∈ [1 ,+∞ [→ [0, 1] is a nondecreasing, piecewise constant function,
continuous from the right at each breakpoint. This benchmarking tool makes
it possible to graphically compare the cumulative distribution function for a
performance metric. We use the number of gradient function calls as the metric
(the results for function calls are however similar).

The value of ρ(1) is the probability that the solver will solve the problem
more efficiently than the rest of the solvers (with a better value of the metric,
less function calls, less time...). On the other side, the value of ρ(+∞) is the
probability that the solver will eventually solve the problem. In one graph, we
are able to compare the results of multiple algorithms. If the curve is higher,
the algorithm solves more problems. If the curve is more on the left side, the
algorithm solves the problems more quickly.

The methods we implemented are PSB, pPSB, SUpPSB with direct
updates on the one side and with inverse update on the other side (IPSB,
IpPSB, ISUpPSB). The initial approximations are B0 = H0 = I. We use
a backtracking line search to determine step lengths. The initial value of
the coefficient αi in the formula xi+1 = xi − αi[Bi]

−1f(xi) is 2. This value
is successively divided by 2 until until the Armijo–Goldstein conditions are
fulfilled or after dividing 10 times [1,2].

The iteration is terminated when one of the following conditions is satisfied:

– ||∇g(xi)||2≤ 10−6

Secant Update PSB with Weighted Multisecant Equations 15

Table 2: List of tested formulas with parameters

Direct Formula Inverse Formula
Id Type Id Type ω1 ω2 ω3 ω4

A PSB a IPSB - - - -
B pPSB b IpPSB 1E+00 - - -
C pPSB c IpPSB 1E+03 - - -
D pPSB d IpPSB 1E+03 1E+02 - -
E pPSB e IpPSB 1E+03 1E+01 - -
F pPSB f IpPSB 1E+03 1E+02 1E+01 -
G pPSB g IpPSB 1E+03 1E+01 1E-01 -
H pPSB h IpPSB 1E+03 1E+02 1E+01 1E+00
I pPSB i IpPSB 1E+03 1E+01 1E-01 1E-03
J pPSB j IpPSB 1E+06 1E+02 - -
K pPSB k IpPSB 1E+09 1E+02 - -
L pPSB l IpPSB 1E+06 1E+00 - -
M pPSB m IpPSB 1E+09 1E+00 - -
N pPSB n IpPSB 1E+06 1E+02 1E+01 -
O pPSB o IpPSB 1E+09 1E+02 1E+01 -
P SUpPSB p ISUpPSB - 1E+02 - -
Q SUpPSB q ISUpPSB - 1E+01 - -
R SUpPSB r ISUpPSB - 1E-05 1E-07 -
S SUpPSB s ISUpPSB - 1E-02 1E-04 -
T SUpPSB t ISUpPSB - 1E-03 1E-06 -
U SUpPSB u ISUpPSB - 1E+01 1E-01 -
V SUpPSB v ISUpPSB - 1E-05 1E-07 1E-09
W SUpPSB w ISUpPSB - 1E-02 1E-04 1E-06
X SUpPSB x ISUpPSB - 1E-03 1E-06 1E-09
Y SUpPSB y ISUpPSB - 1E+01 1E-01 1E-03

– Or after 5000 gradient function calls (this means that the function call
within the line search are not counted)

There are, to our knowledge, no published numerical results about pPSB,
nor about the choice of the weight parameters. Our goal is not to make a deep
analysis of the best parameters combinations. Therefore, we present a selection
of parameter combinations that represent the behavior of the algorithms. In
our first analysis, we limited the number of considered secant equations up to
the fourth one. The overview of used formulas is given in Table 2. For pPSB, we
have tested two different evolution profiles for ωk: in the first one, the value of
ωk decreases linearly (pPSB linear, formulas B to I); the second one is similar
except that the value of ω1 has been multiplied by 103 (pPSB non linear,
formulas J to O), which corresponds to a formula where more importance is
given to respecting the most recent secant equation.

Note that we also tested the same formulas for other values of ωk (by
multiplying every ωk by 103 and 10−3). The results were not exactly the same
but the conclusions are similar.

16 Nicolas Boutet et al.

Fig. 1: Best Performance Profiles for direct formulas

3.1.2 Results

The best performance profiles for the direct formulas are given in Figure 1.
Out of our experiments, it is apparent that the value of ω1 in pPSB is of great
importance. Its value must be high enough compared to the other ωi in order
to increase the probability of convergence. This can also be shown with the
good results of SUpPSB. Indeed, the Secant Update property of SUpPSB can
been seen as the case where ω1 =∞.

The value of the following ωi seems to be of less importance for both
the old penalized method and the new Secant Update method. However,
we observe that the ratio between two successive weight parameters has a
clear impact. If the order of magnitude of two successive ωi is too close,
adding extra secant equations leads to worse results. On the other hand,
if the difference of the order of magnitude is high enough, the addition of
older secant equations improves the results. This could be interpreted the
following way. Adding an extra secant equation comes down to using more
information which improves the efficiency of the algorithm. However, if one
gives too much importance/weight to information coming from older secant
equations compared to the more recent secants, we lose some part of the most
recent information.

For the inverse update formulas (Figure 2), using the same weight values
leads to less obvious results for IpPSB and ISUpPSB. Indeed none of the

Secant Update PSB with Weighted Multisecant Equations 17

Fig. 2: Best Performance Profiles for inverse formulas

Fig. 3: Best Performance Profiles for inverse formulas, multiplying ωi by 10−3

18 Nicolas Boutet et al.

parameter combinations shows clearly better results than the standard IPSB.
Figure 3 was built by multiplying every ωi from Table 2 by 10−3. This change
leads to results that are more similar to the previous results. We note however
that this change creates some very small value of ωi which could be numerically
not suitable because of potential rounding errors or computation of numerical
values that are negligible.

Finally, the curves for the direct formulas are globally better than for the
inverse update. This means that the algorithm converges less often and less
quickly for inverse formulas. But, on the same way that the Broyden’s “good”
formula is not really better than his “bad” formula, we could simply conclude
that our choice for weights is probably not optimal. As mentioned earlier,
because of the lack of previous results [13], we did not make a deep analysis
of the best parameter combinations.

3.2 Higher dimensions

The test problems used in the previous section are interesting to test the
robustness but clearly not high dimensional problems. In this second phase,
we will test our formulas on higher dimensional problems.

3.2.1 Evaluation method

While the first problems in Table 1 only exist for a given limited value of n, the
last problems of the list also exist in higher dimensions. So it is possible to use
them to test the algorithm in higher dimensions. Table 3 gives the problems
used for this second phase of the tests.

Table 3: Test Problems in higher dimension

No n Name No n Name

21 1000 Extended Rosenbrock function 29 1000 Discrete integral equation function
22 1000 Extended Powell singular function 30 1000 Broyden tridiagonal function
23 1000 Penalty function I 31 1000 Broyden banded function
24 1000 Penalty function II 32 1000 Linear function - full rank
25 1000 Variably dimensioned function 33 1000 Linear function - rank 1
26 1000 Trigonometric function 34 1000 Linear function - 0 columns & rows
28 1000 Discrete boundary value function

The termination conditions are similar to the previous test case but because
of the higher dimension and the longer computation time, we have however
added one condition:

– ||∇g(xi)||2≤ 10−6

– Or after 5000 gradient function calls
– Or after a calculation time of maximum 72 hours, due to technical

limitations

Secant Update PSB with Weighted Multisecant Equations 19

Fig. 4: Best Performance Profiles for direct formulas, with n = 1000

An extra relative stopping criterion in the form ||∇g(xi)||2≤
10−6||∇g(x0)||2 [17] was also tested to try to decrease the number of problems
that stopped on the 72 hours limitation, but this did not improve the results.

3.2.2 Results

The performance profile for the direct formulas is given in Figure 4. For these
problems, as in the previous section, we see that SUpPSB solves more problems
and solves them quicker than the pPSB.

We also observe however that a majority of the problems could not be
solved by any of the formulas. This result could induce a bias in our conclusion.
To execute a deeper control, we checked which of the stopping criteria was
blocking the resolution of the problem. This revealed that pPSB (except for
Formulas B and C) diverges for the majority of the problems. On the other
hand, PSB and SUpPSB stopped on the maximum number of iterations or
time if they did not solve the problem.

Those results confirm the globally better performance of SUpPSB
compared to pPSB.

The tests have been executed with and without use of line search. In our
application, the line search did not improve the results. When a formula gave
good results for a optimization problem, the line search has mainly no impact:
the value of αi = 1 satisfied the Armijo conditions [2].

20 Nicolas Boutet et al.

Table 4: List of tested formulas with parameters

Direct Formula
Id Type ω1 ω2 ω3 ω4

A PSB - - - -
Z1 pPSB 1E+15 1E+02 - -
Z2 pPSB 1E+15 1E+01 - -
Z3 pPSB 1E+15 1E+02 1E+01 1E+00
Z4 pPSB 1E+15 1E+01 1E-01 1E-03
Z5 SUpPSB - 1E+02 - -
Z6 SUpPSB - 1E+01 - -
Z7 SUpPSB - 1E+02 1E+01 1E+00
Z8 SUpPSB - 1E+01 1E-01 1E-03

On the other side, when the formula could not solve the problem within
the limit of 5000 gradient function calls (basically with the pPSB formulas),
the line search found no value of αi satisfied the Armijo conditions. This leads
to a number of useless extra function calls and to an extreme reduction of the
step length which has a negative influence on the number of steps needed to
solve the problem.

Finally, working in higher dimensions also makes it possible to increase the
number of secant equations that are used to define the estimate of the gradient
(m). In order to observe the influence of a higher value of m, we have extended
our formula to m = 8 and m = 16. We used for these tests ωi+1 = ω3

ω2
ωi. This

test case leads to very few differences compared to the previous case where
m ≤ 4. This is a consequence of our choice of parameters and shows that,
when the weights become too small, the extension of the number of fulfilled
secant equations does not improve the estimate of the Hessian. In fact, those
extra equations are negligible because of the too small value of ωi.

3.3 Simulate SUpPSB from pPSB

As discussed at the end of section 2.3, one can expect that it is possible to
simulate the effect of SUpPSB by letting the weight of the last equation (ω1)
to be much larger than the other weights in pPSB. We therefor used the same
test problems (Table 3) and the same stopping conditions as in the previous
section. The tested formulas and their parameters are given in Table 4. We
have used the same parameters for pPSB and SUpPSB, except for ω1 which
is set to 1E+15 for pPSB.

The results are given in Figure 5. We see that pPSB with a huge value of
ω1 compared to the other ωi does not perform correctly. It is even less efficient
than standard PSB. This confirms the explanation given in section 2.3. The
inversion of the ill-conditioned matrix in order to compute the value ofX1 leads
to numerical problems in pPSB if the value of ω1 is too important compared
to the other ωi. Note that the use of Ruiz’s algorithm as preconditioner does

Secant Update PSB with Weighted Multisecant Equations 21

Fig. 5: Comparison Z2 and Z6

not improve the result of pPSB here, which shows that next to the potential
problem of ill-conditioning of the matrix, the use of a huge value of ω1 is still
not suitable. By contrast, SUpPSB outperforms PSB and thus pPSB with
ω1=1E+15 in most situations.

3.4 Real application

In the previous section, there are a lot of problems that none of the
algorithms could solve. One explanation for that is that those problems are
particularly difficult. They were chosen by Moré and co. because they have
some ‘complicated features’ [18]. A lot of real high dimensional problems
are however quite smooth. So it could be interesting to test our formulas
on smoother problems and on a higher dimension. Therefore, we make a
performance test of the formulas on a real application.

3.4.1 Test problem

The application of interest is the identification of the arterial wall’s stiffness by
comparing the motion of the arterial wall with a reference, possibly obtained
from non-invasive imaging [9].

In this problem, the goal is to adjust the stiffness parameters of a one-
dimensional elastic tube through which an incompressible fluid flows so that

22 Nicolas Boutet et al.

the displacement of the tube wall as a function of time agrees as closely as
possible with the displacement data from a non-invasive measurement (or
target). The tube is divided into n sections of different but uniform stiffness.
As the stiffness parameters are the decision variables for the problem, the
dimension of the problem is thus n.

This problem can be reformulated as a minimization problem where the
cost function is defined as the difference between the simulation data and the
measurement.

3.4.2 Evaluation method

We have executed tests on models of tubes of length n = 1000.
The target displacement is a sinusoidal function with a wave length of

2× n. The goal is to minimize the difference between the target displacement
and the displacement computed with the decision variables (being the stiffness
parameters for each segment of the tube).

Here again, we implemented (I)PSB, (I)pPSB, (I)SUpPSB. We do not use
line search as it results in potential extra function calls, which are extremely
costly for this application. The value of the weight coefficients ωj are the same
as for the previous tests (Table 2). The initial approximation is B0 = H0 = I
and the starting point is a stiffness equal to zero. The iteration is terminated
when one of the following conditions is satisfied:

– ||∇g(xi)||2≤ 10−4

– Or after 2000 function calls
– Or after a calculation time of maximum 72 hours, due to technical

limitations

3.4.3 Results

As we test the formulas on only one occurrence of one single problem, we can
compare the results directly without performance profile. The results for the
direct formulas are given in Table 5.

The SUpPSB performs globally better than the pPSB with the selected
weight parameter values. Indeed, with most of the pPSB formulas, the
algorithm stops early or diverged. The weight combinations for pPSB or
SUpPSB that perform the best have a value of parameter ω1 being high
(1E+06, 1E+09). This high value of ω1 corresponds to trying to satisfy the
last secant equation as much as possible. This corresponds precisely to the
Secant Update property of the SUpPSB formula.

Looking more in detail to the results of the SUpPSB formulas, we see that
many of our examples perform exactly in the same way as PSB. It means,
that contrary to the tests problems of the previous section, the value of ω2,
ω3 and ω4 had no impact. These weight coefficients seem to be too small for
our smoother example. This is confirmed with the good results of the formula
used with a higher values of ω2.

Secant Update PSB with Weighted Multisecant Equations 23

Table 5: Results of the optimization for the model with
n = 1000

Id Type Iter Remarks

A PSB 492 a IPSB 512 Loc
B pPSB - OOT b IpPSB - OOT
C pPSB - OOT c IpPSB - OOT
D pPSB - Div d IpPSB - OOT
E pPSB - Div e IpPSB - OOT
F pPSB - Div f IpPSB - OOT
G pPSB - OOT g IpPSB - OOT
H pPSB - Div h IpPSB - OOT
I pPSB - OOT i IpPSB - OOT
J pPSB 530 j IpPSB - OOT
K pPSB 527 k IpPSB - OOT
L pPSB - Div l IpPSB - OOT
M pPSB 608 m IpPSB - OOT
N pPSB - Div n IpPSB - OOT
O pPSB 7 Loc o IpPSB - OOT
P SUpPSB 7 Loc p ISUpPSB 185 Loc
Q SUpPSB 16 Loc q ISUpPSB 185 Loc
R SUpPSB 492 r ISUpPSB 185 Loc
S SUpPSB 492 s ISUpPSB 185 Loc
T SUpPSB 492 t ISUpPSB 185 Loc
U SUpPSB 404 u ISUpPSB 185 Loc
V SUpPSB 492 v ISUpPSB 185 Loc
W SUpPSB 492 w ISUpPSB 185 Loc
X SUpPSB 492 x ISUpPSB 185 Loc
Y SUpPSB 473 y ISUpPSB 185 Loc

Div: Diverged / OOT: Stopped after 72Hr / Loc: Stopped at local
optimum

The results of inverse formula also lead to a clear distinction between the
IpPSB and the ISUpPSB formulas. Even if none of the formulas does lead to
the real optimum, IPSB and ISUpPSB reach some local optimum while IpPSB
does not find any solution within the allowed 72 hours.

The fact that none of the formulas reaches the global optimum shows the
importance of the weight parameter. Moreover, it seems that the weights must
be different for the direct and indirect formulas. However, here again, ISUpPSB
leads to better results than IpPSB, which tends to prove that the first secant
equation is very important.

Out of these first results, even if a more detailed analysis would be needed in
order to confirm this, we can conclude that the (I)SUpPSB formula converges
generally more quickly than the (I)pPSB. It also makes it possible to use
smaller values for the weight parameters ωj . The Secant Update property is
thus generally an important feature that tends to improve the convergence of
the optimization algorithm.

24 Nicolas Boutet et al.

4 Further development

In this section, we discuss some possible further developments or improve-
ments.

First of all, the impact of line search within the algorithm could be
analyzed more deeply. Indeed, when solving a system of equations f(x) = 0
(see equation (1.2)), the complexity of the calculation of the solution can be
prohibitive which excludes the use of line search. For an optimization problem,
the situation is however different: the computation of the estimation of the
gradient of equation (1.1), f(x), is often more complex than the evaluation of
g(x). A simple reasoning based on an estimation of the gradient by using finite
differences, shows that the complexity of the calculation of the gradient can be
n+1 times higher than the calculation of the function g(x) itself. Based on this
argument, using a limited number of line search steps within the optimization
algorithm makes sense. While we have used a very simple version of line search
in this paper, a better line search technique could provide an improvement to
the rate of convergence.

Secondly, the analysis of the choice of the weight parameters has to be
deepened. It should be possible to define their order of magnitude in function
of some characteristics of the problem. For instance, from equations (2.1), we
can expect that the order of magnitude of the weight coefficients could be
defined in function of the dimension of the problem as the amplitude of the
norm will depend on the dimension.

Finally, instead of searching the weight parameter combinations that work
well for a given (type) of problem, one could also try to search for an analytical
optimum for the coefficients. These optimal values, if they exist, would lead
to a weight-free formula, with the values of ωj being expressed in function
of characteristics of the problem (s, y, S, Y ...). This solution could make it
possible to work without weight parameters which would be a huge advantage
as the main difficulty of the (I)SUpPSB is the definition of those weight
parameter.

5 Conclusion

We have developed a Secant Update version of the (inverse) penalized PSB
formula. This method preserves the symmetry of the gradient estimate and
satisfies the most recent secant equation (Secant Update property). As in the
(inverse) penalized PBS, the non-satisfaction of the other secant equations
penalized by means of weight factors.

The computation of the new formula presents an advantage in comparison
to the original (I)pPSB. The new expression for the estimate of the gradient
does not require any matrix inversion, which makes it easier to compute and
avoids some numerical rounding problems.

Next to this advantage for the computation, (I)SUpPSB performs generally
better than (I)pPSB and makes it possible to use limited values of weight

Secant Update PSB with Weighted Multisecant Equations 25

factors. Moreover, our results show that the satisfaction of the last secant
equation (the Secant Update property) has a significant positive impact on
the performance. This is an extra argument for (I)SUpPSB against (I)pPSB.

The choice of the weight parameters is of great importance. Next to the
development of the formula of (I)SUpPSB, we have made a first analysis of the
choice of the weight parameters. This analysis shows that the ratio between two
following coefficients is a key factor for the good convergence of the algorithm.
This study must however be conducted further.

For those reasons, SUpPSB and ISUpPSB appear to be interesting
alternatives for complex high dimensional optimization problems.

References

1. Ahookhosh, M., Ghaderi, S.: On efficiency of nonmonotone Armijo-type line searches.
Applied Mathematical Modelling 43, 170–190 (2017)

2. Armijo, L.: Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific Journal of mathematics 16(1), 1–3 (1966)

3. Bartels, R.H., Stewart, G.W.: Solution of the matrix equation AX+ XB= C [F4].
Communications of the ACM 15(9), 820–826 (1972)

4. Broyden, C.: On the discovery of the “good Broyden” method. Mathematical
programming 87(2), 209–213 (2000)

5. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations.
Mathematics of computation 19(92), 577–593 (1965)

6. Broyden, C.G.: Quasi-Newton methods and their application to function minimisation.
Mathematics of Computation 21(99), 368–381 (1967)

7. Chen, C., Luo, L., Han, C., Chen, Y.: Global convergence of an extended descent
algorithm without line search for unconstrained optimization. parameters 1, 2 (2018)

8. Degroote, J., Bathe, K.J., Vierendeels, J.: Performance of a new partitioned procedure
versus a monolithic procedure in fluid–structure interaction. Computers & Structures
87(11-12), 793–801 (2009)

9. Degroote, J., Hojjat, M., Stavropoulou, E., Wüchner, R., Bletzinger, K.U.: Partitioned
solution of an unsteady adjoint for strongly coupled fluid-structure interactions and
application to parameter identification of a one-dimensional problem. Structural and
Multidisciplinary Optimization 47(1), 77–94 (2013)

10. Ding, Y., Lushi, E., Li, Q.: Investigation of quasi-Newton methods for unconstrained
optimization. Simon Fraser University, Canada (2004)

11. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles.
Mathematical programming 91(2), 201–213 (2002)

12. Errico, R.M.: What is an adjoint model? Bulletin of the American Meteorological
Society 78(11), 2577–2591 (1997)

13. Gratton, S., Malmedy, V., Toint, P.L.: Quasi-Newton updates with weighted secant
equations. Optimization Methods and Software 30(4), 748–755 (2015)

14. Haelterman, R.: Analytical study of the least squares quasi-Newton method for
interaction problems. Ph.D. thesis, Ghent University (2009)

15. Haelterman, R., Bogaers, A., Degroote, J., Boutet, N.: Quasi-Newton methods for the
acceleration of multi-physics codes. International Journal of Applied Mathematics 47(3)
(2017)

16. Jarlebring, E.: KTH royal institute of technology in Stockholm, lecture notes:
Numerical methods for Lyapunov equations. Url: https://people.kth.se/~eliasj/
NLA/matrixeqs.pdf. Last visited on 2018/01/07

17. Kelley, C.T.: Iterative methods for optimization. SIAM (1999)
18. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software.

ACM Transactions on Mathematical Software (TOMS) 7(1), 17–41 (1981)

https://people.kth.se/~eliasj/NLA/matrixeqs.pdf
https://people.kth.se/~eliasj/NLA/matrixeqs.pdf

26 Nicolas Boutet et al.

19. Neumaier, A.: Universität Wien , personnal webpage: Global optimization test
problems. Url: http://www.mat.univie.ac.at/~neum/glopt/test.html & http://www.
mat.univie.ac.at/~neum/glopt/bounds.html. Last visited on 2018/02/04

20. Patelli, E., Pradlwarter, H.J.: Monte Carlo gradient estimation in high dimensions.
International journal for numerical methods in engineering 81(2), 172–188 (2010)

21. Plessix, R.E.: A review of the adjoint-state method for computing the gradient of a
functional with geophysical applications. Geophysical Journal International 167(2),
495–503 (2006)

22. Powell, M.J.: A new algorithm for unconstrained optimization. Nonlinear programming
pp. 31–65 (1970)

23. Rheinboldt, W.C.: University of Pittsburgh, lecture notes: Quasi-Newton methods.
Url: https://www-m2.ma.tum.de/foswiki/pub/M2/Allgemeines/SemWs09/quasi-newt.
pdf. Last visited on 2018/01/07

24. Ruiz, D.: A scaling algorithm to equilibrate both rows and columns norms in matrices.
Tech. rep., CM-P00040415 (2001)

25. Schnabel, R.B.: Quasi-Newton methods using multiple secant equations. Tech. rep.,
DTIC Document (1983)

26. Zhang, J., Xu, C.: Properties and numerical performance of quasi-Newton methods with
modified quasi-Newton equations. Journal of Computational and Applied Mathematics
137(2), 269–278 (2001)

http://www.mat.univie.ac.at/~neum/glopt/test.html
http://www.mat.univie.ac.at/~neum/glopt/bounds.html
http://www.mat.univie.ac.at/~neum/glopt/bounds.html
https://www-m2.ma.tum.de/foswiki/pub/M2/Allgemeines/SemWs09/quasi-newt.pdf
https://www-m2.ma.tum.de/foswiki/pub/M2/Allgemeines/SemWs09/quasi-newt.pdf

	Introduction
	Method development
	Numerical experiments
	Further development
	Conclusion

