Review

The nutritional status in CF: Being certain about the uncertainties

Dimitri Declercq a, *, Svenya Van Meerhaeghe a, Sophie Marchand b, Eva Van Braeckel c, Sabine van Daele a, Frans De Baets a, Stephanie Van Biervliet d

a Center for Cystic Fibrosis, Department of Pediatrics, Ghent University Hospital, C. Heymanslaan 10, Belgium
b Center for Nutrition and Dietetics, Ghent University Hospital, C. Heymanslaan 10, Belgium
c Cystic Fibrosis Reference Center, Department of Respiratory Medicine, Ghent University Hospital, C. Heymanslaan 10, Belgium

Article info

Article history:
Received 7 June 2018
Accepted 17 October 2018

Keywords:
Cystic fibrosis
Nutritional status
BMI
Body composition

Summary

Background: Nutritional therapy is one of the cornerstones in cystic fibrosis (CF) therapy. There is a strong association between nutritional status and pulmonary function and thus longevity. Therefore nutritional therapy should be continuously adapted to preserve or improve the nutritional status. This narrative review was written to reconsider nutritional therapy in CF based on the latest evidence available since the publication of the ESPEN – ESPGHAN – ECFS guidelines on nutrition care for infants, children and adults with CF.

Methods: A literature search in Pubmed, Scopus and Web of Science was conducted to identify new research focusing on the use of growth charts, body composition, protein intake and pancreatic enzyme therapy (PERT) in CF between June 2014 and June 2017.

Results: The search strategy resulted in a total of 1810 hits across the databases. After reviewing title and abstract only 17 studies were included of which 2 animal studies. The use of growth charts was discussed in 3 studies, body composition in 6, protein intake and digestion in 4 and PERT in 4.

Conclusion: According to the current guidelines and the available evidence of the discussed topics, it is important that the nutritional therapy in CF is redefined according to age, pancreatic function and disease stage. Macronutrients balances are of importance and change over lifetime. As a consequence an accurate PERT intake is required and thus further research on timing and dosage is necessary. To improve the nutritional assessment a proper use of the growth charts and a consensus on body composition measurements, references and thresholds is advised.

© 2018 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Cystic fibrosis (CF) is a life-threatening autosomal recessive multisystem disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. A variety of organs, including lungs, pancreas, intestine and hepatobiliary tract are affected [1]. CF, first described in 1938 by Dorothy Andersen, was identified as a pancreatic disease with extensive acinar lesions on autopsy, possibly leading to pancreatic insufficiency. Clinical characteristics as vitamin A deficiency, increased fibrous tissue in the liver, indeterminate glucose intolerance and chronic respiratory infections were also described in the analysed cases [2]. These gastro-intestinal and endocrine related challenges have a significant impact on the nutritional status and evolution of the disease. Today most of them, like cystic fibrosis related diabetes (CFRD) and cystic fibrosis related liver disease (CFLD), remain a challenge to diagnose and manage [1].

Since Corey et al. (1988) described the importance of a high fat, high calorie diet with sufficient pancreatic enzyme replacement therapy (PERT) for survival, improving nutritional status became one of the cornerstones of CF-therapy [3]. Today, based on registry results, merely half of the CF patients in Europe achieve a BMI according to the guidelines: ≥ 50th percentile (P50) for children or ≥ 23 kg/m² or ≥ 22 kg/m² for male and female patients respectively [1,4].
3. Results

A total of 1810 hits resulted in the inclusion of 17 studies. Three studies were included to discuss the use of growth charts as a method to evaluate nutritional status [10–12]. Six studies dealt with body composition as an essential part of nutritional assessment [13–18]. Four studies evaluated protein intake and digestibility [19–22] and 4 studies discussed PERT dosage and timing [23–26]. In the latter two groups, two animal studies were included. A summary of the included studies, according to their subject of research, is given in Tables 1–4. The tables are compiled to support the reading of the results section.

3.1. Growth charts

Based upon the available literature, guidelines advise to aim at a weight for height (WFL) or BMI ≥ 50th percentile (P) to ensure optimal nutritional status and safeguard future pulmonary function [1]. Since 2010, Centers for Disease Control and Prevention (CDC) and the American Academy of Pediatrics recommend the use of the 2006 WHO growth charts (GC) in patients until the age of 2 and the 2000 CDC GC in older patients. Three studies [10–12] focused on the consequences of this advice in the CF population. Machogu et al. (2015) reported an important discrepancy in WFL P between 2000 CDC and 2006 WHO GC at the age of 12–24 months. At the age of 24 months, 29% of the children with a WFL >50th P on WHO GC fell <50th P on the CDC charts. For the BMI, the 50th P on CDC GC was equivalent to the 70th P for boys and the 67th P for girls on the WHO GCs. These differences in nutritional target have consequences on clinical outcomes as demonstrated by Machogu et al. (2015) and Usatin et al. (2017). CF patients with a WFL >50th P on both curves at the age of 2 had a significant higher FEV1 at the age of 6 compared to those with WFL >50th P on the WHO GC alone. Usatin et al. (2017) stratified patients in 3 groups based on their WFL at the age of 2: WFL <50th P on both GCs, WFL >50th P on WHO but <50th P on CDC and WFL >50th P on both GCs. At the age of 18 the highest FEV1 was observed in the group with WFL >50th P on both GCs, which also comprised the highest lung-transplant-free proportion of patients. In a parallel analysis, the authors found a correlation between the CDC WFL category (WFL <10th percentile, WFL 10th to 25th percentile, WFL 25th to 50th percentile and WFL >50th percentile) and FEV1 at age 18.

3.2. Body composition

Since the 6 studies on body composition used different methods, comparison of the results between studies was impossible [13–18]. All studies suggested fat free mass (FFM) as a more sensitive parameter than BMI to evaluate nutritional status and predict deterioration in pulmonary function. Sands et al. (2015) studied body composition using skinfold thickness measurements. CF children had a lower FFM in limbs and upper part of the trunk compared to controls. The lower FFM was more pronounced in patients with chronic P. aeruginosa infection. The CF children were also shorter. Alicandro et al. (2015) studied the concordance between skinfold thickness, single frequency bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA). BIA and DXA displayed a good correlation in their mean FFM measurement. Skinfold thickness measurements, on the other hand, underestimated the body fat percentage (BF%) in children and adult males compared to DXA. There was, however, a poor intra-individual agreement between the 3 techniques. In adults FMI was over- and under-predicted at the respectively lower and upper DXA results. In children fat mass (FM)% and FFM% underestimation decreased during puberty.
BIA equations and technique should be validated for the population if used for body composition measurement. For CF patients, an equation was validated by Charatsi et al. (2016), with DXA as a reference method. A significant correlation for FFM (r = 0.995; p < 0.001) and FM (r = 0.96; p < 0.001) was found using both techniques. They further studied the relation between body composition measured by BIA and pulmonary function in 40 patients. FFM depletion, measured by BIA and pulmonary function in 40 patients, was positively associated with FFMI and negatively with FMI and FM% after adjustment for age, sex and BMI. Patients with NWO had a lower mean FEV1 compared to lean patients (FM% > 30% in men and > 30% in women, was reported in one third of the CF patients. FEV1 was positively associated with FFMI and negatively with FMI and FM% after adjustment for age, sex and BMI. Patients with NWO had a lower mean FEV1 compared to lean patients (FM% > 30% in men and > 30% in women). Doulgeraki et al. (2017) studied the effect of NWO on BMI or factors of body composition. A lower BMI and fat free mass index (FFMI) but a similar fat mass index (FMI) and BMI. Normal weight obesity (NWO) defined as a BMI < 25 kg/m² and a FM% > 30% in men and > 30% in women, was reported in one third of the CF patients. FEV1 was significantly lower in the group with NWO compared to lean patients (FM% ≤ 30%).

3.3. Macronutrient: protein intake and digestion

Research on macronutrient needs in CF patients is scarce. The current recommendation for protein intake is derived from other inflammatory conditions and set at 20 energy percent (EN%) [1].
In the 6 months study period the protein EN% intake decreased with age but the macronutrient intake expressed as EN% did not. Over-tively, 0.8% life and the mean lipid and protein intake increased with respect-mean carbohydrate consumption decreased with 1.1% with age in favour of an increased protein and lipid intake. The patients from 6 different European CF centers. Young patients et al. (2017) observed a variable protein intake from 10 to 17 EN%

Overview of included studies on protein.

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Male/Female</th>
<th>PI</th>
<th>Study design</th>
<th>Technique</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>[20]</td>
<td>27</td>
<td>–</td>
<td>100%</td>
<td>Prospective cohort study, controlled before and after</td>
<td>IV: citrulline L-[5-13C-5,5-2H2]-Citrulline; Oral: 15N-spirulina and L-[ring-2H5]phenylalanine</td>
<td>Protein digestibility as% of healthy subjects for adults vs children: 44.7% vs 48.3% (without PERT) between 340 and 420 min plateau was reached: 93.4% vs 87.4% (after PERT administration) mean (SD) daily intake energy: 1462 (329) kcal/day; fat: 35.5 ENS (6.1); protein: 12.7 ENS (1.7) or 45.9 (12.1) grams; carbohydrates: 52 (6.15) mean intake (ENS); protein 14, fat 34 and carbohydrates 51 PERT: 1520 to 7758 LU/g fat/meal ileal protein digestibility (%) (mean (SD)): C 89 (6) vs P0 29 (11) vs P1 58 (14) vs P2 74 (14)</td>
</tr>
<tr>
<td>[21]</td>
<td>75</td>
<td>3.8 (1.3)</td>
<td>100%</td>
<td>Baseline study from multisite RCT</td>
<td>7 day food record</td>
<td></td>
</tr>
<tr>
<td>[19]</td>
<td>207</td>
<td>8.3 (1.2)</td>
<td>91%</td>
<td>prospective, cross-sectional, multicenter</td>
<td>4 day food record and PE registration references: CDC</td>
<td></td>
</tr>
<tr>
<td>[22]</td>
<td>10 (piglets)</td>
<td>60%</td>
<td>Cross-over, controlled</td>
<td>2-levels of enzymes: LU 7500 and 75,000 and PU 388 and 3881</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LU = lipase units; PU = protease units; C = control; P0 = untreated group; P1 = lower dose group; P2 = higher dose group.

Overview of included studies on PERT.

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Male/Female</th>
<th>PI</th>
<th>Study design</th>
<th>Technique</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>[26]</td>
<td>224</td>
<td>52%/48%</td>
<td>100%</td>
<td>Retrospective observational</td>
<td>CFA (n = 1373); 3-day dietary food records (n = 1719)</td>
<td>PERT administration: 2–9 years > 5000LU/KGBW/day; > 9 yrs \to around 3000 LU/kgBW/day; 16 children: >10,000 LU/kgBW/day EN: 1350 - 2043LU/g, fat/day and 3959 – 7627 LU/kgBW/day; CFA: 91%–96%. PERT: 5620 lipase units/g dietary fat; mean BW (SD): C 79.7 (5.03); P0 51.3 (4.36); P1 62.9 (3.03) GIT weight (g/kg BW): C 42.8 (2.79); P0 64.9 (4.37); P1 54.8 (3.21) PERT: 1333 LU/g fat/meal; 10 min before (A) or after meal (B) PCDR of 13CO2 at 360 min A 32.5 (10)% vs B 31.2 (13,7)%; individual basis: PERT B A: 11 increased PCDR, PERT A B: 7 increased PCDR, median (IQR): CFA 89,7% (84.9; 93.3); LU/g fat: 719,4 (451.5; 1205); SD LU/g fat: 616.7 (308.1; 1516)</td>
</tr>
<tr>
<td>[24]</td>
<td>12 (piglets)</td>
<td>100%</td>
<td>Animal study</td>
<td>7 day food record</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[25]</td>
<td>18</td>
<td>9.8 (4.2)</td>
<td>50%/50%</td>
<td>randomised double blind, control trial</td>
<td>lipase activity: 13C-mixed triglyceride breath test; gastric emptying: 13C-octanoate breath test</td>
<td></td>
</tr>
<tr>
<td>[23]</td>
<td>16</td>
<td>8.6 (4.1)</td>
<td>56%/44%</td>
<td>Retrospective observational</td>
<td>CFA (n = 144); 4-day food records (n = 192)</td>
<td></td>
</tr>
</tbody>
</table>

C = control; P0 = untreated group; P1 = treated group; GIT: gastrointestinal tract.

This recommendation seems difficult to reach [19,21]. Calvo-Lerma et al. (2017) observed a variable protein intake from 10 to 17 EN% with a mean intake of 14 EN% in a cross sectional study of paediatric patients from 6 different European CF centers. Young patients tended to have a high carbohydrate intake whereas this decreased with age in favour of an increased protein and lipid intake. The mean carbohydrate consumption decreased with 1.1–2.5%/year of life and the mean lipid and protein intake increased with respectively, 0.8–2.2% and 0.7–1.8%. Filigno et al. (2017) noted a mean daily protein intake of 12.7 EN% (1.7) in pre-schoolers. Dinner and lunch contributed to the fat and protein intake whereas snacks mainly contributed to the carbohydrate intake. A strong negative correlation between fat and carbohydrate intake was observed ($r = -0.97, P < 0.001$). The absolute energy intake increased with age but the macronutrient intake expressed as EN% did not. Over the 6 months study period the protein EN% intake decreased with 1%. A positive height for age z-score evolution correlated with protein but not with carbohydrate and fat intake.

Another issue is protein digestibility. Two studies focused on the digestibility of protein of which one was performed in an animal model [20,22]. Mary et al. (2017) measured 15N in the digestive and metabolic pools in pancreatic duct ligated minipigs with different enzyme replacement doses compared to controls. A PERT dose-dependent effect on protein digestion was shown. The PERT dose-dependent effect on plasma proteins could not be shown, possibly due to the high protein content in the test meal. The urinary excretion of 15N did not differ. The PERT treatment groups differed significantly when total amount of dietary 15N recovered in plasma protein and urine were pooled. Engelen et al. (2014) demonstrated a severely reduced protein digestion capacity using a continuous sip feeding with added 15N-labeled spirulina protein and L-[ring-2H5]phenylalanine (PHE) and measuring the plasma
ratio \([^{15}\text{N}]{\text{PHE}}\) to \([^{2}\text{H}_2]{\text{PHE}}\) in pancreatic insufficient CF patients. Without PERT only 46% of protein digestion was reached in CF patients compared to controls. With PERT administration 90% of protein digestion was reached with a significant delay of 100 min. There was no difference between CF children and CF adults. The use of proton pump inhibitors in 85% (16/19) of CF patients had no impact on protein digestion.

3.4. Pancreatic enzymes

PERT is the utmost important factor to correct maldigestion and improve nutritional status in CF patients. In an animal model study, pancreatic insufficient piglets with or without PERT were significantly different compared to controls. Pancreatic insufficient piglets receiving PERT had a significant higher weight compared to those without PERT but did not reach the control weight. PERT dosage was constant and based on the fat content of the meal. Furthermore pancreatic insufficient piglets without PERT had a higher gastrointestinal tract weight [24].

In humans, studies were unable to demonstrate a correlation between BMI and PERT dosage [19,23,26]. Even the coefficient of fat absorption (CFA) could not be related to the PERT dosage [23,26]. 24% of the CF patients with a CFA <85% took comparable PERT dosage to patients with a CFA >85%. Patients using tube feeding (17%) had a higher CFA compared to those without, while PERT intake was not significantly different [26]. Calvo-Lerma et al. (2017) found that PERT dose variability was correlated with improved CFA. Van der Haak et al. (2016) studied PERT timing in relation to gastric emptying using a \(^{13}\text{C}\) breath test. The percentage cumulative dose recovered (PCDR) by breath test in the total group did not change according to PERT timing (before or after the meal) and gastric emptying. However, there was a marked inter-individual variance. Changing the enzyme timing according to gastric emptying, improved the PCDR in patients with a low PCDR (6/8). Furthermore, a 10% increase in PCDR was achieved in patients with a fast gastric emptying by giving the enzymes before the meal.

4. Discussion

4.1. Nutritional assessment

Since the study of Corey et al. (1988), the nutritional status, evaluated as BMI, has markedly improved in the CF population. The persistent association between BMI and pulmonary function has led to continuing strategies to improve or maintain an adequate BMI. In the era of constantly evolving therapies targeting CFTR function, a significant number of patients need further nutritional interventions. As a consequence, a proper assessment of the nutritional status is necessary. In this review two aspects concerning the nutritional assessment were addressed: the use of growth charts and the measurement of body composition.

A significant difference between the CDC and WHO charts between the age of 12–24 months has been observed as well as its influence on long-term pulmonary function. Based on these studies, the Cystic Fibrosis Foundation released a recommendation to set the target for WFL \(> 75\)th on the WHO GC for children aged 12–24 months. The use of national and ethnic appropriate growth charts is necessary to assess nutritional status, evaluate effect of interventions but also correlate to pulmonary function in CF patients. Machogu et al. (2015) reported, depending on the growth chart used, a difference of 4% in FEV1 in children with CF with a normal pulmonary function. The clinical relevance of this difference was debated. However, other commonly used therapies as dornase alfa (FEV1 difference 5.6%) and hypertonic saline (FEV1 difference 4.15%), had similar effects on FEV1 [10]. Both therapies are now standards of clinical practice. A good nutritional assessment in the first years of life and proper nutritional therapy should be considered as an adjunct to pulmonary therapy. It should also be noticed that the European Cystic Fibrosis Patient Registry uses the CDC references in their annual report. Therefore the number of children achieving a BMI at the 50th percentile might differ when national or ethical appropriate growth charts are used. The observed differences between the growth charts are not a critique on the methodology of the used growth charts but might create a false sense of security for healthcare providers and thus result in a lesser aggressive nutritional therapy [10,11]. Redefining the use of the growth charts might be of value for the assessment of the nutritional status in CF. Therefore we are aware that more research is needed, e.g. comparing long term outcomes when CDC, WHO and national or regional growth charts are used.

Although measuring body composition is suggested as a more sensitive parameter to evaluate nutritional status and predict deterioration of pulmonary function, there is no consensus on the technique or the used equation, nor are there proper references available. As a consequence, consensus on thresholds for FFM and FFMI are lacking. The strong correlation between FFMI and pulmonary function found by Charatsi et al. (2016) justifies the urge for more research concerning body composition. Especially in the era of an increasing incidence of obesity and the introduction of novel therapies, a consensus on the above-mentioned methodological issues is justified. Achieving an acceptable BMI is not always build on acquiring sufficient lean body mass nor does it result in a clinical benefit [14]. Although beyond the scope of this review, research on lean body mass and its influence on pulmonary outcome parameters, requires also insight in the presence of CFRD and physical activity. Insulin is an anabolic hormone therefore deficiency can alter the anabolic response. As a consequence the impaired glucose metabolism can result in energy losses and eventually deteriorate body composition [5]. Physical activity, a known factor to preserve or improve lean body mass has been insufficiently studied in CF [27]. With respect to the relation with pulmonary function, future studies on physical activity in CF should include body composition as an outcome parameter and vice versa.

4.2. Macronutrient: protein intake and digestion

Research on intake and recommendations of macronutrients in CF is scarce. Up to now, fat has been the macronutrient of interest with little attention to protein and carbohydrate. Digestion of these two neglected nutrients is, however, also jeopardized and might have clinical consequences [20,24]. The protein pool (18%) of the human body is constantly renewed. Therefore delivery of essential and non-essential amino acids is needed but an efficient protein use will only occur when other nutrient demands are met. CF patients have three conditions to tackle: a sufficient delivery of nutrients and protein, achieving an adequate digestion and assimilation. Currently there’s no evidence available to deal with these conditions in depth. The European guidelines do not distinguish protein recommendations according to age, disease stage or pancreatic function [1]. The average protein requirement for healthy children, however, decreases from 1.12 g protein/kg body-weight (BW)/day at the age of 6 months to 0.75 g protein/kg BW/ day at the age of 10. From the age of 10 the requirement will differ slightly according to gender. Expressed in g/kg BW the demand for protein is the highest in the first years of life. Facing malnutrition and wasting an increase in protein (2.8–4.8 g/kg/day) and energy (126–167 kcal/kg/day) is needed to obtain weight gain (10–20 g/kg) and growth [28]. As demonstrated by Engelen et al. (2014) protein digestion is delayed by 2 h compared to healthy controls. For amino acids, mainly absorbed in the proximal small intestine,
gastric emptying and thus PERT timing might have an influence, independent of PERT dose. An impaired protein digestion can also result in an impaired anabolic response to a meal [20,22]. As little is known about protein metabolism in CF further research looking at different aspects is needed. Simply increasing protein intake might result in increased undigested protein in the colon influencing the gut microbiome. Alternative protein sources selected for their digestibility might be interesting. Finally, other factors influencing protein metabolism such as inflammation, CRFD and exercise can influence the assimilation of FFM and will have to be taken into account as well.

4.3. PERT

Currently PERT is mainly administered to correct steatorrhea and minimize gastro-intestinal complaints. The dosing guidelines, written as a response to several fibrosing colonopathy case reports, do not aim for optimal digestion and assimilation [1]. There is furthermore an inconsistency in denominators. For instance the denominator lipase units/kg BW/meal does only take into account body weight and not the amount of ingested macronutrients. This might result in under- or over-supplementation based on the nutrient intake. Using lipase units/g fat seems physiological more correct but does not take into account the other macronutrients. Efficacy, compliance and influencing factors of PERT will also have to be addressed as up to now, no relation between PERT dose and BMI could be demonstrated [23,25,26]. Adapting PERT timing to gastric emptying might improve digestion [23,25]. Further on, hyperacidity and transit time variations might also influence PERT efficacy. Finally, nutrient absorption might also be altered in CF due to increased losses of bile salts, thickened mucus properties, small intestinal bacterial overgrowth or food factors such as physico-chemical characteristics of the food matrix or type of fat [1,23,26,29]. As demonstrated in PI piglets, the weight of the gastrointestinal tract increases in absence of PERT. This increase might be a result of an attempt to correct the malabsorption by hypertrophy of the gastrointestinal tract. Therefore, insufficient PERT use might contradictatory result in a small false positive evaluation of the body weight. Current research feeds the necessity to not only personalize the PERT dose but also the timing.

5. Conclusion

This review addressed some aspects of the nutritional management in CF since redefining nutritional therapy might be necessary as a consequence of the current evolution in the CF therapy and longevity. Research focusing on growth charts, body composition, protein intake and digestion and PERT was reviewed. Growth charts are not uniform in predicting long-term pulmonary outcomes. Measurement of body composition might be interesting but techniques, references and definitions of FFM and FFM depletion in CF need to be standardized. To improve FFM a balanced diet accounting for age, pancreatic function and disease stage seems necessary. Accurate PERT intake needs further study concerning the influencing factors. Preserving or improving FFM addresses challenges requiring a multidisciplinary approach. More research is needed to tackle the certainty about the uncertainties.

Acknowledgments

Conflict of interest

None.

Funding and grants

No funding was obtained for writing this review.

Statement of authorship

DD and SVB worked on the concept and the design of the review. SVB did a critical revision of the manuscript. DD performed the literature search, analyzed the abstracts and titles and wrote the manuscript. SM, SV, FDB and EVB did a critical review of the method and result section. All co-authors helped during the process with writing suggestions.

References

