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Striking the right balance between robot autonomy and human control is a

core challenge in social robotics, both in technical and ethical terms. On the

one hand, extended robot autonomy offers the potential for increased human

productivity and for the off-loading of physical and cognitive tasks. On the

other hand making the most of human technical and social expertise, as well

as maintaining accountability, is highly desirable. This is particularly rele-

vant in domains such as medical therapy and education where social robots

hold substantial promise, but where there is a high cost to poorly perform-

ing autonomous systems, compounded by ethical concerns. We present a field

study in which we evaluate SPARC, a novel approach addressing this challenge

whereby a robot progressively learns appropriate autonomous behaviour from

in situ human demonstrations and guidance. Using online machine learning

techniques, we demonstrate that the robot can effectively acquire legible and
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congruent social policies in a high-dimensional child tutoring situation needing

only a limited number of demonstrations, while preserving human supervision

whenever desirable. By exploiting human expertise, our technique enables

rapid learning of autonomous social and domain-specific policies in complex

and non-deterministic environments. Finally, we underline the generic prop-

erties of SPARC, and discuss how this paradigm is relevant to a broad range

of difficult human-robot interaction scenarios.

Introduction

In sensitive domains where social robots are expected to play a key role, such as education

and therapy, the question of empowering the human user by allowing them to supervise and

retain transparent control over the robot has to be constantly balanced with the contradictory

expectation of an advanced level of robot autonomy. Additionally, the growing expectation is

that robots should behave autonomously not only at a technical, task-specific level, but also in

terms of social interactions.

In this article, we look at one specific, yet difficult, instance of this problem: how do-

main experts (hereafter called human teachers) can transfer both technical and social skills to

enable robots to successfully and autonomously interact with children in an educational task.

The expectation is that a robot can gradually learn an adequate social behaviour by observing

the human teacher, and will become increasingly autonomous in both task-level skills and so-

cial interactions. As the teacher starts to trust the robot’s behaviour, they will progressively

shift their workload to the robot. In such a scenario, the robot’s technical and social policies

are co-constructed by the teacher during the learning phase, and the resulting (autonomous)

robot behaviour thus remains essentially transparent, predictable and trustworthy to the human

teacher (1). Educational social robotics is a prototypical application in this regard: to be an
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effective educational support, the robot needs to exhibit satisfactory technical (didactic, i.e.,

subject knowledge) and social (pedagogic behaviour) skills, all while preserving the ability for

a school teacher to oversee and, if needed, override the robot’s behaviour.

Learning Autonomy Instead of Programming Autonomy Learning social policies for inter-

actions with humans brings specific requirements, not usually considered in machine learning:

R1 The robot has to exhibit, at all times, acceptable (socially and physically safe) – if not

perfectly appropriate – social and task-related behaviour. This starting from the onset of

the learning/interaction.

R2 The robot needs to learn quickly, as gathering data points from interactions with humans

is a slow and costly process.

R3 To be effective in real world scenarios, where the human experts teaching the robot are not

roboticists, the learning process must be practical, integrate well with the natural human

routines and require limited technical expertise.

Traditionally, two main methods exist for teaching robots, Reinforcement Learning (RL) (2)

and Learning from Demonstrations (3, 4). One of the core mechanisms of RL is the combina-

tion of exploration and learning from errors. By directly interacting in their environment and

receiving feedback from it, RL agents learn online. To be effective, this requires both the explo-

ration and error recovery to be fast and cheap, thus RL approaches typically rely on simulators

to train the agent. Simulation is, however, often not an option for human-robot interaction, as

simulators fail to reproduce, at meaningful levels, the complexity and unpredictability of human

behaviours. This means that the robot should be trained in the real world by interacting with

humans. Exploring and recovering from errors in the real world, however, is expensive, and

sometimes not possible at all. Not being able to fully recover from errors in HRI is the norm
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rather than the exception: when one observes that human-robot interactions almost always re-

quire a level of trust, it becomes clear that if the human loses trust in the robot due to poor

behaviour, the interaction breaks down and can often not be recovered (5). The risk of such fail-

ures limits the general applicability of classical RL to HRI (as this violates R1). Additionally,

learning with RL is often a slow process, thus also violating (R2).

To mitigate these limitations, robots can learn from humans, which ensures that the robot’s

policy is appropriate to the current application during the learning process. Learning from

Demonstration (3, 4) is one classical approach which enables humans to teach skills to robots.

However, it typically looks at kinaesthetic demonstrations (6) in deterministic environments

(such as manufacturing, industrial robotics or cobotics (3)), where the human teacher usually

relinquishes control and supervision of the robot once the physical skill is deemed to have been

acquired by the robot. Beyond manipulation, Learning from Demonstration has been applied

in a few instances to the learning of scheduled tasks (7) and social, interactive behaviours.

Two main methods have explored how to learn social behaviour from humans. Firstly, by

collecting data from human-human interactions and applying machine learning to derive an

autonomous behaviour (8, 9, 10, 11). Secondly, by using the Wizard-of-Oz (12) method to

control a robot in interactions to collect data which are later used to create an autonomous

behaviour (13, 14, 15, 16). These approaches might lead to an autonomous robot, however, in

both cases, researchers approach the learning problem as gathering a static dataset and applying

offline learning algorithms to create a static policy. These processes, by separating the demon-

strations and the learning, are also rigid and would require substantial technical efforts to update

a policy with new datapoints. Additionally, even if the demonstrations are collected from do-

main experts, they are later analysed by technical experts. This reliance on technical experts to

interpret demonstration data and create learning algorithms adapted to each environment limits

the usability of such approaches solely by naı̈ve users.
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An alternative way is to move away from optimising a function on a dataset, to actively

teaching the agent a policy. One such framework is Interactive Machine Learning (IML) (17,

18), IML involves the end-user in the learning loop and has the agent learn an appropriate

behaviour online through a series of small improvements. The end-user becomes a teacher

and can, for example, provide rewards for the robot’s actions, similarly to classic RL (19).

The active involvement of the teacher improves the learning (both in speed and quality), and

at same time allows them to create a mental model of the robot, increasing the transparency

of the robot behaviour and the trust the user has in the agent (20, 21). Teachers can also be

given more control over the robot by dynamically providing demonstrations, corrections or

additional information to the algorithm to improve the learning even further (22,23). That way,

teachers can even correct errors made by the algorithm before they propagate to the real world.

However, while holding promise, there are very few demonstrations of IML applied to learning

for social interactions with humans (24, 25). IML, and interactive RL in particular, have had

limited success so far, and mostly in simple, low-dimensional and deterministic interaction

domains (20, 26).

As no learning method so far addresses the three requirements stated previously, in (27) we

introduced SPARC (Supervised Progressively Autonomous Robot Competencies), a new inter-

active framework whereby a robot interacts directly with the environment under the supervision

of a human teacher who has complete control over the robot’s behaviour. With SPARC, initially

the robot’s controller is a blank slate, the robot does not act on its own and is only teleoperated

by the human teacher in a Wizard-of-Oz fashion: the teacher can select actions which the robot

then executes (12). However, as soon as the teacher starts selecting actions, the robot learns

from these demonstrations and uses this evolving policy to suggest actions to the teacher. The

teacher can confirm or override the robot’s suggestions, and this feedback is fed to the learning

algorithm to progressively refine the policy. In order to reduce the teacher’s workload, actions
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proposed by the robot and not cancelled by the teacher are assumed to be acceptable, and are

executed after a short delay. This mechanism aims to limit the need for human intervention.

The teacher only has to demonstrate actions and prevent incorrect actions from being executed.

Thus, as the robot’s behaviour improves, the robot proposes correct actions more often, reduc-

ing the need for demonstrations and corrections, and thereby the amount of input required from

the teacher to achieve an effective behaviour, in a process bearing similarity to the ML pro-

cesses behind predictive texting (28). The novelty of SPARC lies in the in-situ component of

the learning: the robot learns online and in the real-world, which is often not the case of prior

work.

When applied to HRI, for example in the context of education, this translates into trans-

forming a dyadic interaction {human teacher; learning child} into a triadic interaction {human

teacher; robot; child}, where the teacher teaches the robot how to support the child’s learning

on-the-go (Figure 1).

Teacher /
Supervisor

Teaching
Interaction

Application
Interaction

Robot 
learning

Control over action

Application
Target / Child

Figure 1: Diagram of the application of SPARC to HRI: a human teacher supervises a robot
learning to interact with another human (e.g. a child in the context of education).
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SPARC was introduced in (27), however, it had never been tested to teach robots to interact

with people. Indeed, previous research only considered scenarios where the robot was either

interacting in a simulated environment (26) or with another robot simulating a human (27). This

paper aims to evaluate SPARC in a real human-robot interaction, taking as context tutoring for

children. The conceptual simplicity of the paradigm and its agnosticism with regards to the ac-

tual learning algorithm make it widely applicable to a range of social human-robot interactions

beyond the specific educational scenario that we use as support in this article.

Case study: Robots as Tutors for Children Social robots have been explored as educational

tools in the last decade. Due to increases in the number of pupils in the classroom and budget

constraints (29), one-to-one interactions between teachers and students, while known to be

highly beneficial, are limited. One solution is to use a robot to supplement the teacher to offer

additional individualised support to students. Recent studies have shown that social robots are

typically more effective than alternative, disembodied, technologies, such as tutoring software

presented on a tablet or computer. The physical presence of the robot together with its social

appearance fosters interactions with the learner, including increased attention and compliance,

which are conducive to learning (30). However, their general lack of appropriate integration to

the classroom ecosystem and to teacher’s practises leads to poor adoption rates by schools (31).

Having a robot which can be operated initially by the teacher but then gradually takes over

control, would offer a tutoring experience which is better tailored to the particular learner or

context.

Results

Study Introduction We present a study evaluating SPARC in a high-dimensional social task

where 8 to 10 years old children learned about food webs through playing an educational game
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(Figure 2). In this game, 10 animals can be moved around in a touchscreen-based game environ-

ment; animals have energy and have to consume plants or other animals to stay alive. Children

have to keep the ecosystem viable as long as possible. The role of the robot tutor is to guide

the child through providing advice (such as keeping track of the animals’ energy or indicating

what animals eat) and social prompts (e.g. encouraging the child). The game logic and the

tutoring interaction are jointly modelled as an optimisation problem with 210 continuous input

values (last actions, distances between animals, etc.) and 655 potential output actions (motions,

gestures, verbal encouragements, etc.).

Figure 2: The setup used in the study: a child interacts with the robot tutor, with a large touch-
screen sitting between them, displaying the learning activity; a human teacher provides guid-
ance to the robot through a tablet and monitors the robot’s learning. While the picture depicts
an early lab pilot, the main study was conducted on actual school premises.

The interaction consists of four consecutive and independent game rounds, and knowledge

tests before the first round, between the second and the third and after the fourth.

Our protocol includes three conditions, designed to assess the impact of applying the pro-

posed approach (SPARC) to this task. The control condition (Passive condition) uses a passive
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robot that only provides initial instructions and guidelines, but does not offer support during the

learning game. The second, the Supervised condition, involves a robot which gradually learns

from human demonstration how to provide support during the game by using SPARC. In this

condition, the robot’s controller evolves with each interaction with the participants (refining its

suggestions to the teacher over time). Nevertheless, the control provided to the teacher through

SPARC ensures that the robot’s behaviour is consistent for all participants, and supports their

inclusion as a single group for this condition. The third, the Autonomous condition, uses an

autonomous robot which executes the policy learned in the supervised condition, but without

ongoing supervision.

We run the autonomous condition at the conclusion of the supervised condition, and the

passive condition was run in parallel of the two other conditions. This allowed the trained policy

learned in the supervised condition to be used in the autonomous condition. Consequently,

this study is set up as a between-subject design, with a random selection of a child for each

interaction.

In the supervised condition, a single person, naive about the learning mechanism and the

hypotheses tested in the study, acted as a teacher for the robot in all the interactions. With 75

children in total (N=75; age: M=9.4, SD=0.72; 37 Female), each of the three conditions was

allocated 25 children.

Hypotheses Two hypotheses were explored:

H1 The autonomous robot learns a policy which produces behaviour similar to that of

the teacher. We hypothesise that the policies of the autonomous and supervised robots

will present similarities in term of frequency and timings of actions and will both have a

positive impact on the children compared to no behaviour.

H1a The autonomous robot will only use actions already demonstrated by the teacher and
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there will be no difference in the frequency of use of each type of action between

the supervised and autonomous robots.

H1b In the teacher’s policy, each type of action will have a unique dynamics (i.e. when

the action is triggered). The robot will learn such dynamics and there will be no

difference of timing for each type of action between the supervised and autonomous

robots.

H1c Both robots (supervised and autonomous) will have similar and positive effects on

the children: interactions metrics and learning gains will present no differences be-

tween the supervised and autonomous robots and both the teacher and our learning

algorithm will produce robot behaviours that will lead to better results on these met-

rics than no behaviour (e.g. a passive robot).

H2 Using SPARC, the teacher’s workload decreases over time. The amount of input re-

quired from the teacher will decrease over time and robot’s suggestions will be deemed

acceptable more often (increase of accepted suggestions and decrease of the rejected sug-

gestions).

In our protocol, the same teacher was responsible for the whole training of the robot as it

was interacting with 25 children, which ensured a consistent delivery style for all participants.

It would be insightful to try the same protocol with other teachers.

Example of a Session Table 1 presents an example of the first minute of a round. Suggestions

by the robot are in blue, and actions from the teacher in orange. For example, at t=16.9s,

the teacher accepted the suggestion by the robot. Alternatively, in some cases, such as the

suggestion at t=20.6s, the teacher did not accept the action suggested by the robot, and selected

another action. In that case, the suggested action was not considered and only the selected
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action was executed and used for learning. Finally, at t=44.4s, the teacher selected the action to

move the mouse closer to the wheat, and after the robot moved the mouse, the child tried other

animals and then fed the mouse with the wheat, this demonstrates how actions from the robot

could help the children to discover new connections between animals. As shown by this table,

the teacher was able to select actions and react appropriately to the robot’s suggested actions.

Policy Comparison Figure 3a presents the number of actions of each type executed by the

supervised robot (in the supervised condition) and by the autonomous robot (in the autonomous

condition). The first observation is that the autonomous robot based its actions on the teacher’s

demonstrations: the action ‘Move away’ (whereby the robot moves one animal away from a

prey, typically to indicate the pair is unsuitable) was almost never used, ‘Move to’ was never

used (‘Move close‘ was used instead, as to hint an animal–food pair to the child), and the

supportive feedback (‘Congratulation’ and ‘Encouragement’) were used more often than ‘Re-

mind rules’ or ‘Drawing attention’. This provides support for H1a. However, the number

of times each action was executed for the autonomous and supervised condition was different

(Bayesian T-Test: Congratulation: BF10=37.8, Encouragement: BF10=5.1x104, Drawing atten-

tion: BF10=.53, Remind rules: BF10=1.6x103 and Move close: BF10=21.7), failing to provide

full support for H1a. These differences of action frequencies are probably linked to the type

of machine learning used; with instance-based learning, some data points will be used in the

action selection much more often than others, which might explain these biases.

Additionally, Figure 3b shows the time between each action executed by the robot and

the last eating event (when the child fed an animal). For both conditions, there were signifi-

cant differences between the time since the last eating event for each type of action (Bayesian

ANOVA: supervised condition: F (4, 1211)=101, p < .001, B10=1.06x1071, post-hoc analysis

in Table S1, only Encouragement and Remind rules seem to present similarities - autonomous
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(a) Comparison of the number of actions of each type executed by the robot in the autonomous and supervised
conditions. Each point represents how often the robot executed an action with a child (N=25 per condition).
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(b) Timing between each action and the last eating event (due to their low or null number of execution, the actions
‘Move to’ and ‘Move away’ were not analysed). Each point represents one execution of an action.

Figure 3: Comparison of policy between the supervised and autonomous robot.

condition: F (4, 1385)=81.0, p < .001, B10=1.53x1058, post-hoc analysis in Table S2), provid-

ing initial support to H1b. Furthermore, we found no differences when comparing the timing

for each type of action between conditions (Bayesian T-Test between condition: Congratula-

tion: BF10=0.20, Encouragement: BF10=0.21, Remind rules: BF10=0.13, Drawing attention:

BF10=0.21 and Move close: BF10=0.15), providing additional support for H1b. This means

that the autonomous robot managed to capture the uniqueness of timing for each action and

apply a policy using the unique timing used by the teacher.
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Together, these results show that the robot managed to learn social and technical policies –

including their associated dynamics, that are similar to the ones demonstrated by the teacher.

Learning Gains A positive learning effect, as measured through normalised learning gain (32),

was apparent in both the passive condition (M=0.12, 95% CI: [0.066, 0.176]) and supervised

condition (M=0.11, 95% CI: [0.059, 0.157]), with the performance in the autonomous condi-

tion slightly exceeding these (M=0.14, 95% CI: [0.09, 0.187]). However, the robot’s behaviour

during the game did not have a meaningful impact on the children’s learning gain (Bayesian

ANOVA: F (2, 72)=0.34, p=.72, B10=0.15) failing to provide initial support for H1c.

Game Metrics Multiple game metrics have been collected in the rounds of the game played

by the children and they can inform us on the effect of the robot’s behaviour on the children

during the game sessions.

Figure 4a and Table S3 show the evolution of the total number of different ‘learning units’

(ie., in our food chain scenario, one new and correct attempt to feed one animal with one type

of food) encountered by the children across the four game rounds. A Bayesian mixed-ANOVA

showed an impact of the repetition (i.e. progress in the rounds of the game) and the condition

on the number of different eating interactions produced by the children in the game (Bayesian

mixed-ANOVA: repetition: F (3, 216)=6.75, p < .001, B10=77.7, condition: F (2, 72)=5.19,

p < .01, B10=5.76). With additional rounds of the games, the children successfully connected

more animals together. Post-hoc tests showed no significant difference between the supervised

and the autonomous conditions (Bayesian Repeated-Measure ANOVA: B10=0.15), whilst dif-

ferences were observed between the supervised and the passive conditions (B10=512) and be-

tween the autonomous and the passive conditions (B10=246). This indicates that, compared to

the passive robot, the supervised robot provided additional knowledge to the children during

the game, allowing them to create more useful interactions between animals and their food, re-
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(a) Number of different eating interactions produced by the children (corresponding to the exposure to learning
units) for the four rounds of the game, for the three conditions.
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(b) Interaction time for the four rounds of the game for the three conditions. The dashed red line represents 2.25
minutes, the time at which unfed animals died without intervention, leading to an end of the game if the child did
not feed animals enough.

Figure 4: Comparison of children’s behaviour between the three conditions.
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ceiving more information from the game, thus potentially helping them to get knowledge about

what animals eat. Importantly, the autonomous robot managed to recreate this effect without

the presence of a human in the action selection loop.

Figure 4b and Table S4 show the evolution of game duration across the four game rounds.

A Bayesian mixed-ANOVA showed inconclusive results on the impact of condition on game

duration (Bayesian mixed-ANOVA: F (2, 72)=2.6, p=.08, B10=1.04). Post-hoc tests showed no

significant difference between the supervised and autonomous conditions (Bayesian Repeated-

Measure ANOVA: B10=0.29), while differences were observed between the supervised and pas-

sive conditions (B10=118) and a trend towards a difference between the autonomous and passive

conditions (B10=2.90). This indicates that children were better at the game in the supervised

condition whereby animals were alive longer than in the passive condition. The autonomous

robot learned and applied a policy tending to replicate this effect and without exhibiting differ-

ences with the supervised one.

However, the analysis showed no effect of the repetitions on game duration (Bayesian

mixed-ANOVA with Huynh-Feldt correction: F (2.4, 174.9)=0.31, p=.78, B10=0.022); the chil-

dren did not manage to keep the animals alive longer with more practice at the game. One of

the reasons was a partial ceiling effect at 2.25 minutes (see the red line on Figure 4b). When not

fed, animals would run out of energy in 2.25 minutes, so if children did not manage to feed at

least 7 of the animals at least once before that time, the game would stop. As this might prove

difficult to identify and achieve, many children did not manage to cross this limit.

These game metrics suggest that the supervised robot managed to help the child in the game

(compared to a passive robot) from the onset, and the autonomous robot replicated this effect,

thus these results support H1c.
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Teaching the Robot Figure 5 presents the teacher’s reactions to the robot’s suggestions across

all the supervised interactions. Contrary to our expectations, the number of accepted and refused

suggestions, as well as teacher-initiated actions, stayed roughly constant throughout the interac-

tions with the children. No curve could be significantly fit using a linear regression (Accepted

propositions: p=.47, Rejected propositions: p=.15 and Teacher-initiated actions: p=.91). We

would have expected these results to be different: with the learning, the number of accepted

propositions should have increased and both the number of refused propositions and teacher-

initiated actions should have decreased, thus H2 is not supported. It should, however, be noted

that these results are based on a single teacher, and might not be replicated with another teacher.
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Figure 5: Summary of the action selection process in the supervised condition. Child number
1 correspond to the beginning of the training; Child number 25 to the end of the training. The
‘Teacher-initiated actions’ label represents each time the teacher manually selected an action
not proposed by the robot.

To provide insights on this result, we analysed a diary that the teacher completed during

the study, noting how the children responded and how she interacted with the robot. From this

report and a post-training interview, the teacher reported that her workload decreased over time

and she mentioned three phases in her teaching (session numbers are indicative, the boundaries

were not clear):
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• First phase (sessions 1 to 3): she was not paying much attention to the suggestions, mostly

focusing on having the robot execute a correct policy:

– she “found it difficult to know how best to respond” (session 2)

– “I’m dismissing robot’s suggestion more than I actually want to” (session 3)

– “I’m skipping/cancelling all in order to avoid inappropriate suggestions” (session 3)

• Second phase (sessions 4 to 11): she was paying more attention to the suggestions but

without giving them much credit:

– “Achieving a better balance between my own actions and robot’s suggestions” but

“the robot is a bit overwhelming” (session 4)

– “Allowed some robot suggestions but not many as I wanted to slow game-play

down” (session 6)

– “allowing more robot suggestions” (session 7)

• Third phase (sessions 12 to 25): she started to trust the robot more but without ever

trusting it totally:

– “Let the robot carry out a lot of its suggested behaviours” (session 12)

– “Will try to use more robot suggestions as robot was often suggesting good things

but I was auto-skipping them” (session 13)

– “Allowed the robot to carry out more of its suggestions” (session 17)

– “let the robot carry out a lot of suggestions” (session 18)

It appears that the teacher reported a decrease of workload over time (as supported by be-

haviours such as typing her observations on a laptop, while gazing at the interface at the start
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of interactions). However, while controlling the robot became easier with practice, Figure 5

did not show an increase of accepted actions. Similarly, after having supervised the robot for

multiple sessions, the teacher reported: “Controlling the robot is really easy now, although I

still tend not to let it carry out its suggested actions even when they are valid”.

Discussion

This study has demonstrated that in a little over three hours and only 25 independent interac-

tions, the robot successfully learned social and pedagogical behaviour to support children in the

educational activity. This learning happened online, using a teacher with no knowledge about

the algorithm implementation or intent of the study. While the autonomous robot used actions

with a different frequency than the teacher, it only used actions already demonstrated (partially

supporting H1a), it learned the unique dynamics (i.e. timing) associated to each type of action

(supporting H1b), and its behaviour had a positive impact on the children similar to the super-

vised robot (partially supporting H1c - no effect was observed on learning gains). However,

SPARC did not allow the teacher’s workload to decrease over time (invalidating H2).

In summary, this study demonstrates that the principles behind SPARC allow for an efficient

teaching of social autonomy that can be achieved in the real world, on a human timescale, and

while maintaining an appropriate robot behaviour throughout the teaching and subsequently

when the robot interacts autonomously.

Our methodology has two main facets: it learns a social behaviour; and it learns in-situ

(both online and in the real world. We discuss hereafter these three particularities.

Learning Online Learning online offers significant advantages compared to offline learning.

First, it allows a human (the teacher) to remain in the learning loop, giving them the opportunity

to observe and influence the evolution of the robot’s behaviour. By receiving feedback from the
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robot, the teacher can estimate the robot’s policy and knowledge level. Involving the end-users

in the training of the system in this way facilitates an understanding of the resulting behaviours,

thus increasing the transparency of complex systems and easing the decision to deploy the robot

to interact autonomously.

Additionally, learning online provides more flexibility to the learning system. Unlike of-

fline learning (such as Learning from Demonstration), no engineering skills are required after

collecting data to obtain the autonomous behaviour. Technical expertise is only required during

the design phase of the interaction. This key difference has two impacts. First, it implies that

even with a single world representation and learning algorithm different robot behaviours could

be manifested based on the specific knowledge, experience and preference of different teachers,

and the specific needs of the current situation. Second, it empowers end-users to design their

own autonomous robotic controller without requiring technical expertise. Together, these fea-

tures might reduce the need for engineers, thus making the process of designing a policy easier

and more adaptive, and the resulting policy more suited to the user’s needs, potentially helping

to democratise the use of robots.

Learning in Real-World and Sensitive Environments While the advantages of learning on-

line potentially apply to any IML methods, most of these approaches provide the teacher with

only limited control over the behaviour executed by the robot. This lack of control cannot en-

sure that the robot’s behaviour will be appropriate and safe for the interaction partners, the robot

itself or its environment, thus reducing the applicability of such methods in sensitive environ-

ments (26). As robots are expected to interact in the real world, directly with humans, it is

critical that the learning process uses data from real interactions in the wild, in the environment

where they are supposed to take place.

For example, in this study, children displayed a number of unexpected behaviours that the
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robot had to adapt to (such as intentional waiting, hectic play style, etc...). The robot learned

in this ecologically valid (rich, under-specified, stochastic, real-world interaction) and sensi-

tive environment (involving children, a vulnerable population) where incorrect robot behaviour

could have caused distress, annoyance, and/or reduced learning outcomes. The robot’s task was

complex, with an input space of 210 dimensions and output action space of 655 actions. Thus,

the learning situation considered in this study was realistic and more challenging than many

others where IML has been evaluated (often deterministic environments, with limited risks due

to failures (19, 20)), or traditional adaptive scenarios for educational HRI (24, 33).

Despite these challenges, SPARC was successful both in the teaching phase (ensuring that

the robot’s behaviour was safe and useful from the outset) and in the autonomous phase (by

demonstrating a behaviour comparable to the teacher’s policy and which had similar impacts

on children). By ensuring that the teacher vets each of the robot’s actions prior to its execution,

SPARC increases applicability of IML to sensitive real-world situations.

Learning to Be Social Providing robots with social autonomy is still a challenge today. Typi-

cally, researchers either have to hard-code behaviours, or the system learns offline from demon-

strations. While presenting significant advantages compared to these methods, IML had not yet

been convincingly applied to social interaction.

In the specific case of education, we have demonstrated that the robot autonomously re-

enacted the teacher’s way of supporting the children, and reached tutoring results on par with

those of a human controlling the robot. Not only did the robot learn the didactics of the task

(the actions relevant to the task), but also some elements of pedagogy, the latent dynamics of

the interaction (when actions should be executed). Together, these two facets of the autonomous

robot’s policy show that social autonomy can be taught to robots in situ, and that SPARC is a

powerful method allowing humans to teach robots to interact in social environments.
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Outlook Although our results demonstrated the opportunities provided by SPARC, some lim-

itations remain to motivate future work. This study did not show a decrease of the teacher’s

workload overtime (as measured by the amount of input by the teacher). As shown in the

teacher’s diary, the main reason for this constant workload was that the robot proposed actions

too often, overloading the teacher and sometimes preventing her to take time to correctly eval-

uate each suggestion. Future work should replicate this study with others teachers and should

explore ways to provide the teacher with more control not only on the overt robot behaviour

(the one displayed in the application) but also in the teaching interaction (such as being able to

control meta parameters of the learning algorithm).

While the learned behaviour is better than having no behaviour at all, it is still possible that

a hand-designed or random policy is also not worse than teacher or learned behaviours. In other

words, the learned policy is better than no policy at all, but it is unclear whether it is better than

any other policy.

Finally, SPARC should also be applied to other domains and in combination with more

learning algorithms to properly investigates its ability to generalise.

Conclusion This paper demonstrated the potential for SPARC to enable robots to learn from

humans. This capability is especially useful in HRI as knowledge of the desired robot behaviour

typically comes from domain experts, such as teachers or therapists, rather than roboticists. The

standard approach to design robotic controllers requires multiple conversations between the

engineers coding the behaviour and the domain experts. Robot learning from end-users (e.g.

by using SPARC) would bypass these costly iterations, allowing end-users to directly teach an

efficient controller adapted to their specific needs in a minimally intrusive way. Furthermore,

as the process fundamentally relies on having the human in the loop, it also holds considerable

potential for sensitive applications of social robots, such as in e-health, assistive robotics or
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education.

The implications of this study are two-fold: first, we have demonstrated that, with an ap-

propriate methodology, Interactive Machine Learning can be successfully applied to transfer

human expertise to an autonomous robot, in a short period of time, and in a high-dimensional

and ecologically valid task. Second, we have shown that not only domain-specific technical

expertise, but also elements of social behaviours (such as timing between events and actions)

can be taught in this way.

These two results are significant. The dynamic and stochastic nature of social interactions

makes learning appropriate and contingent social behaviours a challenge for which classical

machine learning approaches are ill-suited. We have shown here a path forward, and our ap-

proach makes it possible for autonomous social behaviours to be learned in an online manner,

gradually taking over the social interaction from the human operator.

Materials and Methods

Rational and Objectives The goal of the study is to evaluate if SPARC can be used to teach

online a robot to interact in a complex, non-deterministic and real environment. In previous

studies (27, 26) SPARC was only evaluated in simple environments and not for creating social

behaviours. Consequently, this study investigates if SPARC can be applied to HRI to teach a

robot to replicate a policy demonstrated by a human. The goal is not to reach an optimal robot’s

policy, but one replicating the characteristics of the teacher’s, thus demonstrating the potential

of SPARC. In this study, a robot guided a child through a gamified tutoring session where

the child had to interact with animals on a touchscreen to learn about food-webs. This study

compared three conditions where the robot could be either passive (not providing any feedback

or information to the child during the game), supervised (an adult, the teacher, was teaching the

robot how to the support the child during the game) or autonomous (the robot interacted without
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supervision and executed autonomously the policy learned in the supervised condition).

Apparatus This study is based on the Sandtray paradigm (34): a child interacts with a robot

via a large touchscreen located between them. By interacting with the touchscreen and the

robot, the child is expected to gain knowledge or improve some skills. Due to its widespread

application to HRI and child tutoring (30), we used the NAO robot1. Additionally, a teacher can

control and teach the robot in the ‘supervised’ condition using a tablet. This results in a triadic

interaction: a human, the teacher, knows how the robot should behave, can control it to execute

an efficient behaviour and teach it how to interact with another human in situ by using SPARC

(as shown in Figure 2).

Participants Children from five classrooms across two different primary schools in Plymouth

(UK) were recruited to take part in the study. As both schools had an identical OFSTED evalua-

tion (indicating that they provide similar educational environments), all the children were com-

bined into a single pool of participants. Full permission to take part in the study and be recorded

on video was acquired for all the participants via informed consent from parents. Children with

special educational needs interacted with the robot, but were excluded from the data collections,

as well as children used in pilot versions and sessions where the protocol was breached (e.g.

one child dropped out from the passive condition, two from the supervised condition and zero

in the autonomous condition). To deal with the number of children available in these classes,

we decided to collect data until we reached 25 children per condition. To give every child in

the class the opportunity to take part in the study, the remaining children did interact with the

robot but were excluded from the data collection. In total, 75 children were included in the final

analysis (N=75; age: M=9.4, SD=0.72; 37 Female). Due to our protocol, we had to first col-

lect all the participants for the supervised condition before running the autonomous condition;

1https://www.ald.softbankrobotics.com/en/robots/nao
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nevertheless, the selection of a child for each interaction was random.

In the supervised condition, the robot’s teacher was a psychology PhD student from the

University of Plymouth, with limited knowledge of machine learning but with an understanding

of human cognition. This teacher is now part of the authors, but at the time of the study the

authorship was not considered and she was not involved in the study design. Consequently,

while being knowledgeable about the protocol, she was unaware of the hypotheses tested and the

implementation and had no incentive to bias the results to fit them. The teacher was instructed

on how to control the robot using a Graphical User Interface on the tablet and the effects of each

button. She experimented controlling the robot in two interactions (not included in the results

analysis) to get used to the interface and controlling the robot. After these interactions, the

algorithm was reset and the teacher started to supervise the robot for the supervised condition.

No information about the learning algorithm or the representation of the state and no feedback

about the optimal way of interacting or on her policy was provided before or during the study.

As such, this study involved, as teacher, a naive user not expert in machine learning and more

similar to the general population of expected robot users than an expert in computing.

Protocol At the start of the interaction, the child was first introduced to the robot and told

that they would together play a game about the food web (cf. Figures S5.a). They completed

a quick demographic questionnaire and a first pre-test to evaluate their baseline knowledge (cf.

Figures S5.b-e). After this test, and before starting the game, the child completed a tutorial

where they were introduced to the mechanics of the game: animals have energy and have to

eat to survive and the child can move animals to consume other animals or plants to replenish

their energy (cf. Figures S5.f,g). The teacher was sitting with the child through these steps to

provide clarification if needed and was following a script. After this short tutorial, the teacher

sat away from the child to supervise the robot if required. For ethical reasons, for all children,
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the teacher and an additional experimenter were present in the room, but out of view of the

children while maintaining an attitude of disinterest. The child then completed two rounds of

the game where the robot could provide feedback and advice depending on the condition they

were in (cf. Figure S5.h-k). Afterwards, the child completed a mid-test before playing another

two rounds of the game and completing a last post-test to conclude the study. Figure S5 shows

examples of the screen throughout the interaction.

Implementation The robot is controlled using the architecture presented in Figure 6 with all

the nodes communicating together using the Robot Operating System (ROS) (35). The teacher

interface runs on a separate tablet and is used only for the supervised condition. All the other

nodes run on the large touchscreen computer displaying the game interface which is used to

guide the child through the study and presents the game rounds and the tests. The default robot

behaviour is simply reading the instruction on the screen, following the child’s face and swaying

lightly.

To support the children during the game rounds, the robot has access to 655 actions consist-

ing of moving animals in relation to others on the screen (by pointing to an object and moving

it on the screen), asking the child to focus on some items of the game (by pointing to them and

uttering a predefined sentence) and providing social prompts and feedback such as reminding

them of the rules and providing encouragements or congratulations. The robot’s policy in the

game consists in a mapping between these actions and a representation of the state defined in a

210 dimensions vector with values ranging from 0 to 1 and corresponding features describing

the state of the game (animal’s energy, distance between items) and of the interaction (how long

it has been since the child or the robot touched items, when was the last action executed by the

robot...).

In the supervised condition, the teacher uses an interface running on a tablet and replicating
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Figure 6: Simplified schematics of the architecture used to control the robot, the different nodes
communicate using ROS. A game (1) runs on a touchscreen between the child and the robot.
(2) analyses the state of the game using inputs from the game and the camera. (3) is an interface
running on a tablet and used by the teacher to control and teach the robot. (4) communicates
actions between the interface (3) and the learner (7). (5) translates teacher’s actions into robotic
commands used by (6) and (8) and executed by the robot (9). Finally, (7) is the learning algo-
rithm which defines a policy based on the state perceived and the previous actions selected by
the teacher, their substates and their feedback on propositions.

the graphics of the game (with the position of the animals), but with additional buttons to select

actions for the robot to execute. Our algorithm, adapted from (23), uses a variation of Nearest

Neighbours to map actions selected by the teacher to a substate (s′ ∈ S ′, with S ′ ⊂ S), a sliced

version of the 210-dimension state (n′ dimensions of the state have a value, while the others,

not relevant to the current action, are left as ‘wild cards’). This slicing is carried out by keeping

only the dimensions relevant to a set of features defined by the teacher (i.e. selected on the

tablet). This allows the algorithm to consider only the dimensions of the state relevant to each

26



action when computing the distance between instances and the current state. Consequently, this

algorithm can profit from having access to a large number of state dimensions without suffering

from the ‘Curse of dimensionality’ (36), thus potentially learning quickly complex behaviours.

Additionally, each instance in memory possesses a reward value (r) which allows the algorithm

to avoid undesired actions (the ones with a negative reward). In summary, instances are defined

as tuples: action - substate - reward (a, s′, r).

This learning algorithm can propose actions to the teacher that are executed after a short

delay if the teacher does not cancel them. Using the interface the teacher can accept (rewarding

positively and executing) proposed actions or refuse them (pre-empting the execution of an

action and assigning it a negative reward). Additionally, they can select actions for the robot to

execute. Figure 7 shows the flowchart of the action selection process allowing mixed initiative

between the teacher and the robot.

Update policy: 
add new (â, s', r);
update threshold 

Execute
 action âTeacher Agent Select action and related 

features on tablet

Infer state subspace 
s' relevant to â

Accept
action

r>0

Compute similarity ∆
 for each instance 

x=(a, s', r):

Find closest instance 
x̂ for each action 

a in A

Compute expected 
reward r(̂a) for 
each action in A 

 Propose â
to the teacher 
on the tablet

Select 
action â

Yes, propose:

No, stop

No
r = -1

r = 1

No

Yes

Get 
state s

2 Hz

Yes

Figure 7: Flowchart of the action selection. Mixed-initiative control is achieved via a combi-
nation of actions selected by the teacher, propositions from the robot and corrections of propo-
sitions by the teacher. The algorithm uses instances x, corresponding to a tuple: action a ,
substate s′ and reward r. s′ is defined on S ′ with S ′ ⊂ S and N ′ the set of the indexes of the n′

selected dimensions of s′.

The algorithm itself does not take time into account. However, as dimensions of the state

are time dependant (using exponential decreases since events), temporal effects can be captured

by the learning algorithm (as shown in Figure 3b).
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In the autonomous condition, the interface used by the teacher is simply replaced by a node

automatically accepting propositions after a short delay, thus applying the policy learned in the

supervised condition.

All sources are open and available online at https://emmanuel-senft.github.

io/experiment-learning-tutoring.html.

Metrics To address the hypotheses, we collected multiple metrics on both interactions (teacher-

robot and robot-child). The goal of the study being to evaluate if the robot can replicate the

teacher’s policy, we first recorded metrics characterising these policies: the actions executed

by the robot in the supervised and autonomous conditions and the timing between these actions

and game related events. Second, we collected two groups of metrics to evaluate the application

interaction: the learning metrics (corresponding to the child’s performance during the tests) and

the game metrics (corresponding to the child’s behaviour within the game rounds). These learn-

ing outcomes are not critical for the study but serve to characterise the impact of the robot’s

policy on the children. And finally, in the supervised condition, we recorded the origin of the

actions executed by the robot (teacher vs algorithm) and the outcome of the proposed actions

(executed vs refused).

During the game, the robot had access to 655 actions, which can be divided into seven cat-

egories: drawing attention, moving close, moving away, moving to, congratulation, encourage-

ment and remind rules. Due to this high number of actions, the breadth of the state space (210

dimensions) and the complex interdependence between actions and states, precisely character-

ising a whole policy is non-tractable. Consequently, we used the number of actions executed

for each category per child and the timing between a specific event (the child feeding an ani-

mal) and the execution of actions to characterise the policy executed by the robot in the active

conditions (supervised and autonomous). While not perfectly representing the policy of each
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condition (e.g. complex interdependencies are missing), these metrics offer a proxy to compare

these policies.

The children’s knowledge about the food web was evaluated through a graph where children

had to connect animals to their food. There were 25 correct connections and 95 incorrect ones.

As the child could create as many connections as desired, the performance was defined as the

number of correct connections above chance (for the total number of connection made during

the test) divided by the maximum achievable performance. This resulted in a score bounded

between -1 and 1.

For example, if a child made 5 good connections and 3 bad, their performance would be:

P =
#good− (#good+#bad) · totalgood

total

totalgood− totalgood · totalgood
total

=
5− (5 + 3) · 25

25+95

25− 25 · 25
25+95

= 0.168 (1)

The three tests (pre-, mid- and post-interaction) resulted in three performance measures.

To account for initial differences in knowledge and the progressive difficulty to gain additional

knowledge, we computed the learning gain as proposed in (32): g =
Pfinal−Pinitial

Pmax−Pinitial
. This

learning gain indicates how much of the missing knowledge the child managed to gain from the

game (values above 0 indicate learning).

Additionally, game metrics were also gathered during the rounds of the game to characterise

the children’s behaviours:

• Exposure to learning units: corresponding to the number of unique eating interactions

between two items explored by a child in a round ([0,25]).

• Interaction time: Duration of game rounds, how long a round lasted until three animals

ran out of energy (typical range 0.5 to 3 minutes).

An important metric in education is the engagement with the learning material, i.e. which

proportion of the learning domain children explore (37). In our case, children explored a food
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web with 25 correct and 95 incorrect connections. Due to the imbalance between these numbers,

more knowledge is acquired by discovering one of these 25 correct connections rather than

the 95 incorrect ones. As such, we defined our first game metric as the number of different

eating interactions children encountered during each game. An eating interaction happens when

the child moves an animal to its food (or to a predator); and the number of different eating

interactions represents how many different unique correct connections the child has discovered

during the game (multiple eating actions between the same animals would count only once).

A game with a high number of different eating interactions represents a game where the child

engaged with the learning material, encountered more learning units, and should perform better

in the tests. For simplicity, we termed this metric ‘exposure to learning units’ as it encompasses

how much knowledge a child has been exposed to in one round of the game.

On the other hand, the interaction time reached in the game provides information about

the children’s performance in the task (keeping the animals alive as long as possible) and their

engagement. A disengaged child would finish the game earlier.

We expect that an active robot would encourage and support the child and allow them to

reach better scores on these game metrics.

Statistical Analysis To demonstrate the presence or the absence of effects we analyse the data

using Bayesian statistics. We report the Bayes factor B10 which represents how much of the

variance of the metric is explained by a parameter (if B10 < 1/3 there is no impact, if B10 > 3

the impact is strong, and if 1/3 < B10 < 3 the results are inconclusive (38, 39)). We analysed

the results using the JASP software (40). We used a Bayesian mixed ANOVA as an omnibus test

to explore the impact of the condition and the repetition on the metrics. Additional post-hoc

tests used a Bayesian Repeated-Measure ANOVA or Bayesian independent t-test comparing

the conditions one by one and fixing the prior probability to 0.5 to correct for multiple testing.
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Results are presented with graphs using violin plots featuring the kernel density estimation of

the distribution, raw data points and/or the mean and the 95% Confidence Intervals.
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Table 1: Example of events during the first minute of the first round of the interaction with the
23rd child in the supervised condition. Lines in blue represent suggestions from the robot and
orange the reactions from the teacher. (‘mvc’ is the abbreviation of the move close action)
Time Event Time Event

4.1 childtouch frog 32.5 childrelease dragonfly
4.3 failinteraction frog wheat-3 34.4 childtouch wolf
4.9 animaleats frog fly 34.7 robot proposes remind rules
5.8 childrelease frog 35 animaleats wolf mouse
6.6 robot proposes congrats 36 teacher selects wait
7.6 childtouch fly 36 animaleats wolf mouse
7.6 teacher selects wait 37.2 childrelease wolf
8 animaleats fly apple-4 37.7 childtouch grasshopper
8.3 childrelease fly 38.3 robot proposes congrats
9.1 teacher selects congrats 42.1 failinteraction grasshopper apple-1
9.1 childtouch frog 42.7 childrelease grasshopper
10.3 childrelease frog 42.7 failinteraction grasshopper apple-1
10.8
11.2

childtouch frog
animaleats frog fly

44.4 teacher selects instead mvc mouse -
wheat-1

12.4 failinteraction frog apple-2 44.6 robottouch mouse
12.5 animaleats frog fly 44.7 childtouch butterfly
13.2 childrelease frog 45.1 failinteraction butterfly wheat-2
14.2 childtouch fly 45.6 childrelease wheat-1
14.5 animaleats fly apple-2 45.6 robotrelease mouse
14.6 robot proposes encouragement 45.7 robottouch mouse
15 childrelease fly 48.9 robotrelease mouse
15.4 animaleats fly apple-3 49.3 childtouch butterfly
16.9 teacher confirms encouragement 49.3 failinteraction butterfly wheat-1
18.2 childtouch snake 49.6 childrelease butterfly
18.4 failinteraction snake wheat-3 50 childtouch mouse
18.7 animaleats snake bird 50.3 animaleats mouse wheat-1
19.6 animaleats snake bird 51 childrelease mouse
20.5 childrelease snake 51.1 animaleats mouse wheat-2
20.6 failinteraction snake wheat-4 51.4 robot proposes congrats
20.6 robot proposes congrats 52.3 teacher confirms congrats
20.9 childtouch eagle 52.9 childtouch snake
21.1 animaleats eagle bird 52.9 failinteraction snake wheat-3
22 animaleats eagle bird 53.2 childrelease snake
22.4 childrelease eagle 53.5 childtouch mouse
23.3 animaldead bird 53.6 animaleats mouse wheat-3
23.4 teacher selects instead mvc dragonfly -

fly
54.4
54.5

robot proposes congrats
animaleats mouse wheat-4

23.6 robottouch dragonfly 55 childrelease mouse
26.9 robotrelease dragonfly 55.6 childtouch dragonfly
27.7 childtouch fly 56.1 teacher selects wait
28 childrelease fly 56.8 failinteraction dragonfly apple-1
28.4 childtouch dragonfly 57.3 childrelease dragonfly
28.6 failinteraction dragonfly apple-1 57.5 failinteraction dragonfly apple-1
29.1 childrelease dragonfly 58.6 childtouch grasshopper
29.4 failinteraction dragonfly apple-1 58.6 failinteraction grasshopper apple-1
30.3 childtouch dragonfly 58.8 childrelease undefined
30.3 failinteraction dragonfly apple-1 59.1 childtouch dragonfly
30.7 robot proposes encouragement 59.1 failinteraction dragonfly apple-1
31 failinteraction dragonfly apple-1 59.2 failinteraction grasshopper apple-1
31.8 teacher selects wait 59.9 failinteraction dragonfly apple-1
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Table S1: Post Hoc comparison of timing of actions for the supervised condition.

Prior Odds Posterior Odds BF10,U error %

Drawing attention Encouragement 0.320 8.752 27.393 3.361e-7
Move close 0.320 33.294 104.205 8.241e-8

Remind rules 0.320 4.758 14.892 2.178e-7
Congratulation 0.320 6.948e+33 2.174e+34 3.381e-40

Encouragement Move close 0.320 6.497e+15 2.033e+16 1.766e-23
Remind rules 0.320 0.058 0.182 3.170e-5

Congratulation 0.320 9.479e+21 2.967e+22 5.322e-27
Move close Remind rules 0.320 3.562e+7 1.115e+8 7.232e-14

Congratulation 0.320 6.381e+59 1.997e+60 7.205e-66
Remind rules Congratulation 0.320 3.021e+8 9.456e+8 1.064e-14
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Table S2: Post Hoc comparison of timing of actions for the autonomous condition.

Prior Odds Posterior Odds BF10,U error %

Drawing attention Encouragement 0.320 12.287 38.456 4.401e-7
Move close 0.320 81.760 255.894 3.694e-8

Remind rules 0.320 26881.063 84132.699 2.030e-11
Congratulation 0.320 3.251e+23 1.017e+24 2.583e-30

Encouragement Move close 0.320 2.038e+19 6.378e+19 1.180e-25
Remind rules 0.320 1.641 5.135 3.616e-5

Congratulation 0.320 2.989e+14 9.354e+14 2.006e-19
Move close Remind rules 0.320 8.483e+21 2.655e+22 1.765e-28

Congratulation 0.320 3.478e+53 1.088e+54 1.987e-60
Remind rules Congratulation 0.320 303054.828 948504.928 8.407e-11

Table S3: Exposure to learning units. Means (SD) of the number of different eating interac-
tions produced by the children in each round of the game.

Round 1 Round 2 Round 3 Round 4

Passive 7.7 (3.0) 8.4 (2.9) 10.0 (3.3) 9.8 (3.0)
Supervised 10.1 (2.5) 10.8 (2.6) 10.8 (2.5) 11.2 (2.8)
Autonomous 10.2 (2.7) 10.6 (2.9) 11.0 (2.9) 10.9 (2.9)

Table S4: Game duration. Means (SD) of the duration of each round of the game (in minutes).

Round 1 Round 2 Round 3 Round 4

Passive 1.6 (0.5) 1.68 (0.54) 1.66 (0.6) 1.69 (0.63)
Supervised 1.91 (0.42) 1.94 (0.39) 1.88 (0.48) 1.98 (0.49)
Autonomous 1.83 (0.46) 1.84 (0.55) 1.92 (0.52) 1.81 (0.58)
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(a) Welcoming screen (b) Test introduction (c) Test partially completed

(d) Confirmation of test (e) Results of test (f) Tutorial introduction

(g) Tutorial in progress (h) Game introduction (i) Game in progress

(j) End of a game round (k) Results of a game round (l) End of the interaction

Figure S5: Steps of the study. This figure presents screenshots of the touchscreen at several
points of the study. It should be noted that steps (b) to (e) correspond to one test and (h) to (k)
to one round of the game. As such, a full interaction would see a first pretest (steps b to e),
followed the tutorial (steps f and g), two rounds of the game (2 repetitions of steps h to k), a
second test, two other rounds of the game and a last posttest before ending the interaction with
step (l).
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