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Abstract

One-class classification is the standard procedure for novelty detection. Novelty
detection aims to identify observations that deviate from a determined normal
behaviour. Only instances of one class are known, whereas so called novelties are
unlabelled. Traditional novelty detection applies methods from the field of outlier
detection. These standard one-class classification approaches have limited perfor-
mance in many real business cases. The traditional techniques are mainly devel-
oped for industrial problems such as machine condition monitoring. When apply-
ing these to human behaviour, the performance drops significantly. This paper
proposes a method that improves existing approaches by creating semi-synthetic
novelties in order to have labelled data for the two classes. Expert knowledge is
incorporated in the initial phase of this data generation process. The method was
deployed on a real-life test case where the goal was to detect fraudulent subscrip-
tions to a telecom family plan. This research demonstrates that the two-class
expert model outperforms a one-class model on the semi-synthetic dataset. In a
next step the model was validated on a real dataset. A fraud detection team of
the company manually checked the top predicted novelties. The results show that
incorporating expert knowledge to transform a one-class problem into a two-class

problem is a valuable method.
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1. Introduction

Novelty detection is concerned with detecting data that is different from the
known data that characterizes a normal or stable situation. The term novelty
detection is frequently used interchangeably with the more narrow term one-class
classification. Models in this domain are used when only one class is known, while
the other class is absent, poorly sampled or not well defined (Khan and Madden,
2014). One-class models rely heavily on outlier assumptions. These methods are
therefore suited for applications with clear outliers, where the novelties do not
interfere with the normal data. In machine monitoring for example, where the
normal data is stable and outliers are usually pronounced, these methods are
applicable (Japkowicz et al., 1995). However, applications that classify human
behaviour typically possess a much higher variability in the data, resulting into
a less strict boundary between novelties and the normal data. Novelties are not
always outliers and outliers are not always novelties (Das et al., 2016). To deal
with this increased classification difficulty, we need a method that uses more than
solely the data of the one class of normal behaviour. As one-class classification is
a harder problem than two-class classification (Tax and Duin, 2001), there is value
to be found in the transformation of the one-class problem into two-class. Previous
research developed methods to generate artificial data for the unknown class. As
will be shown in this study, this generated data is however not informative enough
to effectively boost performance in applications with diverse human behaviour.
This research therefore proposes a method that incorporates expert knowledge
to generate data for the unknown class. Modelling human behaviour with the
support of human experts proves to be a good match.

The methodology is evaluated through a case study with a large European
telecommunications provider. The company released a new mobile offering where
customers can bundle themselves in a so called family plan (Desai et al., 2018).
Due to unique factors of this product, people could take advantage of the service
by using it in a way that is not allowed by general terms and conditions. This
subscription fraud leads to losses in revenue. As fraud detection is becoming more
and more important in preventing these losses (Barse et al., 2003), the goal was to
develop a state-of-the-art fraud detection system (FDS) that distinguishes normal
users from fraudsters. Before the launch of the new product, all data contains only
non-fraudulent customers by definition. Once the product is launched, fraudulent
cases will occur in the dataset, however those are unidentified and unlabelled,

which rules out traditional two-class classification. The post-launch dataset will



be used to validate the proposed model.

In the remainder of the paper, the traditional novelty detection approaches
and their extensions are reviewed. In the methodology section, our expert method
for the transformation into a two-class problem is developed. This method is
benchmarked against other methods in the subscription fraud case study and the
results are empirically validated by means of manual inspection on the post-launch
data.

2. Literature Review

2.1. Novwelty Detection

Novelty detection is a major area of research. There are several closely re-
lated fields of which many are used as synonyms; one-class classification, anomaly
detection, outlier detection, concept learning, data description, single-class classi-
fication (El-Yaniv and Nisenson, 2007). Less commonly used are the terms noise
detection, deviation detection and exception mining (Hodge and Austin, 2004).
The terms novelty and anomaly detection are broader in scope than the often
as a synonym used one-class classification (OCC). OCC, as introduced by Moya
et al. (1993), is merely one approach to tackle novelty detection. However, it is
the most common approach in this respect.

Novelty detection is concerned with classifying data that differ in a certain way
from the available data in the training phase (Pimentel et al., 2014). Figure 1
displays a simplified representation of the concept. Cases from only one class are
known, this class is referred to as target or positive class, while the unknown class
is referred to as unstable, negative or outlier class (Hempstalk et al., 2008; Khan
and Madden, 2014; Clifton et al., 2014). Throughout this research, the terms
positive and negative class will be used.

One-class classification builds a model that describes the positive class, also
called a model of stability (Clifton et al., 2014). This model only uses data from
the known positive class. At prediction time, the model classifies new examples
as a novelty or as being part of the positive class. Different types for these models
will be discussed in 2.2.

Ding et al. (2014) explain that novelty detection is mostly based solely on the
positive data since there is enough data about normal events, but none or only
scarce data about non-normal events. Furthermore, it is often costly to acquire

data about abnormal events. In these situations, it is general practice to fall back
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Figure 1: Nowelty detection. Simplified representation with only two dimensions and perfect
class separation. Only instances for the positive class are known. Data for the negative class
is not (readily) available or unlabelled. Typically, a one-class model is employed (cf. the line

surrounding the positive cases).

to these one-class, unsupervised approaches since developing explicit models for
the novelty class is hard (Das et al., 2016).

Novelty detection techniques are traditionally developed and applied in more
industrial applications, such as the monitoring of manufacturing processes (e.g.
Al-Habaibeh and Parkin (2003)), machine condition monitoring (Carino et al.,
2016; Clifton et al., 2014), mobile robotics (Sofman et al., 2011) and medical di-
agnoses (Tarassenko et al., 1995; Quinn and Williams, 2007; Clifton et al., 2011).
These settings are usually determined by a stable positive class. Hence, the nega-
tive observations resemble more closely outliers in their most strict definition and
the traditional outlier based detection methods are adequate. However, in cases
where human behaviour plays an important role, both the positive and negative
class are much less stable. Patcha and Park (2007) report that the traditional out-
lier or anomaly detection models result into high false alarm rates, when applied
to network intrusion detection, a case where human hackers aim to intrude the
network. The more volatile and varied nature of this data calls for new methods.

In the following, a concise overview of the prevalent approaches to novelty
detection is presented. Figure 2 displays the main categories and the positioning

of our proposed method within the novelty detection literature. A distinction is



made between approaches that use only data from the positive class and those
that create data for the negative class. The first category can be called one-class or
unsupervised novelty detection, the second category two-class or (semi-)supervised

novelty detection.

2.2. One-Class Nowvelty Detection

Within the one-class category, three major approaches are identified; proba-
bilistic, distance-based and domain-based methods.

The probabilistic approaches estimate a probability density function of the
positive data. The model will then classify points that lie outside of the high
density region as a novelty. Both parametric and non-parametric approaches can
be used. The multivariate Gaussian distribution is a frequently used parametric

example.
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The model will estimate the parameters of the multivariate Gaussian distribution.
In the simplified bivariate example in Figure 1, a distribution will be constructed
so that the positive examples are in the high density region and the (unobserved)
negative examples would be classified in the tails of the distribution. In gen-
eral, probabilistic methods for novelty detection are mathematically sound and
effective if there is an accurately estimated probability density function (Pimentel
et al., 2014). Higher dimensionality or small training sets are however dreadful
for their performance. Pearson (2005) states that it is not convenient to find a
suitable distribution. Non-parametric approaches can partly solve that issue, but
they suffer from the curse of dimensionality and add computational complexity
(Hempstalk et al., 2008). The curse of dimensionality implies that the number
of required datapoints exponentially increases with the number of dimensions.
Furthermore, a test point will be classified as a novelty if it does not follow the
identified distribution, however the assumptions of many distributions might be
too simplistic for real-life data. Ding et al. (2014) point at the importance of prior
knowledge to circumvent this issue.

Distance-based methods include both clustering and nearest neighbour based
methods. Nearest neighbour methods are among the most used approaches for
novelty detection (Pimentel et al., 2014). The k-nearest-neighbours (k-NN) method
is based on the assumption that normal points have close neighbours in the pos-

itive training set. A new data point ., is classified as positive if the distance



between ¢y, and its k nearest neighbours N N (Zeq ) is smaller than the distance
between N Ni(Znew) and its respective k nearest neighbours N N (N Ng(Zpew)) in
the training set. This leads to the following formula for the kNN score.

Hxnew - NNk(xnew)H (2)
|| NN (@new) — NNi(N Ny (Znew))||

The observations in the new dataset that have the highest k-NN scores will

k-NN Score =

be classified as negative. A common distance formula is Euclidean distance. The

FEuclidean distance formula between a and b for n dimensions is given by:

Also Manhattan and Minkowski distance are used. Ding et al. (2014) selected k-
NN as the best novelty detection method in an experimental evaluation, using ten
benchmark datasets with different scale, dimensionality and problem complexity.
Distance based methods have the advantage that they require no assumptions
about the probability distribution of the normal data. The curse of dimensionality
is again present; as the number of dimensions increases, the distance formula uses
so many coordinates that the differences in distance will become relatively small.
Clustering has the extra downside that the computational complexity increases
quickly and the method is therefore not very scalable.

Domain-based methods construct a boundary using only the positive dataset.
The density, which is crucial for probabilistic approaches, becomes irrelevant,
because these methods are only concerned with the boundary. The reasoning
behind this methodology is that one does not need to solve a more general problem
than what is necessary (Scholkopf et al., 2000; Tax and Duin, 2004). The two
leading approaches within the domain-based category are both based on support
vector machines (SVM) and this category is therefore also referred to as one-class
SVM. Scholkopf et al. (2000) developed a method that they describe as a natural
extension of SVM to the case of unlabelled data. This algorithm returns a function
f that is positive in a region that captures the majority of the datapoints and is

negative elsewhere.

flz) = sgn(z aik(xi, x) = p) (4)

This method requires the user to fix in advance a percentage of the positive data
that is allowed to fall outside the boundary that defines the positive class (the

v parameter). This means that outliers in the training data are tolerated more,



which helps with the issue that not all outliers are examples of the negative class
and not all examples of the negative class are outliers (Das et al., 2016). This
flexibility is beneficial for the classification of diverse human behaviour, however
the impact is expected to be still limited. Also, this parameter has a strong in-
fluence on the overall performance and therefore has to be chosen with great care
(Manevitz and Yousef, 2001). The second domain-based approach was developed
by Tax and Duin (2004). Their support vector data description (SVDD) method
defines the novelty boundary as the hypersphere with minimum volume that in-
cludes all (or most) of the positive training data. A result of this definition is that
the method is not well suited for high-dimensional spaces because of sparseness
issues. In general, one-class SVMs are well known and repeatedly used for novelty
detection (Clifton et al., 2014).

2.8. Two-Class Novelty Detection

The aforementioned unsupervised, purely one-class algorithms are often crit-
icised for their high false negative rates (Das et al., 2016; Ding et al., 2014).
Gornitz et al. (2013) also mention their frequently low predictive performance
and point at the need for labelled data. Tax and Duin (2001) explain the inferior
performance of one-class methods by the fact that the decision boundary is only
supported from one side. On top of that, a vast amount of methods have been
developed for (two-class, binary) classification and it would be beneficial if novelty
detection could make use of these established methods. Two major approaches
have been developed with the purpose of assigning a label to the unlabelled data
points; manually labelling existing negative points (e.g. Gornitz et al. (2013)) and
generating artificial data (e.g. Surace and Worden (2010)).

Manual or expert based labelling has been done through the inclusion of feed-
back loops (Abe et al., 2006; Gornitz et al., 2013). Abe et al. (2006) use active
learning to interactively query the user. The user needs to manually label selected
observations. The model learns from this information. The Active Anomaly Dis-
covery (AAD) method, introduced by Das et al. (2016) is very similar and incor-
porates expert feedback through an interactive data exploration loop. It is clear
that these approaches are very inefficient in most novelty detection applications
since the overall presence of novelties is very low and it therefore takes a long time
before novelties are discovered.

The artificial data generation approaches do not have this drawback and are
therefore expected to be more efficient. Steinwart et al. (2005) mathematically

prove that it is worthwhile to generate artificial data in order to apply a binary



classification algorithm, given that the artificial samples are well chosen. In certain
cases it is not possible to use authentic data for the negative class because for
example the target service is under development (Barse et al., 2003). Artificial
data provides an interesting solution.

A probabilistic approach to artificial data generation was introduced by Hemp-
stalk et al. (2008). Their technique enhances the standard used one-class prob-
abilistic approach by transforming the problem to two-class. Density estimation
is used to form a reference distribution for the artificial class (P(X|—)). This
distribution should be as close as possible to the positive class. P(X|—) is used to
generate data for the negative class. The positive data and the generated negative
data are then labelled as such and mixed so that two-class classification can be
used. The authors use Bayes’ rule to combine the density function of the reference
distribution (P(X|—)) with the class probability estimates (P(+]X)) in order to
yield a description of the density function for the positive class (P(X|+)). This
results in the following relation.

(1 - P(+))P(+|X)
P(+)(1 = P(+[X))

P(X[+) = P(X|-) (5)

P(+) can be estimated by the proportion of positive examples in the mixed
dataset. Using a balanced dataset (P(+) = P(—) = 0.5) reduces the formula

to the following.

P(+]X)
1 - P(+]X)
Applying a learning algorithm to this two-class training set results into a class
probability estimator that will take the role of P(+|X). P(X|—) can also be cal-

PX|+) = P(X|-) (6)

culated if an appropriate function was selected. Hempstalk et al. (2008) demon-
strated with multiple datasets that this artificial data generation method improved
performance.

Surace and Worden (2010) use a largely distance based approach, called neg-
ative selection, to generate the artificial data. A data point is pseudo-randomly
generated using Gaussian distributions. If it is not similar enough to the existing
positive data, it is labelled as part of the negative class. The similarity is calcu-

lated using the cosine similarity, which is an alternative for Euclidean distance.
l
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Another example of artificial data generation is given by Clifton et al. (2014).

(7)

sim(z,y) =

They develop a two-class counterpart for the one-class SVMs by generating data



with the purpose of calibrating SVM output into probabilities. Their goal is
different, but the methodology and their case study is relevant for this research.
The monitoring of an industrial combustion engine was tackled by simulating
data. The initial training phase of the engine was considered as the positive,
stable data. Data for the negative class was generated by simulating unstable
combustion through increasing fuel flow rates. This approach is thus based on
data simulated by experiments, which would be infeasible when dealing with a
human behaviour setting, such as fraud detection.

There is not one established, generally applicable method for novelty detec-
tion. This is largely due to the fact that specific settings require specific methods
and a well-tailored method usually outperforms the more general method. The
use of artificial data is a method that can be well-tailored and therefore supports
this idea. There are however two important comments to be made on the use
of artificial data for the negative class. Abe et al. (2006) and Hempstalk et al.
(2008) notice that it is important that the artificial data is not too different from
from the positive data, since the risk exists that the classifier would simply learn
to distinguish real from artificial examples. A second remark is made by Gornitz
et al. (2013), who warn that using artificially created data for the unknown class
may in certain cases be inappropriate, since totally new and unseen (negative)
classes are not easily picked up with a two-class method that was not trained
on such data. Omne-class methods are expected to outperform the two-class ap-
proaches in that respect. However, the benefits of the two-class approach will in
many situations outweigh this possible downside. The argument of Gornitz et al.
(2013) also suggests that one-class classifiers do not suffer from the drawback
that new negative examples are not picked up. It should however be remarked
that traditional one-class approaches are based on the implicit assumption that
all examples of the positive class are present in the dataset. This assumption
is too strong in most cases and the result is that new positive examples will be
misclassified, resulting in a higher number of false negatives (FN). A model that
is able to learn from two classes will generally be able to make a better decision
in these cases. Overcoming the risk that the two-class model, created on artificial
data, only learns to distinguish between artificial and real data remains the most

precarious issue. Our study proposes a method to overcome this remaining issue.



3. Method Development

3.1. Fxpert Knowledge

Models based on (partly) artificial data try to enhance the informativeness
and therefore improve the predictive performance. The objective of this research
is to further enhance the informativeness beyond what has been done in previous
research, where artificial data was mainly used to create a decision boundary,
without strong assumptions about the negative class. Ding et al. (2014) emphasize
that the success of semi-supervised novelty detection is strongly dependent on the
quality of the generated negative data. The method that we present takes into
account the principle behind the guideline of Hempstalk et al. (2008); namely that
it is important to prevent that the classifier only learns to distinguish between
real and artificial examples. Our solution however differs because it does not
require the artificial data to be close to the positive data. If it is known that
the real negative data does differ enough from the real positive data, it would
be suboptimal not to include this kind of information. From these findings, the
most important condition for the artificial data arises; namely that the created
instances should be as realistic as possible. They should be a good surrogate
for actual negative data and prevent that the model only learns to distinguish

between artificial and real data.

Novelty detection

One-—class methods Two—class methods
Probabilistic methods

« Pearson (2005) Expert based labelling Artificial data generation
Distance—based Probabilistic
methods o Abe et al. (2006) * Hempstalk et al. (2008)

+ Ding et al. (2014) » Gornitz et al. (2013) Distance—based
Domain—based methods * Dasetal. (2016) * Surace and Worden (2010)
(One—class SVM) Two—class SVM

+ Schélkopf et al. (2000) + Clifron et al, (2014)

* Tax and Duin (2004)

Figure 2: Positioning of our expert data generation method in the novelty detection literature.

As illustrated in Figure 2, this paper proposes the incorporation of expert
knowledge in order to meet the condition of realism. Experts are qualified to
come up with representative instances of negative data and to assess the realism
of the synthetically created data. It has been suggested that prior (expert) knowl-
edge about the case has the potential of tremendously increasing the performance
of a classifier (Li et al., 2000; Larichev et al., 2002; Dayanik et al., 2006; Wang
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and Zhang, 2008; Lauer and Bloch, 2008; Utkin and Zhuk, 2014). Ashouri (1993)
acknowledges that human reasoning enables identifying the structure of a prob-
lem and allows a qualitative analysis, but that handling quantitative, objective
analysis is less obvious for human beings. The combination of expert knowledge

with the predictive model incorporates the best of both worlds.

3.2. Ezpert Scenarios

The remaining question is how to implement the incorporation of expert
knowledge in the creation of artificial data. Previous research has incorporated
experts through a feedback loop (Abe et al., 2006; Gornitz et al., 2013), while
others created synthetic data without incorporation of expert knowledge (e.g.
Hempstalk et al. (2008)). Our method includes expert knowledge from the first
stage, with the purpose of generating well informed data for the negative class.
The expert knowledge defines one or more subspaces where the likelihood of ob-
serving negative data is higher. Semi-synthetic data will be constructed in these
subspaces. An implementation that incorporates expert knowledge through the
construction of scenarios is presented. Workshops with the relevant experts can
be organised to come up with scenarios of abnormal or novel behaviour. These

scenarios should be realistic and cover as much negative cases as possible.
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Figure 3: Expert Data Generation Method

Based on the selected scenarios, the next step involves generating actual data

instances. By taking existing real datapoints as starting point, we guarantee that
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the new datapoints are realistic. The suggested approach can be called variable
manipulation. Suppose that there are k variables in positive dataset P with p
observations. The goal is to generate n instances for the negative class and store

these in dataset N. We now proceed with the following steps:

1. Creation of instances of negative class - manipulated variables
(a) Based on the expert scenarios, select m variables to manipulate (with
m < k)
(b) Set one or more expert rules for these m variables in order to generate
artificial negative class examples. (e.g. variable x should have a value
higher than 10 in scenario y).
2. Creation of instances of negative class - other variables
(a) Calculate the values for all other non-manipulated variables
(b) This results into dataset N
3. Stack dataset P (with the existing positive class examples) with set N
4. Build a predictive model, predicting P(z; € P|zi1...xik).

This generic framework is meant to be applied to different cases. The structure
and availability of the data will determine how to implement the calculations in
step 2a. The calculations for this step will be network based in our case study.

There is a trade-off between the number of fixed, manipulated variables and
the free variables. The higher the number of manipulated variables is, the higher
the influence of expert knowledge will be. The goal is to restrict certain variables
and see how the other variables react on that. The ratio p/n determines the
balancedness of the final dataset. Our method enables a free choice of this ratio.
This also eliminates the typical novelty detection problem of extremely unbalanced
data; a lot of positive examples, but none or very few negative examples are known.
The scenario method therefore offers an alternative to oversampling techniques
which are normally used to remedy the unbalancedness. The synthetic minority
oversampling technique (SMOTE), as developed by Chawla et al. (2002), is a
widely used example. This purely data based technique shares similarities with
our method, since it also generates new semi-synthetic instances.

The proposed method also provides freedom of selecting a specific binary clas-
sification algorithm, as it only interferes at the data generating process, the mod-
elling part continues as if this was a standard two-class classification problem. In
order to clarify the methodology, the next section applies the method to a fraud

detection case in the telecom sector.
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4. Case Study: Telecom subscription fraud

4.1. Business Problem

A case study is used to demonstrate that incorporating expert knowledge into
the data generation phase enhances predictive performance in a real-life setting.
The goal of this business case was to detect customers that commit telecom sub-
scription fraud. Hilas and Mastorocostas (2008) define fraud detection as a field
that uses techniques to monitor behaviour that deviates from the norm. This def-
inition comes very close to the definition of novelty detection and it is therefore
not surprising that novelty detection methods have been used for fraud detection
(Patcha and Park, 2007; Jyothsna et al., 2011; Pimentel et al., 2014).

The problem of fraud is an important and worldwide issue in the telecommu-
nications sector as it leads to an important loss in revenue (Farvaresh and Sepehri,
2011). Fawcett and Provost (1997) estimate that fraud costs the sector hundreds
of millions of dollars per year. Hollmén and Tresp (1999) report that telecom
companies lose between 2 and 5% of their total revenue to fraud. Fraud involves
misuse, but it does not necessarily lead to direct legal consequences (Phua et al.,
2010). Different types of telecom fraud have been identified by Gosset and Hyland
(1999), Hollmén and Tresp (1999), Hilas and Mastorocostas (2008) and Farvaresh
and Sepehri (2011); such as contractual fraud (subscription and premium fraud),
hacking fraud, technical fraud and procedural fraud. This case deals with sub-
scription fraud (Gosset and Hyland, 1999; Farvaresh and Sepehri, 2011), a type
where advantage can be made of the service by using the mobile offering in a way
that is not allowed by general terms and conditions of the subscription.

The company wanted to launch a family plan (Desai et al., 2018), which
includes up to five SIM cards for a fixed total price. These SIM cards are of
the flat-rate use type, which means that they include unlimited SMS and calls.
The general terms of this family plan allow the SIM cards within one subscription
to be used only by people within the same household. However, there is a financial
incentive to distribute these anonymous cards to people outside of the household.
Since an extra card - up to five - comes at no extra cost, the incentive for fraudsters
is very high.

Telecom fraud detection systems are usually based on anomaly detection,
where behaviour is compared with past behaviour of subscribers (Yesuf et al.,
2017). Van Vlasselaer et al. (2013) state that because of the many domain-
specific characteristics of different fraud types, it becomes important to use a

domain-specific solution. Our method provides the necessary flexibility due to
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the incorporation of expert knowledge. Fraud detection also leads to a class im-
balance problem, since in most cases there are very few fraud cases compared to
the total dataset. As became clear from the previous section, the class imbalance
problem is eliminated as the number of generated negative examples can be set

as desired.

4.2. CDR Data

Identifying fraudulent customers in this case comes down to predicting whether
the relationship between two customers that subscribed in the same household
truly is a household relationship. To tackle this prediction problem, a vast amount
of call detail record (CDR) data is used. Eagle et al. (2009) and Cho et al.
(2011) confirm that CDR data has great potential to reveal relationships between
people. Not only does the CDR data contain the calling behaviour between the
individuals, it also contains their location. Geo-data has previously been used to
infer social ties (Eagle et al., 2009; Crandall et al., 2010; Cranshaw et al., 2010;
Cho et al., 2011).

This research uses the CDR data of two five-week periods. The pre-launch
data is used for the model building and a first evaluation on a test set. The
post-launch data enables to perform an additional real-life validation test of the

modelling approach.

e Week 1 - 5: Pre-launch data
e Week 9: Product launch
o Week 24 - 28: Post-launch data

All of the analyses are performed on dyad level, where a dyad consists out of
two customers. The main goal is to predict whether the relationship between two
customers is a household (positive) or a fraudulent (negative) relationship.
Based on this network data, 66 variables are created in cooperation with the
experts of the company. These variables can be categorized as pure network-
based (e.g. number of calls within dyad, number of common contacts), spatial
/ spatio-temporal (e.g. distance between most used locations), network-spatial
(e.g. distance between both when calling each other) and variables related to the
home address (as approximated by the closest phone mast). An overview of these

variables can be found in appendix.

4.3. Incorporating Expert Knowledge

Transforming the one-class problem into a two-class problem requires labelled

data for both the positive and negative class. Examples of positive dyads are
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available in the pre-launch dataset. Before the launch of the new product, many
customers already signed up as a household in order to receive only one bill. Apart
from this practical convenience, there was no (financial) incentive to dishonestly
sign up as a household. We can therefore use these dyads as examples of positive

class data (see also Figure 4).

P

.
P
.

Household

Positive dyad
-------- Negative dyad

Figure 4: Network dyad selection; positive and negative class. Positive links connect individuals
in the same household whereas negative links connect people that are not part of the same
household.

Since there are no known fraud examples, instances have to be created for
the negative class. One approach would be to use a random subset of all links
between two individuals that are not within the same household. In other words,
negative dyads are constructed by randomly combining two individuals. However,
the major part of these instances would be dyads that are not at all related and
therefore unrepresentative of the real negative class. This approach would also
lead to negatives that are too different from the positives, conflicting with the
guideline of Hempstalk et al. (2008). Moreover, complete random selection would
also imply that there is no expert knowledge that can guide the selection process.

Therefore restrictions are set in our method (see 3.2 Expert Scenarios: step 1b).
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Our method overcomes this issue and meets with the requirements of realistic
scenarios.

The experts identified two major fraud scenarios (with each three subscenar-
ios): distributing the extra free SIM cards between friends and between neigh-
bours. Translating these scenarios into usable data is done by using rules for
variable manipulation. Based on the information in the existing CDR dataset,
thresholds were set for three variables that define the scenarios. The assumption
for the friend scenario is for example that there is at least one contact between
them during the five-week period. For the neighbour scenarios, people that live
within a radius of 200 metres are selected. Only taking this distance into account
would lead to the previous described problem that most of those neighbours are
unrelated. Therefore, the same calling behaviour rules as in the friend scenarios

are taken into account.

Scenario Calls SMS | Distance
friend >1 or >1

good friend >10 or >10

best friend >40 or >100

neighbour >1 or >1 < 200m
good neighbour | > 10 or >10 < 200m
best neighbour | > 40 or > 100 | < 200m

Table 1: Expert Fraud Scenarios. Or is non-exclusive.

This data is used for the subsequent analyses (see Table 2). An unbalanced
dataset with 95% data from the positive class was used. The 5% data for the
negative class was sampled from the expert generated negative dataset. This un-
balanced set was used since this more closely resembles the true class distribution
as expected by our experts. Instances from the different scenarios are merged and
labelled as the negative class. Putting all scenarios together into one negative
class enables to have a well-sampled representation of real-life data, where all
scenarios will also occur together in the data. We use 5-fold cross-validation for
all employed models in order to obtain a robust evaluation of the results. The
division of the data over the five folds is reported in Table 2.

In the following, our expert model will be benchmarked against pure one-
class models and models that create artificial data without expert knowledge (cf.

Figure 2).
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Scenario Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

household data (P) 18,059 18,072 18,090 18,048 18,061 90,330
fraud scenario data (N) 957 944 927 968 956 4,752
friend (N) 168 153 154 169 148 792
good friend (N) 158 154 161 155 164 792
best friend (N) 153 157 161 166 155 792
neighbour (N) 154 166 148 161 163 792
good neighbour (N) 173 151 158 156 154 792
best neighbour (N) 151 163 145 161 172 792

Table 2: Pre-launch Data. Number of instances (dyads) in the different folds for 5-fold cross

validation.

4.4. Benchmark Model 1: One-Class Classification

We implement the three main categories of one-class classification, to bench-
mark our method. We follow the most important measures for novelty detection
as identified by Ding et al. (2014) to evaluate our models; True Negative Rate
(TNR) and AUC.

The main interest lies in the true negative rate (TNR), also called specificity,
since the goal is to detect as many of the actual fraudsters as possible. TNR
is equivalent to the fraud detection rate (FDR), it calculates the percentages of
fraud cases that are detected. The TNR or FDR is calculated as TN/(T'N + FP),
with TN = True Negative and F'P = False Positive. As is common practice in
novelty detection, we define the stable (=household) class consistently as posi-
tive throughout this research. As opposed to traditional two-class classification,
therefore the class that we want to predict as accurately as possible is defined
as the negative class, which turns the intuitive interpretation of specificity and
sensitivity upside down. AUC measures the Area Under the receiver operating
characteristic Curve. AUC provides an assessment of the overall performance
of the classification model and is not dependent on a chosen cut-off value. The
measure can be interpreted as the probability that a randomly chosen positive
observation is ranked higher than a randomly chosen negative observation. The
value should thus be as high as possible and will be between 0.5 and 1, where 1
indicates a perfect model and 0.5 indicates a random model from which we can
not learn anything. All reported measures are the average performance over the
folds of the 5-fold cross-validation (5-fold cv) approach. The values per fold can
be found in Appendix (Table A2).
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4.4.1. Benchmark Model 1a: One-Class Probabilistic

We selected a parametric model for the probabilistic one-class benchmark. The
multivariate normal distribution was fitted to the positive data in the training set.
The resulting density was then used to score the test data. The 5% observations
with the lowest density score were classified as the negative class.

The results are displayed in the confusion matrix in Table 3, together with
the other one-class benchmarks. All reported confusion matrices are summed
over the different folds. The average FDR over the five folds is 7.64%. A random
model would on average result into a FDR of 5% since, 5% of the test data is
of the negative (fraud) class. This means that the one-class probabilistic model
performs slightly better. The average AUC value over the five folds is 0.516. This

also confirms that the model does slightly better than a random model.

4.4.2. Benchmark Model 1b: One-Class k-Nearest-Neighbours

Literature identified one-class k-NN as the best method in the distance based
category. In two-class supervised learning, one can optimize the value for k. In
one-class k-NN applications, this is not possible, because there is no ground truth.
However, in our case, we can use the test data (see Table 2) to select a value for
k. Based on the FDR, 1 was selected as k for four folds, £k = 3 was selected for
one fold (see Appendix). Furthermore, all variables were scaled before applying
this distance based method.

The results of this benchmark model are again displayed in Table 3. The FDR
amounts to 6.27%. The AUC for this model is 0.512.

4.4.3. Benchmark Model 1c: One-Class SVM

The one-class SVM (OCSVM) method of Scholkopf et al. (2000) is selected
as benchmark for the third category of one-class models. Chang and Lin (2011)
implemented the approach of Schélkopf et al. (2000) in the popular 1libSVM pack-
age. The interface to libSVM as provided in R was used (Meyer et al., 2017). The
OCSVM was defined using the v parameter. For two-class SVM, this parameter
serves as an upper bound for the training error and a lower bound for the number
of support vectors, whereas for OCSVM v is an upper bound for the fraction of
negative class data (Hornik et al., 2006). This way, v can also be interpreted as
the novelty rate. v is set at 0.05 and the one-class model is trained on the positive
household data using 5-fold cv as presented in Table 2.

FDR is 8.56% for the one-class SVM model. The AUC value can not be calcu-

lated because one-class SVM outputs only binary decisions without probabilities
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based on which the observations could be ranked

Probabilistic k-NN One-Class SVM
(Benchmark 1a) (Benchmark 1b) (Benchmark 1c)
Predicted Predicted Predicted Predicted Predicted Predicted

Positive  Negative %Novelty Positive  Negative %Novelty Positive ~ Negative %Novelty
household (P) 85,938 4,392 4.86 85,873 4,457 4.93 85,687 4,643 5.14
fraud (N) 4,389 363 7.64 4,454 298 6.27 4,345 407 8.56
friend (N) 735 57 7.20 706 86 10.86 728 67 8.08
good friend (N) 748 44 5.56 738 54 6.82 740 52 6.57
best friend (N) 670 122 15.40 775 17 2.15 661 131 16.54
neighbour (N) 768 24 3.03 731 61 7.70 764 28 3.54
good neighbour (N) 770 22 2.78 739 53 6.69 770 22 2.78
best neighbour (N) 698 94 11.87 765 27 3.41 682 110 13.89

Table 3: Confusion Matriz One-Class Benchmark Models.(5-fold cv) %Novelty displays per class
what percentage of the cases was predicted as novelty. For the fraud scenarios, %novelty equals
the Fraud Detection Rate and can be interpreted as the percentage of actual fraud cases that
are detected. For example, the FDR for the one-class SVM is thus 8.56%. For the positive,
household class, %novelty equals 1 - True Positive Rate and can be interpreted as the percentage

of cases incorrectly classified as fraud.

The performance of these three benchmarks is in the same range. We can
observe that OCSVM (Benchmark 1c) scores best, followed by the probabilistic
approach and one-class k-NN. Benchmark 1c has the best FDR and will therefore

be selected as representative for the one-class approaches.

4.5. Benchmark Model 2: Two-Class Artificial Data Generation Models

As two-class artificial data generation can be seen as an intermediary step
towards our expert data generation (see also Figure 2), we implement models

from this category as a second class of benchmarks.

4.5.1. Benchmark Model 2a & 2b: Probabilistic Artificial Data Generation

We follow the approach of Hempstalk et al. (2008) and use equation (6) to
implement two probabilistic models. Benchmark model 2a uses the multivariate
normal distribution as reference distribution for the artificial class (P(X|—)),
benchmark model 2b uses a uniform distribution (as suggested by Hempstalk
et al. (2008)). Hempstalk et al. (2008) stress that P(X|—) should be as close as
possible to P(X|+), we therefore use the parameters as estimated for P(X|+) to

generate data for the negative class. For the multivariate normal model (2a), this
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means that P(X|—) is equal to the density estimated in benchmark model 1a.
The boundaries of the uniform model are determined by the boundaries of the
positive class.

Artificial data is generated from the respective distributions for the negative
class. We then use SVM to train the classifier P(+|X). The SVM implementation
in R (Meyer et al., 2017) was set up to output class probabilities instead of only
class labels, based on Platt et al. (1999). The used type of SVM is C-classification,
with a radial basis function (RBF) kernel. All SVM models throughout this
research (except for the one-class SVM) use these settings. As an intermediate
result, we report the performance of P(4|X) on the generated artificial dataset
itself (Table 4).

P(X|-) AUC FDR

Multivariate Normal (2a)  0.999  99.73
Uniform (2b) 1 100

Table 4: Average performance (5-fold cv) P(+|X) on artificially generated data.

We observe perfect separation for model 2b and nearly perfect separation for
2a. This intermediate result suggests that the model only learns to distinguish
between artificial and non-artificial data.

Combining P(+|X) and P(X|—) using equation (6) results in the final pre-
diction (Table 5). In line with the novelty rate and the frequency of artificial
fraud dyads in the dataset, the dyads with the 5% lowest densities are classified

as fraud.
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Multivariate Normal Uniform

(Benchmark 2a) (Benchmark 2b)
Predicted Predicted Predicted Predicted

Positive  Negative %Novelty Positive  Negative %Novelty

household (P) 85,944 4,386 4.86 86,017 4,313 4.77
fraud (N) 4,383 369 7.77 4,310 442 9.30
friend (N) 736 56 7.07 686 106 13.38
good friend (N) 47 45 5.68 722 70 8.84
best friend (N) 666 126 15.91 733 59 7.45
neighbour (N) 769 23 2.90 688 104 13.13
good neighbour (N) 771 21 2.65 741 51 6.44
best neighbour (N) 694 98 12.37 740 52 6.57

Table 5: Confusion Matriz Two-Class Probabilistic Artificial Benchmark Models (5-fold cv).

We observe that the FDR for the multivariate normal model (2a) is slightly
higher than for the corresponding one-class probabilistic model (Benchmark 1a).

Selecting a uniform reference distribution (2b) leads to a further improvement in
FDR.

4.5.2. Benchmark Model 2c: Distance-based Artificial Data Generation

The approach of Surace and Worden (2010) was mimicked to generate artificial
data for the negative class. In a first step, data was generated from a multivariate
Gaussian distribution (cf. Benchmark models la and 2a). In a second step, the
average cosine similarity of the generated data points - with respect to the positive
set - was calculated. Only cases that had a lower average cosine similarity than the
5% lower boundary of internal cosine similarity in the positive set were retained
as generated negative cases.

Now that data has been created for the negative class, a traditional support
vector machine (SVM) is used for classification. Therefore, we will refer to this
method as two-class artificial SVM as well. Again, the dyads that are in the lowest
5% probability of being household are classified as fraud.

The results are presented in Table 6. The extremely high FDR, together with
an average AUC of 0.999 over the folds indicates that the model offers almost
perfect separation. Similar to the intermediate results of benchmark models 2a
and 2b, this raises the alarm that the model might just be learning to distinguish
between real data (of the positive class) and artificial data (of the negative class).

This important aspect will be discussed further in the following sections.
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Predicted  Predicted
Positive ~ Negative ~ %Novelty

household (P) 90, 245 85 0.09
fraud (N) 83 4,672 98.25

Table 6: Two-Class Artificial Model (Benchmark 2c): Confusion Matrix on the Artificial Test
Set (5-fold cv). Fraud Detection Rate = 98.25%.

Using this model on the expert test set results into a huge drop in performance
(see Table 7). Nearly all dyads are predicted as household, less than 0.001% of
dyads have a lower than 0.975 probability of being household. Using the same
absolute cut-off value as in Table 6 would lead to nearly all dyads in the test
set being classified as positive. However, in accordance with other benchmarks,
we classify the dyads with the 5% lowest probabilities as fraud in the confusion
matrix (Table 7).

Two-Class Artificial
(Benchmark 2c)

Predicted  Predicted
Positive Negative  %Novelty

household (P) 86, 068 4,262 4.72
fraud (N) 4,259 493 10.37
friend (N) 728 64 8.08
good friend (N) 736 56 7.07
best friend (N) 646 146 18.43
neighbour (N) 724 68 8.59
good neighbour (N) 741 51 6.44
best neighbour (N) 684 108 13.64

Table 7: Two-Class Artificial Model (Benchmark 2c): Confusion Matrix on the Expert Test Set
(5-fold cv).

4.6. Two-Class Expert Model

The implementation of our two-class expert method uses the same expert
based dataset as the other benchmarks. The crucial difference is that the two-

class expert model does use the generated negative expert data for the training of
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the model. To achieve maximal comparability with the benchmark models where
a classifier was needed (lc, 2a, 2b and 2c), we again use SVM as binary classi-
fier. This means that the difference in performance can be attributed solely to
the two-class expert method and not to the difference in the background binary
classifier. Furthermore, SVM has a strong theoretical foundation and excellent
predictive performance (Lessmann and Vo8, 2009). It also has a good generalisa-
tion performance when applied to noisy data. In this specific case there is a large
heterogeneity in the behaviour of customers and a method that generalizes well
is desirable.

The predictions on the test set are shown in Table 8. The FDR is now 48.72%.
The model resulted in an average AUC of 0.824 over the folds. These values in-
dicate decent performance, heavily improving upon the benchmark models. The
two-class expert model also has the lowest number of households incorrectly classi-
fied as fraud, 2.70% compared to an average of 4.88% for the benchmark models.
Keeping in mind that a random model would classify 5% of the households as

fraud, this can be considered as a considerable improvement.

Two-Class Expert

Predicted  Predicted
Positive Negative ~ %Novelty

household (P) 87,890 2,440 2.70
fraud (N) 2,437 2,315 48.72
friend (N) 295 567 71.59
good friend (N) 339 453 57.20
best friend (N) 440 352 44.44
neighbour (N) 333 459 57.95
good neighbour (N) 454 338 42.68
best neighbour (N) 646 146 18.43

Table 8: Two-class Expert SVM Confusion Matrix per Scenario on the Test Set (5-fold cv).
Fraud Detection Rate = 48.72%.

When applying the two-class expert method, the user is however not restricted
to SVM. We therefore also demonstrate the robustness of the method by applying
six different classifiers (Table 9 and Figure 5). The results are robust over the six

different classifiers, with SVM scoring average.
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Model AUC FDR

SVM 0.824  48.72%
Logistic Regression 0.835  45.56%
AdaBoost 0.884  51.02%
Decision Tree 0.770  41.50%
Random Forest 0.865 51.38%

Neural Network (1-layer)  0.793  40.46%

Table 9: Robustness Check. Average performance (5-fold cv) of the Two-Class Expert Method

for different binary classifiers on expert test data.
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Figure 5: Robustness Check. ROC Curves of investigated binary classifiers for the Two-Class
Expert Method on expert test data (5-fold cv).

A valuable novelty detection method should be generalisable and avoid over-
fitting. In other words, it should perform well on a new dataset that was not
involved in the generation of the novelty detection model. Therefore, we also

evaluate the performance of the most important models on the dataset generated
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by the other method. As the pure one-class models do not generate data, only
the data generated by the two-class models can be used for this test. For the
pure one-class approaches, model 1c was selected as the best performing model.
Furthermore, our main objective is to compare a two-class expert method over
a one-class method and a two-class artificial method. Hence, keeping the back-
ground algorithm (SVM) equal makes it ideal for comparison. For this reason,
we also select benchmark 2c as example of the two-class artificial data generation

models. The results of this cross comparison are reported in Table 10.

Artificial Data Expert Data

One-Class (Benchmark 1c) I 5.89 . 8.56

Two-Class Artificial (Benchmark 2c) _ 98.25 . 10.37
Two-Class Expert - 15.01 _ 48.72

Table 10: Fraud Detection Rate (FDR) of three novelty detection methods evaluated on two
datasets. The artificial dataset contains the negative data as generated by the purely artificial
approach (cf. Section 4.5). The expert dataset contains the negative data as generated by our
expert data generation method (cf. Section 4.3). The models were trained on their respective

dataset.

The performance of the two-class artificial model drops tremendously when
deployed on the other data set (87.88 percentage point drop). This indicates that
the artificial negatives on which the model was trained are indeed too artificial and
too different from the positives. It demonstrates the assumption that the artificial
model only learns to distinguish between artificial and non-artificial cases. As
expected, our two-class expert model also drops in performance when deployed on
the other data set, however the drop is much smaller (33.71 p.p.). This illustrates
that the expert model detects novelties in a more generalised way and thus not
only performs well on the data on which it was trained. The expert model also
performs better than the one-class SVM, even on the artificial data set on which it
was not developed. These analyses show the value of expert based data generation
for novelty detection. That is, the approach finds the required balance between
generating novelties that are different enough from the positive data, while not
being too distinct, so that classification algorithms do not overfit the artificial
data.
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4.7. Real-Life Post-Launch Implementation and Validation

In this and the next section we implement and validate the model on new
real-life data. The two-class models are used to score all (100,000+) dyads of the
post-launch data, i.e. data that contains potential fraudsters. Figure 6b displays
the distribution of the predictions of the proposed expert model. As is typical
for novelty detection and fraud problems, we observe a strong unbalancedness in
the predicted probabilities. Nevertheless, the histogram is fairly dispersed when
compared to the predictions of the artificial model (Figure 6a). The histogram of
the artificial model shows that all cases are classified as positive, non-fraudulent
cases. This again indicates that the artificial model actually classifies these cases
merely as real, non-artificial cases, hence providing no information about fraud-
ulent behaviour. Again, as in the previous section, the artificial model shows
to only have learned to identify very specific artificial outliers rather than more

general anomalies.
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(a) Histogram of predictions of the Two-  (b) Histogram of predictions of the Two-
Class Artificial model (Benchmark 2c) Class Expert model on post-launch data.

on post-launch data. All cases are classi- The predictions are as expected, the ma-
fied as positive. The model has no prac- jor part is classified as non-fraudulent.
tical value. We clearly observe the characteristic

unbalancedness of one-class and fraud
problems. Cases in the left side of the
histogram can be labelled as fraud sus-

pects.

Figure 6: Comparison of predictions on post-launch dataset.
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4.8. Manual Checks on Post-Launch Predictions

Now that the expert model predicts some dyads as fraud suspects, the com-
pany was involved to verify whether these cases are true fraudulent dyads. The
sample of dyads with the lowest household probability scores was transferred to
the company. A specialised fraud team that could make use of specific data
sources, assessed whether a dyad was fraudulent. Due to the nature of this case
and the fact that for many users there was limited additional information, it is
impossible to assess all selected dyads. 478 dyads were checked in total in order to
obtain 100 validly labelled dyads. Figure 7 shows the results for these 100 dyads.
Dyads with a decision beyond reasonable doubt were labelled as likely. The pure
fraud and household categories contain only cases where fraud could be identi-
fied by the specialised company fraud team. The results show that a very high
proportion (about 90%) of these dyads indeed were considered to be fraudulent
by the company fraud team. For the company this result was surprising as most
of their fraud models (in different contexts though) suffer from much higher false

positive rates.
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Figure 7: Results of manual labelling of predicted fraud suspects by fraud team of the company.
The vast majority of these top predicted fraud dyads are indeed labelled as such in the real-life

validation.

To illustrate an example, Figure 8 and 9 provide details on a fraud case that
was identified by the expert model. The relation between the individuals depicted
in orange and red was part of the top 100. In Figure 8 we see that the red
individual is situated further in the network structure. In Figure 9 we observe the
same in terms of location. The manual checks indeed identified this person as a
fraudulent part of the household. The predictions for all dyads in this household,
together with their actual label are presented in Table 11. The table also displays
the predictions of representative benchmark models. For this example, it is clear

that the latter provide virtually no information about fraud behaviour.



Figure 8: Identified Fraud Case: CDR Network Visualisation. Full circles represent individuals
that are valid members of the household, hollow circles are fraudulent members. The linewidth
of the links reflects the number of calls and SMS between two individuals within the dyad.
People with stronger connections are also displayed closer to each other, as calculated by the
ForceAtlas2 algorithm in the Gephi software (Bastian et al., 2009). Our model identified the
relation between the red and the orange individual as fraudulent. We observe in this network
that both individuals have no clear connection. There is very little overlap in their respective

social networks as well. In Figure 9 we can draw the same conclusion based on location data.

28



®@ ®@ Aloys G

o

Howells

@3

Dodge °
e O O ® 2 %
' 0 Al
° @) o .

Scribner

Figure 9: Identified Fraud Case: Location Plot. The size of the circles represents the number
of calls/SMS on a certain location. The house indicates the home location of the household.
The individuals are displayed with the same coding as Figure 8. The background map in this
figure does not represent the true geographical location in order to preserve anonymity. We can
observe that the red and orange individuals - who were identified as fraudulent by our model -
have no location tags near the home location. The locations of both individuals also are very

distinct from one another.
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Two-Class

A B Manual Label Two-Class Artificial One-Class
Expert (Benchmark 1c)
(Benchmark 2c)
Orange Red Fraud (N) 0.207 1.000 P
Orange Black Fraud (N) 0.347 1.000 p
Green Red Fraud (N) 0.392 1.000 p
Blue Red Fraud (N) 0.407 0.999 P
Orange Green Fraud (N) 0.736 1.000 P
Blue Green Fraud (N) 0.759 1.000 P
Blue Black Fraud (N) 0.919 1.000 P
Black Red Fraud (N) 0.923 1.000 P
Green Black Likely Household (P) 0.960 0.993 P
Blue Orange  Likely Household (P) 0.972 1.000 P

Table 11: Predictions of the different classes of models for a fraud example. For the expert
and artificial model, these are the household (P) probability predictions. The one-class model
outputs no predictions, but a binary decision, in this case positive for all dyads, hence all dyads

are predicted as household.

5. Discussion

The two-class expert method outperformed both the one-class and two-class
artificial benchmarks in this study. The latter techniques have nevertheless dis-
played acceptable results in previous research. An important distinction with the
proposed method is that human behaviour is modelled, whereas traditionally ap-
plications in for example machine monitoring have been explored. This research
demonstrated that the existing methods are not sufficient for the classification of
human behaviour.

The one-class methods suffer from the obvious drawback that they can only
learn from one class. The artificial two-class methods also failed to significantly
boost performance. These artificial data generation approaches take two rather
extreme forms, that are both not well suited for a human behaviour application.
The first (cf. Benchmark models 2a and 2b) generates artificial data based on the
distribution of the original positive class. Intuitively it is clear that we can not
learn a lot about the actual negative class in such case. The results indicate that
improvement upon the one-class models is indeed minimal. The other approach
(cf. Benchmark model 2c) is extreme in the sense that it creates artificial data
that is very distinct from the positive class. When dealing with human behaviour,

the variability within the data becomes large, both for the positive and negative
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data, the overlap between both classes is larger than in non-human applications.
The boundary between both classes becomes less strict and hence the bound-
ary that will come out of such model will be too strict and too artificial. These
artificial, non-expert, data generation methods thus use automated, unrealistic
assumptions, whereas we proposed to incorporate well-informed expert based as-
sumptions. This addition of extra information, in the form of expert knowledge,
adds strongly to the classification power.

Taking a closer look at the confusion matrix of the expert model (Table 8),we
observe that the more restricted the scenarios become, the lower the FDR be-
comes. This can be explained by the fact that in this case, the more strict sce-
narios for the negative class more closely resemble the positive (household) class,
which makes it more difficult for a model to distinguish both classes. Neverthe-
less, it is important to include these scenarios, because according to the experts
these scenarios more closely resemble realistic cases. What the model learns from
these cases is likely the most important for the actual detection of fraud cases in
the real-life validation.

Even though it remains to be explored how much the expert can add to the
more traditional machine monitoring cases, the presented method promises to be
well suited to tackle these and other novelty detection problems as well, due to its
flexible nature. The expert scenario method can flexibly introduce scenarios that
are not in the original dataset. Hence, creating semi-synthetic data has the benefit
of providing data that is well tailored to specific requirements. Furthermore,
creating expert data is much cheaper when compared to manually labelling data.

This research is an addition to and not an argument against the traditional
one-class approaches for novelty detection. Pure one-class approaches are some-
times considered to be better at identifying complete novel cases. Therefore,
the selection of the appropriate methodology will depend on the misclassifica-
tion cost of these cases. However, when implementing the expert-based two-class
methodology, it is important to invest a fair amount of time in the construction of
the scenarios, so that all relevant scenarios are represented in the negative data.
Furthermore, the two-class expert method is able to detect cases that are not
explicitly modelled in one of the scenarios. The classification algorithm detects
underlying, shared characteristics between the scenarios that are also shared with
novel cases. In the case study, other types of subscription fraud that were not
explicitly modelled, were detected. An example is the use of the extra SIM cards
by older children of the household that already moved out. Furthermore, as dis-

cussed before, most one-class methods assume that the positive class is perfectly
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represented in the positive dataset. However, this is unlikely to be true in many
cases, which leads to a higher number of false negatives.

The major limitation of the presented research is that the expert method is
validated in a single case study. To enlarge the validity of this method, future
research needs to explore how the method translates to other cases and contexts.
Another remaining issue is the trade-off between the number of manipulated vari-
ables and the free variables. The higher the amount of expert knowledge, the
higher the number of manipulated variables. In general, a higher level of expert
knowledge will shrink the space in which data for the unknown class is gener-
ated. These better defined regions however come at the cost of possibly losing the
generality that characterizes traditional one-class approaches. Further research is
needed to examine what the impact of using different levels of expert knowledge
could be.

6. Conclusion

The transformation of a one-class problem into a two-class problem was ex-
amined. This method was assessed in the context of fraud detection for a new
telecom service. The absence of labelled fraud examples calls for the use of one-
class novelty detection methods. However, traditional one-class methods perform
poorly in a case dealing with human behaviour. Hence, a new method is devel-
oped to deal with this issue. Using semi-synthetic data for the negative class
has great potential. Previous research used artificial data with the same pur-
pose of better defining a boundary around the positive class, but without clear
assumptions about the negative class. We introduced the incorporation of expert
knowledge in order to use clear assumptions. This enhances the informativeness
of the artificial data and further improves the classification performance. Experts
build realistic, representative scenarios that describe the behaviour of the humans
belonging to the negative class. Using these scenarios, instances were generated
for the negative class with variable manipulation. The method was tested in a
real-life telecom subscription fraud case. The two-class expert method clearly
outperformed the conventional one-class benchmark models. The method also
improved upon the artificial two-class non-expert benchmarks, that were char-
acterized by the problem of creating models that merely learned to distinguish
between artificial and non-artificial cases. The performance of the model was also
examined in a manual validation phase for a new post product launch dataset.

The model performed very well in this real-life setting and was able to detect
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real fraud cases with a model build on expert fraud scenarios. Including expert
knowledge strongly helped to classify the diverse human behaviour data, where
less flexible traditional methods failed. The manual checks are costly in terms
of manpower and hence a predictive model that prioritises, can generate a lot of

value.
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