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Abstract
In multi-class telecommunications or manufacturing systems, customers belonging to the
same class can often be processed together. This results in a service capacity that depends
on the classes of the customers in the queue. In this paper, we analyse a discrete-time batch-
service queue with two customer classes. The single batch server can group all same-class
customers at the head of the queue up to a constant class-dependent maximum service capac-
ity. We focus on the analysis of the system occupancy at service initiation opportunities, and
also compute both a light- and heavy traffic approximation in order to reduce the numeri-
cal complexity introduced by the maximum service capacities. Additionally, we propose a
method for interpolating between these approximations in order to study the behaviour in the
intermediate region. We also deduce the system occupancy and its approximations at random
slot boundaries. In the numerical experiments, we examine the conditions under which these
proposed approximations are accurate.

Keywords Batch service · Two-class · Variable service capacity · Generally distributed
service times · Correlated customer types

1 Introduction

Batch-service queueing systems are often found in manufacturing (Niranjan et al. 2017),
transportation systems (Bountali and Economou 2017), and telecommunication systems
(Bellalta and Oliver 2009) where packets are grouped together based on similarities in the
production process or destination. Due to their wide range of applications, this type of queue-
ing system has been studied extensively, for instance, by Chaudhry and Templeton (1983),
Arumuganathan and Jeyakumar (2005), Banerjee and Gupta (2012), Banerjee et al. (2015),

B Jens Baetens
jens.baetens@ugent.be

1 Department of Telecommunications and Information Processing, SMACS Research Group, Ghent
University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

2 Department of Industrial Systems Engineering, Ghent University, Technologiepark 903, 9052
Zwijnaarde, Belgium

3 Industrial Systems Engineering (ISyE), Flanders Make, Lommel, Belgium

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-019-03470-1&domain=pdf
http://orcid.org/0000-0002-1473-8271


Annals of Operations Research

Banerjee et al. (2014), Chang and Takine (2005), Claeys et al. (2013a), Claeys et al. (2013b),
Claeys et al. (2012), Goswami et al. (2006), Janssen and van Leeuwaarden (2005), Pradhan
and Gupta (2017). While the capacity of the batch server is assumed to be constant in these
contributions, this service capacity often depends on the environment and the content of the
queue. An example of a model with variable service capacity has been studied by Chaudhry
and Chang (2004) where they analysed the system content in the Geo/GY /1/N + B model
. Server vacations were also incorporated in the previous model by Chang and Choi (2005).
Yi et al. (2007) further extended this model by using the general bulk service rule. In the
previously mentioned papers with a stochastic service capacity, the service capacity was
independent of the state of the system or the contents of the queue. Germs and Foreest (2013)
evaluated the M(n)X(n)/G(n)Y (n)/1/K + B batch-service queueing system, where the vari-
able service capacity as well as the arrival process and service time distributions depend on
the number of customers in the queue.

In the previously mentioned papers, the batch server did not distinguish between different
customer classes and processed all customers identically. However, in many applications the
same server is often capable of processingmultiple classes, such as a machine that can handle
multiple types of products with slightly different parameters or a transportation systems
that can transmit customers to different destinations. The combination of batch-service and
customer differentiation has been mostly studied in the context of priority queueing systems
and polling systems. Vardakas and Logothetis (2009) study the delay of a packet in priority-
based optical networks using k customer classes. The optimal scheduling policies in a polling
system with switch-in and switch-out times and unbounded service capacities have been
examined by Van Der Wal and Yechiali (2003). Boxma et al. (2008) analysed a similar
model with a Poisson service process and looked at the impact of different service disciplines.
Dorsman et al. (2012) studied a polling system with an inner and outer layer. The batches are
formed in accumulation stations inside the outer layer before being passed to the inner part.
Priority queueing and polling systems both rely on customer reordering or different queues
for different customer classes in order to be able to construct groups of customers. This is
however not always feasible due to certain requirements of the system, such as strict fairness
rules that do not allowpackets to skip ahead of other packets. In ourmodel, we guarantee these
rules by using a shared queue for packets of different classes that does not allow reordering
of customers. The use of such a queue results in a global First-Come-First-Served(FCFS)
service discipline, which is also described in Bruneel et al. (2012).

In this paper, we study the system occupancy of a two-class discrete-time batch-service
queueing system where the batch server can group all consecutive same-class customers at
the head of the queue until a certain class-dependent maximum capacity is reached. This
means that if the customer at the head of the queue is of class A, all of the following class A
customers are also processed in the same batch until either the next customer is of class B,
or the maximum capacity for a class A batch is reached, or the queue is empty, whichever
occurs first. This means that the size of a batch, also called the service capacity, is variable
and depends on the classes of the waiting customers. Since the length of a sequence of
same-class customers will have a significant impact on the performance of the system, we
also include a tendency for clustering of same-class customers. This tendency for clustering,
also called customer-based correlation, has been described in more detail by Bruneel et al.
(2012) as well. A simplified model without maximum service capacities has been studied by
Baetens et al. (2016, 2017, 2018a, b). The main contributions of this paper are the inclusion
of maximum service capacities in order to model a much more realistic model and the
approximations at low, high or intermediate loads (which is obtained by interpolating the
first two). We propose these approximations in order to reduce the numerical complexity,
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which can be very high since it depends on the maximum service capacities. We restrict
the number of distinct customer classes to 2 in order to clearly observe the impact of the
maximum service capacities on the complexity of the analysis. Note that an extension to a
general number of classes will significantly further increase the complexity of the analysis,
and therefore falls beyond the scope of the current paper. Applications of this type of batch-
service queueing system can be found in telecommunication systems that require the use
of strict fairness rules which can be guaranteed by using a single shared queue, or Lean
manufacturing systems where goods flow in a FIFO fashion through downstream process.

In Sect. 2, we start by giving a more detailed description of the discrete-time two-class
batch-service queueing system. The analysis in Sect. 3 focuses on the steady-state pgf of
the system occupancy at service initiation opportunities and random slot boundaries. An
important part of the analysis is the proof of the number of zeroes of the denominator. This
number is equal to the sum of the maximum service capacities and can therefore become
computationally expensive. In order to remedy this, we also present light-traffic and heavy-
traffic approximations. Finally, we will also propose an interpolation of these two in order to
study the behaviour of the system under a moderate load. Some numerical experiments are
presented in Sect. 4 to evaluate the impact of different parameters on the behaviour of the
system and evaluate the accuracy of the proposed approximations. We end by drawing some
conclusions in Sect. 5.

2 Model description

The queueing system considered in this paper consists of a single batch server that can process
two classes of customers (called class A and B), and a single queue of infinite size. Newly
arrived customers are added to the tail of the common queue with a global FCFS service
discipline, meaning that no overtaking is allowed. When the server is or becomes available
and finds at least one waiting customer in the queue, a new service is initiated immediately.
The batch server can then group all consecutive customers at the head of the queue that
belong to the same class, until either the end of the queue is reached, or the next customer is
of a different type. The size of a batch is furthermore bound by a constant class-dependent
value, denoted by CA or CB for a batch of class A or B customers respectively. This results
in a stochastic service capacity that depends both on the number of customers in the queue
and their respective classes. The service time of a batch follows a generic class-dependent
distribution, with pgfs SA(z) and SB(z) respectively for a class A or B batch. We note that
the service time only depends on the class of the batch and is independent of the number of
customers in the batch and of the class and size of previous batches. Such a service process
corresponds, for instance, with a furnace where the heating period is not influenced by the
occupancy of the furnace. Also the time necessary for forming the groups is assumed to be
negligible compared to the time spent in service.

The total number of arrivals in the system during a single slot is independent from slot-
to-slot, and is characterized by the probability mass function (pmf) e(n) and pgf E(z). The
mean number of customer arrivals in a single slot is denoted by the parameter λ = E ′(1).
Customers arriving in the system can either be of class A or B, and the probability that a
random customer belongs to either class depends on the class of its predecessor. Since the
batch server can group consecutive customers of the same class, the probabilities that two
consecutive customers are of the same class will have a significant impact on the performance
of the system. These probabilities can be used to incorporate a tendency for clustering which
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in practice often occurs, for instance due to presorting of customer orders. The probabilities
that a random customer is a class A or B customer if its predecessor was respectively also a
class A or B customer are denoted by α and β. Hence, a random customer is of class A with
probability (w.p.) 1−β

2−α−β
.

This type ofmodel can, for instance, be used to study the performance of postal distribution
centres where a sorter can pick items from the front of a conveyor and sort them according to
their destination area. Consecutive letters with the same destination can be sorted simultane-
ously, and the sorting time of such a group is only slightly sensitive to the number of letters
that are grouped together, since the most significant part of the processing time stems from
moving the items to their corresponding box which is independent of the size of the group.
Other examples in manufacturing can be found in a paint booth where multiple products can
be painted together, or a furnace where items can be heated simultaneously.

3 Analysis

In this section, we aim to calculate the pgf of the system occupancy at service initiation
opportunities. These time instants correspond with the slot boundaries of idle slots and of
slots in which a service is initiated. We chose these time instances in order to simplify
the analysis, because examining the system directly at random slot boundaries introduces a
number of complications arising from the generic service times. It will be clear that finding
a unique solution for the remaining unknowns in the pgf of the system occupancy at service
initiation opportunities can become computationally expensive. For this reason, we also
propose three methods of approximating the system.

3.1 System equations

In this part of the analysis, we will capture the behaviour of the system at consecutive time
instants in a set of equations. In this system, a batch is formed by grouping all consecutive
same-class customers at the head of the queue, until the maximum, denoted by CA or CB

respectively for class A or B batches, or a customer of the other class is reached. The number
of customers in the queue at the boundary of the k-th service initiation opportunity is denoted
by the random variable uk . We can differentiate between four different server states, based
on the class of the ongoing batch, or the previous batch in case the server is idle. The random
variables for the system occupancy at the k-th initiation opportunity when the server was
busy with a class A or B batch, are denoted by uA,k or uB,k respectively. On the other hand,
the random variables uI ,A,k and uI ,B,k represent the system occupancy in case that the server
is idle during the k-th initiation opportunity and the previous processed batch was of class
A or B. It is important to keep track of the previous batch in case the server becomes idle,
because the probability that the next arrival is of a certain class depends on the class of the
last customer in the previous batch, which is equal to the class of the batch.

This leads to the following system equations in case that the system was idle in the slot
following the k-th service initiation opportunity and the previous batch contained class A
customers.

uI ,A,k+1 = 0, if ek = 0

uA,k+1 = ek, if ek > 0&next customer of class A(w.p. α)

uB,k+1 = ek, if ek > 0&next customer of class B(w.p. 1 − α), (1)

123

Author's personal copy



Annals of Operations Research

where ek is the random variable of the number of arrivals during the slot following the k-th
service period. Analogously, in case the previous batch was of class B

uI ,B,k+1 = 0, if ek = 0

uA,k+1 = ek, if ek > 0&next customer of class A(w.p. 1 − β)

uB,k+1 = ek, if ek > 0&next customer of class B(w.p. β). (2)

However, if the server initiated a class A service at the k-th service initiation opportunity, then
we can differentiate between three behaviours. First, if the system occupancy uA,k is smaller
than or equal to CA and all customers in the system belong to the same class, then the system
will become idle after service completion if there were no arrivals during the service of class
A, or, in case that there was at least one arrival, start a new class A or B batch. The class of
this batch is determined by the class of the first arrival. The condition that all customers in
the system belong to the same class corresponds with the condition that the service capacity
of the service initiated in the k-th service initiation instant, denoted by ck , must be equal to
uA,k . This behaviour can be seen in the first three lines of Eq. (3). On the other hand, if the
system occupancy uA,k at the k-th service initiation opportunity is larger than CA and the
firstCA customer all are class A customers, then the capacity of the initiated batch ck is equal
to CA, which is the maximum batch size. When this occurs, in the next service initiation
opportunity, a new service will be initiated since there are still waiting customers, and the
class of the service depends on the class of the (CA +1)-th customer in the system at the k-th
service initiation opportunity. The system equations that correspond to this behaviour can be
seen in the fourth and fifth line of Eq. (3). If neither of the above conditions are true, then it
is certain that not all customers in the system belong to the same class nor is the maximum
service capacity CA reached of the service initiated in the k-th service initiation opportunity.
In this case, a new service will be initiated in the k + 1-th initiation opportunity and its class
must be of the other type (otherwise the first customer in the system would be taken in the
previous batch). Using eA,k as the number of arrivals during the service period of a class A
batch, this results in

uI ,A,k+1 = 0, if ck = uA,k & eA,k = 0

uA,k+1 = eA,k , if ck = uA,k & eA,k > 0&next customer of class A(w.p. α)

uB,k+1 = eA,k , if ck = uA,k & eA,k > 0&next customer of class B(w.p. 1 − α)

uA,k+1 = uA,k − CA + eA,k , if ck = CA & uA,k > CA &next customer of class A(w.p. α)

uB,k+1 = uA,k − CA + eA,k , if ck = CA & uA,k > CA &next customer of class B(w.p. 1 − α)

uB,k+1 = uA,k − ck + eA,k , if ck < min(CA, uA,k), (3)

and analogously if a class B service was initiated at the k-th service initiation opportunity

uI ,B,k+1 = 0, if ck = uB,k & eB,k = 0

uB,k+1 = eB,k , if ck = uB,k & eB,k > 0&next customer of class B(w.p. β)

uA,k+1 = eB,k , if ck = uB,k & eB,k > 0&next customer of class A(w.p. 1 − β)

uB,k+1 = uB,k − CB + eB,k , if ck = CB & uB,k > CB &next customer of class B(w.p. β)

uA,k+1 = uB,k − CB + eB,k , if ck = CB & uB,k > CB &next customer of class A(w.p. 1 − β)

uA,k+1 = uB,k − CB + eB,k , if ck < min(CB , uB,k), (4)

where eB,k is the random variable of the number of arrivals during service period of the class
B batch initiated at the k-th service period.

123

Author's personal copy



Annals of Operations Research

3.2 Stability condition

The steady-state pgfs that we will obtain during the analysis in the next section, will only
be valid as long as the system is stable. In order to find the condition under which this is
the case, we study a saturated system, that is a system where the service capacity is never
limited by the number of waiting customers. In such a system, the server is never idle and
the mean number of customers that arrive during the service time of a random batch must be
smaller than the mean number of customers that are processed during the same batch. The
first step is to find the probabilities that a random batch is either of class A or B, denoted
by Pr [τ = A] and Pr [τ = B] respectively. The probability that the k-th batch, denoted by
Pr [τk = A], contains class A customers is given by

Pr [τk = A] := αCA Pr [τk−1 = A] + (1 − βCB )Pr [τk−1 = B],
and an analogous equation can be found for the probability Pr [τk = B] that the k-th batch is
of class B. By letting k approach infinity and using the fact that Pr [τ = A]+Pr [τ = B] = 1,
we obtain the following probabilities

Pr [τ = A] := 1 − βCB

2 − αCA − βCB
, Pr [τ = B] := 1 − αCA

2 − αCA − βCB
. (5)

We note that if bothCA andCB approach infinity, then these probabilities approach the value
of 0.5 which means that the class of successive batches alternates.

The mean number of customers that can be processed during a single batch is given by the
mean length of a sequence of same-class customers which resembles a modified geometric
distribution. For a batch of class A customers, the pgf and expected value of the service
capacity are equal to

ĈA(z) := (1 − α)z + (1 − z)(αz)CA

1 − αz
, Ĉ ′

A(1) = 1 − αCA

1 − α
.

This results in the following stability condition

λ <
Pr [τ = A] 1−αCA

1−α
+ Pr [τ = B] 1−βCB

1−β

Pr [τ = A]S′
A(1) + Pr [τ = B]S′

B(1)

<
(1 − βCB )(1 − αCA )

(1 − βCB )S′
A(1) + (1 − αCA )S′

B(1)

(
1

1 − α
+ 1

1 − β

)
. (6)

The load ρ of the system is then equal to

ρ = λ
(1 − βCB )S′

A(1) + (1 − αCA )S′
B(1)

(1 − βCB )(1 − αCA )

(1 − α)(1 − β)

2 − α − β
.

3.3 System occupancy at service initiation opportunities

In this part, we will calculate the pgf of the system occupancy at service initiation opportuni-
ties, denoted byU (z). The probability mass function (pmf) corresponding to the pgfU (z) is
denoted by u(n). As mentioned earlier in Sect. 3.1, we distinguish 4 different server states.
We define UI ,A and UI ,B as the probabilities that the system is idle and the previous batch
was a class A or B batch. The partial pgfs of the system occupancy at a random service
initiation opportunity in which a class A or B batch service is initiated, are denoted byUA(z)
and UB(z) (with the pmfs uA(n) and uB(n)). We can then write UA(z), UB(z), U (z) as
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UA(z) =
∞∑
n=1

uA(n)zn

UB(z) =
∞∑
n=1

uB(n)zn

U (z) =
∞∑
n=0

u(n)zn = UI ,A +UI ,B +UA(z) +UB(z). (7)

From Eqs. (1)–(4), we derive that the system remains idle if there are no arrivals and can
only become idle if all waiting customers could be grouped together at service initiation and
no customers have arrived during the service period. This leads to the following probabilities

UI ,A = SA(E(0))

1 − E(0)

CA∑
i=1

uA(i)αi−1, UI ,B = SB(E(0))

1 − E(0)

CB∑
i=1

uB(i)β i−1, (8)

where uA(i) and uB(i) are the probabilities that there are i customers in the system at a
random service initiation opportunity in which, respectively, a class A or B batch is initiated.

On the other hand, if the server can initiate a class A batch, then by using the system
equations from Sect. 3.1, we can obtain the following expression for UA(z)

UA(z) = αUI ,A

∞∑
i=1

e(i)zi + (1 − β)UI ,B

∞∑
i=1

e(i)zi +
CA∑
i=1

∞∑
j=1

αi u A(i)eA( j)z j

+
∞∑

i=CA+1

∞∑
j=0

αCAuA(i)eA( j)zi−CA+ j +
CB∑
i=1

∞∑
j=1

(1 − β)β i−1uB(i)eB( j)z j

+
∞∑

i=CB+1

∞∑
j=0

(1 − β)βCB−1uB(i)eB( j)zi−CB+ j

+
CB∑
i=2

∞∑
j=0

i−1∑
n=1

(1 − β)βn−1uB(i)eB( j)zi−n+ j

+
∞∑

i=CB+1

∞∑
j=0

CB−1∑
n=1

(1 − β)βn−1uB(i)eB( j)zi−n+ j .

Working out the sums for the number of arrivals and the sizes of the processed batches results
in

UA(z) =
(
SA(E(z)) − SA(E(0))

1 − E(z)

1 − E(0)

) CA∑
i=1

uA(i)αi

+ SA(E(z))

(
α

z

)CA
(
UA(z) −

CA∑
i=1

uA(i)zi
)

+ 1 − β

β − z
SB(E(z))

CB∑
i=1

uB(i)β i

− 1 − β

β
SB(E(0))

1 − E(z)

1 − E(0)

CB∑
i=1

uB(i)β i − 1 − β

β − z
SB(E(z))

CB∑
i=1

uB(i)zi

− 1 − β

β − z
SB(E(z))

(
1 −

(
β

z

)CB
) (

UB(z) −
CB∑
i=1

uB(i)zi
)

. (9)
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Analogously, we obtain that the similar expression for the partial pgf UB(z) is given by

UB(z) =
(
SB(E(z)) − SB(E(0))

1 − E(z)

1 − E(0)

) CB∑
i=1

uB(i)β i

+ SB(E(z))

(
β

z

)CB
(
UB(z) −

CB∑
i=1

uB(i)zi
)

+ 1 − α

α − z
SA(E(z))

CA∑
i=1

uA(i)αi

− 1 − α

α
SA(E(0))

1 − E(z)

1 − E(0)

CA∑
i=1

uA(i)αi − 1 − α

α − z
SA(E(z))

CA∑
i=1

uA(i)zi

− 1 − α

α − z
SA(E(z))

(
1 −

(
α

z

)CA
) (

UA(z) −
CA∑
i=1

uA(i)zi
)

. (10)

We can now introduce the auxiliary functions RA(z) and RB(z), which are respectively the
right-hand side of the Eqs. (9) and (10), without the terms of the partial pgfs UA(z) and
UB(z), multiplied respectively by zCA (β − z) and zCB (α − z). These auxiliary functions are
then given by

RA(z) = zCA (β − z)

(
SA(E(z)) − SA(E(0))

1 − E(z)

1 − E(0)

) CA∑
i=1

uA(i)αi

− (β − z)SA(E(z))αCA

CA∑
i=1

uA(i)zi + (1 − β)zCA SB(E(z))
CB∑
i=1

uB(i)β i

− 1 − β

β
(β − z)zCA SB(E(0))

1 − E(z)

1 − E(0)

CB∑
i=1

uB(i)β i

− (1 − β)βCB zCA−CB SB(E(z))
CB∑
i=1

uB(i)zi , (11)

and

RB(z) = zCB (α − z)

(
SB(E(z)) − SB(E(0))

1 − E(z)

1 − E(0)

) CB∑
i=1

uB(i)β i

− (α − z)SB(E(z))βCB

CB∑
i=1

uB(i)zi + (1 − α)zCB SA(E(z))
CA∑
i=1

uA(i)αi

− 1 − α

α
(α − z)zCB SA(E(0))

1 − E(z)

1 − E(0)

CA∑
i=1

uA(i)αi

− (1 − α)αCA zCB−CA SA(E(z))
CA∑
i=1

uA(i)zi .

The next step is to substitute the partial pgf UB(z) in UA(z) and to multiply the right- and
left-hand side of the expression by zCA+CB (α − z)(β − z). With the previous definitions
of RA(z) and RB(z), and moving all terms of UA(z) to the left-hand side, we obtain the
following equation for UA(z)
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UA(z)

[
(α − z)(β − z)

[
zCA − αCA SA(E(z))

] [
zCB − βCB SB(E(z))

]

− (1 − α)(1 − β)SA(E(z))SB(E(z))
(
zCA − αCA

) (
zCB − βCB

) ]

= (α − z)
[
zCB − βCB SB(E(z))

]
RA(z) − (1 − β)SB(E(z))

(
zCB − βCB

)
zCA−CB RB(z).

(12)

For the partial pgf of the system occupancy in a random service initiation opportunity in
which the server has started a class B service, we obtain the analogous equation

UB(z)

[
(α − z)(β − z)

[
zCA − αCA SA(E(z))

] [
zCB − βCB SB(E(z))

]

− (1 − α)(1 − β)SA(E(z))SB(E(z))
(
zCA − αCA

) (
zCB − βCB

) ]

= (β − z)
[
zCA − αCA SA(E(z))

]
RB(z) − (1 − α)SA(E(z))

(
zCA − αCA

)
zCB−CA RA(z).

(13)

By combining Eqs. (8), (12) and (13), we obtain the pgfU (z) of the system occupancy at
random service initiation opportunities. This leads to

U (z) = SA(E(0))

1 − E(0)

CA∑
i=1

uA(i)αi−1 + SB(E(0))

1 − E(0)

CB∑
i=1

uB(i)β i−1

+
[
(α − z)(β − z)

[
zCA − αCA SA(E(z))

] [
zCB − βCB SB(E(z))

]

− (1 − α)(1 − β)SA(E(z))SB(E(z))
(
zCA − αCA

) (
zCB − βCB

) ]−1

·
[(

(α − z)
[
zCB − βCB SB(E(z))

]
− (1 − α)SA(E(z))

(
zCA − αCA

)
zCB−CA

)

·
[
zCA (β − z)

(
SA(E(z)) − SA(E(0))

1 − E(z)

1 − E(0)

) CA∑
i=1

uA(i)αi

− (β − z)SA(E(z))αCA

CA∑
i=1

uA(i)zi + (1 − β)zCA SB(E(z))
CB∑
i=1

uB(i)β i

− 1 − β

β
(β − z)zCA SB(E(0))

1 − E(z)

1 − E(0)

CB∑
i=1

uB(i)β i

− (1 − β)βCB zCA−CB SB(E(z))
CB∑
i=1

uB(i)zi
]

+
(
(β − z)

[
zCA − αCA SA(E(z))

]
− (1 − β)SB(E(z))

(
zCB − βCB

)
zCA−CB

)

·
[
zCB (α − z)

(
SB(E(z)) − SB(E(0))

1 − E(z)

1 − E(0)

) CB∑
i=1

uB(i)β i
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− (α − z)SB(E(z))βCB

CB∑
i=1

uB(i)zi + (1 − α)zCB SA(E(z))
CA∑
i=1

uA(i)αi

− 1 − α

α
(α − z)zCB SA(E(0))

1 − E(z)

1 − E(0)

CA∑
i=1

uA(i)αi

− (1 − α)αCA zCB−CA SA(E(z))
CA∑
i=1

uA(i)zi
]]

,

or by using the auxiliary functions RA(z) and RB(z)

U (z) = SA(E(0))

1 − E(0)

CA∑
i=1

uA(i)αi−1 + SB(E(0))

1 − E(0)

CB∑
i=1

uB(i)β i−1

+
[
(α − z)(β − z)

[
zCA − αCA SA(E(z))

] [
zCB − βCB SB(E(z))

]

− (1 − α)(1 − β)SA(E(z))SB(E(z))
(
zCA − αCA

) (
zCB − βCB

) ]−1

·
[(

(α − z)
[
zCB − βCB SB(E(z))

]
− (1 − α)SA(E(z))

(
zCA − αCA

)
zCB−CA

)
RA(z)

+
(
(β − z)

[
zCA − αCA SA(E(z))

]
− (1 − β)SB(E(z))

(
zCB − βCB

)
zCA−CB

)
RB(z)

]
.

In this expression, there still are CA + CB unknowns, namely uA(i), 1 ≤ i ≤ CA, and
uB( j), 1 ≤ i ≤ CA. These parameters correspond with the probabilities that there are i or j
customers in the systemwhen respectively a class A or B service has been initiated. By using
the theorem of Rouché, see Adan et al. (2006), we can prove that the denominator of U (z)
has CA + CB + 2 zeroes inside or on the unit circle. We first define the following functions

f (z) = (z − α)(z − β)
(
zCA − αCA SA(E(z))

) (
zCB − βCB SB(E(z))

)
,

g(z) = (1 − α)(1 − β)SA(E(z))SB(E(z))
(
zCB − βCB

) (
zCA − αCA

)

h(z) = g(z)

f (z)
= GA

(
SA(E(z))

zCA

)
TA(z)GB

(
SB(E(z))

zCB

)
TB(z),

where

GA(z) := (1 − αCA )z

1 − αCA z
, TA(z) := 1 − α

1 − αCA

zCA − αCA

z − α
,

and analogously expressions for GB(z) and TB(z). The function GA(z) corresponds with
a shifted geometric pgf with mean (1 − αCA )−1 and TA(z) also corresponds with a pgf
(deterministic for α = 0, uniform for α = 1 and otherwise a truncated geometric with mean
CA(1 − αCA )−1 − (1 − α)−1). We know that a pgf X(z) satisfies the inequality |X(z)| ≤
1 + εX ′(1) + O(ε2) on the contour |z| = 1 + ε, ε > 0. Although GA(z)

(
SA(E(z))

zCA

)
is

clearly not a pgf, by writing it as a series with the probabilities gA(n) and considering that(
SA(E(z))

zCA

)n
is upper bounded by 1 + nε(S′

A(1)E ′(1) − CA) for |z| = 1 + ε we can easily

prove that
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∣∣∣∣GA

(
SA(E(z))

zCA

)∣∣∣∣ ≤
∞∑
n=0

gA(n)

∣∣∣∣
(
SA(E(z))

zCA

)n∣∣∣∣

≤
∞∑
n=0

gA(n)
(
1 + nε(S′

A(1)E ′(1) − CA)
)

≤ 1 + εG ′
A(1)

(
S′
A(1)E ′(1) − CA

)
,

which results in the inequality

|h(z)| ≤ 1 + ε
(
G ′

A(1)(S′
A(1)λ − CA) + T ′

A(1) + G ′
B(1)(S′

B(1)λ − CB) + T ′
B(1)

)

≤ 1 + ε

(
λS′

A(1) − CA

1 − αCA
+ CA

1 − αCA
− 1

1 − α

λS′
B(1) − CB

1 − βCB
+ CB

1 − βCB
− 1

1 − β

)

≤ 1 + ε

(
λS′

A(1)

1 − αCA
+ λS′

B(1)

1 − βCB
− 1

1 − α
− 1

1 − β

)
.

By using the stability condition in Eq. (6), we can prove that |h(z)| = |g(z)/ f (z)| < 1
for |z| = 1 + ε. Using the results obtained in Bruneel and Kim (1993), it is clear that the
function f (z) has CA + CB + 2 zeroes inside or on the unit circle which means that since
| f (z)| > |g(z)| the denominator of U (z) also has CA + CB + 2 zeroes inside or on the unit
circle. We note that there are three zeroes that require a more detailed look. The zeroes z = α

or z = β, are clearly also zeroes of the numerator ofU (z) and result in redundant equations.
The other noteworthy zero is z = 1, which corresponds with the normalisation condition of
the pgf U (z) and leads to the equation U (1) = 1. The resulting set of CA + CB equations
allows us to find a unique solution for all the remaining unknowns.

An important note is that using a higher maximum service capacityCA orCB significantly
increases the computational complexity of the system while the change in the performance
might be negligible when CA and CB are much larger than the expected batch size (denoted
respectively by 1

1−α
and 1

1−β
). For this reason, we will study both light- and heavy-traffic

approximations in order to observe the behaviour of the batch server in these important edge
cases. We will present an interpolation method to obtain an accurate approximation for all
loads.

3.3.1 Light-traffic approximation

We start by deducing a light-traffic approximation of the system occupancy at service initia-
tion, by expandingU (z) in a Taylor series around λ = 0 and retaining the constant and linear
terms. Aside from an intrinsic interest in the behaviour of the system under the light-traffic
condition, the light-traffic approximation is also useful in analysing queueing systems in
moderate traffic by interpolating between the light- and heavy-traffic approximations, see
Reiman and Simon (1988), Whitt (1989), which is also demonstrated in Sect. 3.3.3. The
approach that is adopted in this section is similar to the one followed in Claeys et al. (2011).
Also, in the appendix of Claeys et al. (2011), they have shown a proof for the analyticity of
U (z) in λ = 0 and, therefore, for the idle probabilities UI ,A and UI ,B , and the partial pgfs
UA(z) and UB(z). To start, we rewrite the pgf of the system occupancy at service initiation
opportunities as

U (λ, z) =UI ,A(λ) +UI ,B(λ) + NA(λ, z)

Den(λ, z)
+ NB(λ, z)

Den(λ, z)
,
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where NA(λ, z) and NB(λ, z) are the numerator of UA(z) and UB(z) [or the right-hand side
of Eqs. (12) and (13)], Den(λ, z) is the common denominator of UA(z) and UB(z), and
UI ,A(λ) and UI ,B(λ) correspond with the idle probabilities UI ,A and UI ,B . We rewrote this
expression in order to show the dependency on λ.

We denote the Taylor series expansion of the unknowns uA(i) (1 ≤ i ≤ CA) and
uB(i) (1 ≤ i ≤ CB) obtained in the previous section respectively by

∑∞
k=0 uA,k(i)λk and∑∞

k=0 uB,k(i)λk . When λ = 0, a service will never be initiated. As a result the constant terms
uA,0(i) and uB,0(i) are equal to zero.

The first quantities we will analyse are the idle probabilitiesUI ,A andUI ,B . From Eq. (8),
we clearly see that these probabilities depend on the arrival rate λ since they contain E(0),
the probability that there are no arrivals, and the unknowns uA(i) (1 ≤ i ≤ CA) and uB(i)
(1 ≤ i ≤ CB ). Expanding UI ,A and UI ,B around λ = 0 yields

UI ,A(λ) =
∞∑
k=0

UI ,A,kλ
k = 1 + S′

A(1)E1(0)λ + O(λ2)

−E1(0) − λE2(0) − O(λ2)

CA∑
i=1

(uA,1(i) + uA,2(i)λ + O(λ2))αi−1

= −
∑CA

i=1 uA,1(i)αi−1

E1(0)
− λ

(
S′
A(1)

CA∑
i=1

uA,1(i)α
i−1 +

∑CA
i=1 uA,2(i)αi−1

E1(0)

− E2(0)
∑CA

i=1 uA,1(i)αi−1

E1(0)2

)
+ O(λ2),

UI ,B(λ) =
∞∑
k=0

UI ,B,kλ
k = −

∑CB
i=1 uB,1(i)β i−1

E1(0)
− λ

(
S′
B(1)

CB∑
i=1

uB,1(i)β
i−1 +

∑CB
i=1 uB,2(i)β i−1

E1(0)

− E2(0)
∑CB

i=1 uB,1(i)β i−1

E1(0)2

)
+ O(λ2),

where we introduced the following Taylor expansion at λ = 0 of the pgf E(z) of the arrival
process

E(z) = 1 + λE1(z) + λ2E2(z) + O(λ3).

Next, the Taylor expansion of UA(z) and UB(z) has to be calculated. The constant and
linear terms of the series expansion of RA(z) = ∑∞

k=0 RA,k(z)λk , see Eq. (11), are given by

RA,0(z) = 0

RA,1(z) = zCA (β − z)

[
1 − E1(z)

E1(0)

] CA∑
i=1

uA,1(i)α
i − (β − z)αCA

CA∑
i=1

uA,1(i)z
i

+ (1 − β)zCA

[
1 − β − z

β

E1(z)

E1(0)

] CB∑
i=1

uB,1(i)β
i − (1 − β)βCB zCA−CB

CB∑
i=1

uB,1(i)z
i ,

and analogous expressions can be found for RB(z). Using these definitions, we obtain for
NA,0(z) and NA,1(z), the constant and linear terms of the numerator NA(λ, z),

NA,0(z) = (α − z)[zCB − βCB ]RA,0(z) − (1 − β)[zCB − βCB ]zCA−CB RB,0(z) = 0

NA,1(z) = [zCB − βCB ]
[
(α − z)RA,1(z) − (1 − β)zCA−CB RB,1(z)

]
.

Analogous terms can be found for the numerator ofUB(z), and the constant and linear terms
of the Taylor series expansion of the denominator at λ = 0 are given by
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Den0(z) = [zCA − αCA ][zCB − βCB ][(z − α)(z − β) − (1 − α)(1 − β)]

Den1(z) = −(z − α)(z − β)E1(z)

(
αCA [zCB − βCB ]S′

A(1) + βCB [zCA − αCA ]S′
B(1)

)

− (1 − α)(1 − β)[zCA − αCA ][zCB − βCB ]E1(z)[S′
A(1) + S′

B(1)]. (14)

With these definitions, we obtain that the Taylor expansions ofUA(z) andU (z) around λ = 0
are equal to

UA(z) = 0 · λ0 + NA,1(z)

Den0(z)
λ1 + O(λ2),

U (z) = −
∑CA

i=1 uA,1α
i−1 + ∑CB

i=1 uB,1β
i−1

E1(0)
λ0 + λ1

[
NA,1(z) + NB,1(z)

Den0(z)
− S′

A(1)
∑CA

i=1
uA,1α

i−1

− S′
B(1)E1(0)

∑CB

i=1
uB,1β

i−1 −
∑CA

i=1 uA,2α
i−1 + ∑CB

i=1 uB,2β
i−1

E1(0)

+ E2(0)

E1(0)2

[ CA∑
i=1

uA,1α
i−1 +

CB∑
i=1

uB,1β
i−1

]]
+ O(λ2).

The mean system occupancy under the light-traffic condition is given by

E[U ]L =0 · λ0 +
[
N ′′
A,1(1) + N ′′

B,1(1)

2Den′
0(1)

− Den′′
0(1)

2Den′
0(1)

2 (N ′
A,1(1) + N ′

B,1(1))

]
λ1 + O(λ2).

In order to be able to calculate the constant and linear terms of the approximatedmean system
occupancy at service initiation opportunities, only the linear terms of the unknowns uA(i)
and uB(i) have to be deduced. We denote the Taylor series expansion of the i-th zero zi (λ) of
the denominator, given in Eq. (14), by

∑∞
k=0 zi,kλ

k . In order to fully characterize the light-
traffic approximation of the mean system occupancy at service initiation opportunities, we
need to find the constant terms of the zeroes in order to have a unique solution for the linear
terms of the unknowns uA(i) and uB(i). The constant terms of the zeroes are the solutions
of Den0(z) = 0, resulting in

zi,0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 i = 0

αεCA,i 1 ≤ i ≤ CA − 1

βεCB ,i−CA+1 CA ≤ i ≤ CA + CB − 2

α + β − 1 i = CA + CB − 1

α i = CA + CB

β i = CA + CB + 1

,

where εc,i = e(ι2π i)/c is the i-th complex c-th root of one, with ι as the imaginary unit and
i = 0, . . . , c − 1 . The cases zi,0 = α and zi,0 = β result in redundant equations.

The equations corresponding with these zeroes are either the normalisation condition
U (1) = 1, or that the numerator vanishes for the zero resulting in the following equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩

UI ,A,0 +UI ,B,0 = 1 , i = 0

NA,1(zi,0) = 0 , 1 ≤ i ≤ CA − 1

NB,1(zi,0) = 0 ,CA ≤ i ≤ CA + CB − 2

NA,1(zi,0) + NB,1(zi,0) = 0 , i = CA + CB − 1
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After solving this set of equations resulting in a unique solution for the remaining unknowns,
the constant and linear terms of the light traffic approximation of the mean system occupancy
at service initiation opportunities are fully characterized.

We note that while we must still solve a system with CA + CB equations and CA + CB

unknowns to obtain the light-traffic approximation, the constant terms of the zeroes of the
denominator are known exactly which results in a significant reduction of the computational
complexity.

3.3.2 Heavy-traffic approximations

The previous approximation can be used to analyse the behaviour of the system when the
load is very small. In this section, we will study the other side of the spectrum and introduce
a heavy-traffic approximation. In this case, the server will rarely be idle and the service
capacity will almost always be equal to the corresponding maximum service capacity.

First, we define NU (z) and DU (z) as respectively the numerator and denominator ofU (z).
From Eqs. (12) and (13), it is clear that NU (1) = DU (1) = 0 and the normalisation condition
dictates that U (1) = 1. As a result, we obtain, after applying l’Hôpital’s rule,

E[U ] = U ′(1) = N ′′
U (1) − D′′

U (1)

2D′
U (1)

.

We now let λ converge to the arrival rate at which the system becomes unstable, see
Eq. (6). Under this condition, the system is nearly unstable meaning that the number of
customers in the system is typically very high and the variables uA(i) (1 ≤ i ≤ CA) and
uB( j) (1 ≤ j ≤ CB) go to zero. This means that both RA(z) and RB(z) go to zero, which
leads to the numerator NU (z) and all of its derivatives also going to zero. The mean system
occupancy at service initiation opportunities can then be approximated by

U ′(1) ∼ − D′′
U (1)

2 · D′
U (1)

.

The first and second derivative of the denominator of U (z), evaluated at z = 1, are equal to

D′
U (1) = (2 − α − β)(1 − αCA )(1 − βCB )

− (1 − α)(1 − β)λ[(1 − βCB )S′
A(1) + (1 − αCA )S′

B(1)]
= (2 − α − β)(1 − αCA )(1 − βCB )(1 − ρ),

and

D′′
U (1) = 2(1 − αCA )(1 − βCB ) + 2(2 − α − β)[CA(1 − βCB ) + CB(1 − αCA )]

− (1 − α)(1 − β)
[
(S′′

A(1)λ2 + S′
A(1)E ′′(1))(1 − βCB ) + (S′′

B(1)λ2

+ S′
B(1)E ′′(1))(1 − αCA )

]
− 2(1 − α)(1 − β)S′

A(1)S′
B(1)λ2(1 − αCA − βCB )

− 2S′
A(1)λ[(2 − α − β)αCA (1 − βCB ) + (1 − α)(1 − β)(CB + (1 − βCB )CA)]

− 2S′
B(1)λ[(2 − α − β)βCB (1 − αCA ) + (1 − α)(1 − β)(CA + (1 − αCA )CB)].

We note that there are no unknowns in the equation for the mean system occupancy under
heavy-traffic approximations, which means that the computational complexity is no longer
dependent on the maximum service capacities CA and CB .
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Using the previous expressions, we can also write the expression for the heavy-traffic
approximation as a function of the load ρ, which leads to

U ′(1) ∼ fH (ρ)

1 − ρ
, (15)

where

fH (ρ) = −D′′
U (1)

2(2 − α − β)(1 − αCA )(1 − βCB )
.

When looking at the behaviour of this function, we noticed that the limit for ρ going to 0 is
negative. Therefore we modify the Eq. (15) by adding fH (0). This leads to the heavy-traffic
approximation E[U ]H , which is

E[U ]H = fH (ρ)

1 − ρ
+ | fH (0)|,

where fH (0) is the limit of the function fH (ρ) for ρ going to 0. We observed experimen-
tally that adding the term | fH (0)| significantly increased the accuracy of the heavy-traffic
approximation. This does not mean however that the heavy-traffic approximation is always
positive since the minimum of the function fH (ρ) is not used.

Intuitively, we expect that the heavy-traffic approximation is a lower-bound for the mean
system occupancy, since it and the mean occupancy are both monotonically increasing func-
tions, the heavy-traffic approximation only becomes zero at significant loads (this occurs
at ρ = 0 for the mean system occupancy) and both functions approach the same value at
ρ = 1. This expectation is also observed experimentally. Now, we also know that the impact
of the term by which we increased the heavy-traffic approximation so that it is 0 at ρ = 0,
diminishes when the load increases because the mean system occupancy goes to infinite
and therefore the term becomes negligible when ρ approaches 1. Due to these considera-
tions, we expect that adding the additional term significantly improves the approximation at
intermediate loads and also slightly increases the accuracy at heavy loads.

3.3.3 Interpolation of light- and heavy-traffic approximation

While the previous two approximations are accurate when the load is either low or high
enough, at medium loads the accuracy of these methods deteriorates. To remedy this, we
propose a method of approximating the system occupancy based on interpolating between
the light and heavy-traffic approximations. The function for calculating this interpolated
approximation E[U ]I that we propose is as follows

E[U ]I = E[U ]L 1 − ρaL

1 − ρ
+ ρaH E[U ]H , aL ≥ 2, aH ≥ 1,

where we note that both the light- and heavy-traffic approximations are functions of the
load. Increasing aL increases the impact of the light-traffic approximation E[UL ] at medium
loads, while increasing aH decreases the impact of the heavy-traffic approximation E[UH ].
Note that we set aH ≥ 2, since for aH = 1, this term would also contribute to the light-load
approximation (due to its proportionality toλ). In this interpolation,we use aH = 2 in order to
minimize the impact of the heavy-traffic approximation at low loads. With this interpolation,
the parameter aL can be freely chosen but has a significant impact on the accuracy of the
interpolation. Based on our experiments, we can derive that aL = 4 results in a very good
interpolated approximation. Using aL = 4, we note that the interpolated approximation is a
lower bound but becomes an upper bound for ρ, α and β sufficiently high.
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3.4 System occupancy at random slot boundaries

Previously, we studied the system at service initiation opportunities in order to avoid the
difficulties introduced by using generic and class-dependent service times. In this part of the
analysis, we will use the previous results in order to calculate the pgf of the system occupancy
at random slot boundaries, denoted byUR(z). The first step is to find the probabilities that the
type τR of a random slot is either an idle slot and the previous servicewas a class A or B batch,
or busy processing class A or B customers, denoted correspondingly by Pr [τR = I , A],
Pr [τR = I , B], Pr [τR = A] or Pr [τR = B]. By using the mean service times S′

A(1) and
S′
B(1), we obtain

Pr [τR = I , A] = UI ,A

UI ,A +UI ,B +UA(1)S′
A(1) +UB(1)S′

B(1)
,

Pr [τR = I , B] = UI ,B

UI ,A +UI ,B +UA(1)S′
A(1) +UB(1)S′

B(1)
,

Pr [τR = A] = UA(1)S′
A(1)

UI ,A +UI ,B +UA(1)S′
A(1) +UB(1)S′

B(1)
,

Pr [τR = B] = UB(1)S′
B(1)

UI ,A +UI ,B +UA(1)S′
A(1) +UB(1)S′

B(1)
.

Based on Bruneel and Kim (1993), we find that the number of arrivals during the elapsed
service period of a class A service results in (SA(E(z)) − 1)/[S′

A(1)(E(z) − 1)], and an
analogous expression for a class B service holds as well. The service time of a batch of type
A (or B) is independent of the number of customers in the queue at a type A (or B) service
initiation, which means we obtain that the pgfUR(z) of the system occupancy at random slot
boundaries is equal to

UR(z) := Pr [τR = IA] + Pr [τR = IB ] + Pr [τR = A]UA(z)

UA(1)

SA(E(z)) − 1

S′
A(1)(E(z) − 1)

+ Pr [τR = B]UB(z)

UB(1)

SB(E(z)) − 1

S′
B(1)(E(z) − 1)

,

resulting in the following mean system occupancy

U ′
R(1) = E[UR] = Pr [τR = A]

[U ′
A(1)

UA(1)
+ S′′

A(1)λ

2S′
A(1)

]
+ Pr [τR = B]

[U ′
B(1)

UB(1)
+ S′′

B(1)λ

2S′
B(1)

]
.

The methods previously developed for obtaining light- and heavy-traffic approximations of
the system occupancy at service initiation opportunities can also be used to approximate the
pgf UR(z) of the system occupancy at random slot boundaries.

3.4.1 Light-traffic approximation

Now, we will also give a light-traffic approximation of the system occupancy at random slot
boundaries. We start by looking at the probability Pr [τR = I , A] that a random slot is an
idle slot and the most recently initiated batch was a class A batch which is equal to
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Pr [τR = I , A] = UI ,A,0 +UI ,A,1λ

UI ,A,0 +UI ,A,1λ +UI ,B,0 +UI ,B,1λ + N ′
A,1(1)

Den′
0(1)

S′
A(1)λ + N ′

B,1(1)

Den′
0(1)

S′
B(1)λ

= UI ,A,0

UI ,A,0 +UI ,B,0
+

UI ,A,1UI ,B,0 −UI ,A,0[UI ,B,1 + N ′
A,1(1)

Den′
0(1)

S′
A(1) + N ′

B,1(1)

Den′
0(1)

S′
B(1)]

(UI ,A,0 +UI ,B,0)2
λ + O(λ2),

and a similar approach for Pr [τR = A] results in

Pr [τR = A] =
N ′
A,1(1)

Den′
0(1)

λS′
A(1)

UI ,A,0 +UI ,A,1λ +UI ,B,0 +UI ,B,1λ + N ′
A,1(1)

Den′
0(1)

λS′
A(1) + N ′

B,1(1)

Den′
0(1)

λS′
B(1)

= 0 · λ0 +
N ′
A,1(1)

Den′
0(1)

S′
A(1)

UI ,A,0 +UI ,B,0
λ + O(λ2).

The probabilities corresponding with class-B services are computed analogously. We also
obtain the following Taylor-series expansion around λ = 0 for the pgf of the number of
arrivals during a service period that occur before the random slot:

SA(E(λ, z)) − 1

S′
A(1)(E(λ, z) − 1)

= 1 · λ0 + S′′
A(1)E1(z)

2S′
A(1)

λ + O(λ2).

With these Taylor-series for the probabilities of the different server states and the pgf of the
number of arrivals, we obtain that the pgf of the system occupancy at random slot boundaries
can be written as

UR(z) = 1 · λ0 +
[ NA,1(z)
Den0(z)

− N ′
A,1(1)

Den′
0(1)

]S′
A(1) + [ NB,1(z)

Den0(z)
− N ′

B,1(1)

Den′
0(1)

]S′
B(1)

UI ,A,0 +UI ,B,0
λ + O(λ2).

From this expression, we derive the following light-traffic approximation for themean system
occupancy E[UR]L at random slot boundaries

E[UR]L :=
N ′′
A,1(1)S

′
A(1) + N ′′

B,1(1)S
′
B(1) − Den′′

0(1)
Den′

0(1)
(N ′

A,1(1)S
′
A(1) + N ′

B,1(1)S
′
B(1))

2Den′
0(1)(UI ,A,0 +UI ,B,0)

λ + O(λ2).

3.4.2 Heavy-traffic approximation

The heavy-traffic approximation of the system occupancy at random slot boundaries can be
calculated analogously as the heavy-traffic approximation at service initiation opportunities.
Since the idle probabilities approach zero when the system is operating under a high load,
the pgf of the system occupancy at random slot boundaries can be approximated by

UR(z) ∼ UA(z)(SA(E(z)) − 1) +UB(z)(SB(E(z)) − 1)

[UA(1)S′
A(1) +UB(1)S′

B(1)][E(z) − 1] .

We note that the probabilities UA(1) and UB(1) are, under the heavy-traffic assumption,
equal to the probabilities Pr [τ = A] and Pr [τ = B], see Eq. (5). Using this approximated
pgf, we obtain the following approximation for the mean system occupancy at random slot
boundaries, denoted by E[UR]H ,

E[UR]H = E[U ]H + λ
S′′
A(1)UA(1) + S′′

B(1)UB(1)

S′
A(1)UA(1) + S′

B(1)UB(1)
,
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CA = CB = 4, α = β α = β = 0.7, CA = CB(a) (b)

Fig. 1 Impact of clustering (a) and maximum service capacities (b) on the mean system occupancy at random
slot boundaries as a function of the load ρ

where we used E[U ]H , the heavy-traffic approximation of the mean system occupancy at
service initiation opportunities, which we derived previously.

3.4.3 Interpolation of light- and heavy-traffic approximation

Finally, we propose an analogous interpolation function for obtaining an approximation for
the mean system occupancy at random slot boundaries, denoted by E[UR]I . This approxi-
mation is analogous and given by

E[UR]I = E[UR]L 1 − ρaL

1 − ρ
+ ρa,H E[UR]H , aL ≥ 2, aH ≥ 1.

We can use the same values for the parameters aL and aH that we used in Sect. 3.3.3.

4 Discussion of results and numerical examples

In this section, we will evaluate the impact of different parameters on the performance of
the system using a number of numerical examples. In the following examples, we will use
geometrically distributed service times SA(E(z)) and SB(E(z)) with a mean of 3 slots, and
the maximum service capacities CA and CB of class A and B batches are assumed to be
equal. The arrival process of the total number of arrivals in each slot is also geometrically
distributed, and in the following examples the same-class probability α is always equal to β.

In Fig. 1, we show the impact of the degree of clustering in the arrival process (a) and of the
maximum service capacities (b) on the mean system occupancy at random slot boundaries,
given by E[UR]. We see that increasing both the degree of clustering or the maximum service
capacities result in an increase of the mean system occupancy. While this might be counter-
intuitive because increasing either parameter can lead to larger batches and in turn a better
system performance, we note that the figures are plotted as a function of the load of the
system. Since increasing either parameter can improve the system performance, the mean
arrival rate λ is also changed in order to maintain a constant load. We also observe that
changes in the probability α are most significant when the degree of clustering is already
high, while the opposite holds for the service capacity. We also observe that, as long as the
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CA = CB = 3 α = β = 0.7(a) (b)

Fig. 2 Accuracy of the light-traffic approximation using geometric arrival and service processes

maximum service capacities are significantly larger than the expected length of a sequence of
same class customers, changing the maximum service capacities or same-class probabilities
only lead to negligible changes to the mean system occupancy.

Next, we will evaluate the accuracy of the proposed approximations by studying the
relative error, defined as

errorx := |E[U ] − E[U ]x |
E[U ] ,

where x is either L , H or I for respectively the light-traffic, heavy-traffic or interpolated
approximation. In Fig. 2, we show the relative error of the light-traffic approximation as a
function of the load, and study the impact of clustering (by varying the parameter α in Fig. 2a)
and of the maximum service capacities (Fig. 2b). It is clear that increasing both parameters
also results in a higher relative error. The reason for this is that increasing either parameter
results in a system that can process a higher mean arrival rate before becoming unstable,
which means that λ also increases in order to maintain a stable load. While this results in
a slight increase of the error of the light traffic approximation for changes to α or β, we
see in Fig. 2b that higher values for the maximum service capacities result in a significantly
higher relative error. However, when the maximum service capacity becomes larger than the
expected length of a sequence of same-class customers, a point is quickly reached at which
higher service capacities only result in a negligible increase of the error of the light-traffic
approximation.

We can also investigate the accuracy of the heavy-traffic approximation by looking at
errorH , which is the relative error of the heavy traffic approximation. We note that this
is the modified heavy-traffic approximation where we made sure that it goes to 0 when
the load approaches 0. This error is shown in Fig. 3 for identical arrival and service time
distributions as in previous figures. We observe that the impact of the maximum service
capacities on the relative error, see Fig. 3b, is similar to the effect on the relative error of the
light-traffic approximation. This means that higher maximum service capacities result in a
higher relative error. However, once CA and CB are much larger than the expected length of
a sequence of same-class customers, further increasing the maximum capacities results in a
insignificant increase of the relative error. The impact of increasing same-class probabilities
is different than the one we observed for the light-traffic approximation. For the heavy-traffic
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Varying α = β, CA = CB = 3 Varying CA = CB , α = β = 0.7(a) (b)

Fig. 3 Accuracy of the heavy-traffic approximation using geometric arrival and service processes

Varying α = β, CA = CB = 3 Varying CA = CB , α = β = 0.7(a) (b)

Fig. 4 Accuracy of the interpolated approximation using geometric arrival and service processes

approximation, the relative error first increases when the same-class probabilities increase
but at higher values of α and β, the error starts decreasing again.

While these approximations allow us to study the behaviour of the system under light-
or heavy-traffic conditions, their accuracy deteriorates at moderate loads. For this reason,
we proposed an interpolation between the light- and heavy-traffic approximation which we
called the interpolated approximation introduced in Sect. 3.3.3. The accuracy of this inter-
polation, with the parameter aL = 4, is shown in Fig. 4. It is clear that the approximation
by interpolation yields quite accurate results but reaches its worst point around a load ρ of
0.3. The impact of increasing the maximum service capacity, see Fig. 4b, is analogue to
the observed impact on the accuracy of the light- and heavy-traffic approximations in that a
higher value forCA andCB leads to a higher error but a point is quickly reached at which this
increase is negligible. However, the impact of increasing same-class probabilities is more
complicated. The relative errors for α = 0.5, 0.6 and 0.7 are only slightly different from
each other, but the relative error of α = 0.8 is much smaller and also has a point at which
it becomes 0. This is the point at which the interpolated approximation goes from being a
lower bound, to being an upper bound. We note that the most accurate results are obtained
when the expected length of a sequence of same-class customers is sufficiently larger than
the maximum service capacities.
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Fig. 5 Effect of different options
for aL (with the parameters
α = β = 0.9, CA = CB = 3)

In Sect. 3.3.3, we proposed that aL = 4 results in an accurate approximation. In order to
justify this choice, we show the relative error of the interpolated approximation for a number
of different values of aL in Fig. 5. It is clear that aL = 2 results, for all loads, in a worse
approximation than aL = 4. While there is a region where using aL > 4 results in a lower
relative error, the accuracy of these options decreases significantly after the interpolation
approximation goes from a lower bound to an upper bound. Therefore, these values for aL
result on average in a worse approximation. However, in Fig. 4, we see that the interpolation
approximation does not always become an upper bound. In these cases, higher values of aL
result in a slight increase of the accuracy of the interpolation approximation but only when
the load ρ is larger than 0.5. At low loads, the change in the accuracy of the interpolation
approximation for aL ≥ 4 is negligible.

We will end this section on the numerical results by showing the mean system occupancy
at service initiation opportunities and the obtained approximations for three different com-
binations of same-class probabilities and maximum service capacities for a range of values
for the load ρ, see Table 1. In this table, we also compare the results obtained by the analysis
of this paper with the expected system occupancy E[U ]∞ of the simplified model without
maximum service capacities, which is analysed in Baetens et al. (2016, 2017, 2018a, b).
We note that in this simplified model, only 2 parameters must be solved and is therefore
much less complex to compute. We observe that the light-traffic approximation is rather
inaccurate for the considered loads and can therefore, on its own, only be used in a system
under strict light-traffic conditions. However, the situation is different for the heavy-traffic
approximation which is still rather accurate at loads of 0.8 and even at 0.6 for the case that
α = β = 0.9. We also observe that, when α = β = 0.5 or 0.7, the heavy-traffic approxima-
tion becomes negative at low loads which is expected (see Sect. 3.3.3). When comparing the
interpolation and the heavy-traffic approximation, we notice that the interpolated approxima-
tion performs better for ρ < 0.8. For higher loads, which approximation is the most accurate
will depend on the mean length of a sequence of same-class customers and the corresponding
maximum service capacities. Based on some numerical experiments, we see that the heavy-
traffic approximation will be more accurate at loads ρ > 0.8 when the expected length of a
sequence of each class of customers is less than the maximum service capacity of that class,
or Pr [τ = A]/(1−α)+ Pr [τ = B]/(1−β) < Pr [τ = A]CA+ Pr [τ = B]CB . Finally, we
will compare the interpolation approximation with the approximation obtained by removing
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Table 1 The computed mean system occupancy at service initiation opportunities compared to the three
different types of approximations and the results from the simplified model for a number of different same-
class probabilities, maximum service capacities and loads

α = β CA = CB ρ E[U ] E[U ]L E[U ]I E[U ]H E[U ]∞
0.5 3 0.2 0.16569 0.11667 0.14148 − 0.1071 0.20028

0.4 0.52858 0.23333 0.38697 0.04762 0.67833

0.6 1.46818 0.35000 1.07118 0.85714 1.94999

0.8 4.92900 0.46667 4.12373 4.28571 6.52955

0.9 12.5072 0.52500 11.4470 11.8929 16.3135

0.9 3 0.2 0.26676 0.18067 0.24141 0.39847 1.76941

0.4 0.82279 0.36133 0.76578 1.11859 5.75216

0.6 2.13734 0.54200 2.13081 2.64283 13.9999

0.8 6.61326 0.72267 6.85879 7.38356 38.9374

0.9 16.0648 0.81300 16.5559 16.9911 88.9091

0.7 9 0.2 0.36912 0.21325 0.25784 − 0.2075 0.39388

0.4 1.29140 0.42651 0.70506 0.07753 1.40710

0.6 3.50974 0.63976 1.96587 1.59373 3.88889

0.8 10.6939 0.85302 7.66034 8.03473 11.9886

0.9 25.3757 0.95695 21.3924 22.3360 28.5556

the maximum service capacities. We note that the approximation of the simplified model is
most accurate when the expected length of a sequence of same-class customers (determined
by the parameters α and β) is much smaller than the maximum service capacities, which
for instance occurs when α = β = 0.7 and CA = CB = 9. However, when the length
of a sequence of same-class customers is close to the maximum service capacities, then
the approximation of the simplification will only be accurate when the load is sufficiently
low (see the case α = β = 0.5 and CA = CB = 3). In the last case (α = β = 0.9 and
CA = CB = 3), which occurs when the maximum service capacities are much smaller
than the expected length, the approximation by simplification is useless even at small loads.
This behaviour corresponds to our predictions in our previous papers, see Baetens et al.
(2016, 2017, 2018a, b). Combining these observations, we obtain the following conditions
to determine which method for approximating is preferred:

– Pr [τ=A]
1−α

+ Pr [τ=B]
1−β

<< Pr [τ = A]CA + Pr [τ = B]CB → Use the simplified model

– Pr [τ=A]
1−α

+ Pr [τ=B]
1−β

∼ Pr [τ = A]CA + Pr [τ = B]CB and ρ > 0.8 →Use the modified
heavy-traffic approximation

– Otherwise → Use the interpolation approximation.

5 Conclusions

In this paper, we examined a batch-service queueing system with a variable and class-
dependent service capacity. The main contribution of this paper is the inclusion of maximum
class-dependent service capacities which is instrumental in modelling a realistic system. We
started the analysis by establishing the systemequations of the variable-capacity batch-service
queueing system. We used these system equations to calculate the probability generating
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function of the system occupancy at service initiation opportunities and gave the proof for
the number of zeroes in the denominator, which is equal to the sum of the maximum service
capacities. The numerical complexity of finding these unknowns depends on the sum of the
maximum service capacities and can therefore numerically be very complicated. Therefore,
we present both a light- and heavy-traffic approximation in order to reduce this numerical
complexity.We also propose an interpolation between the light- and heavy-traffic approxima-
tion in order to study the behaviour in the intermediate region. We completed the analysis by
extending these results to random slot boundaries. In the numerical experiments, we focused
on the impact of clustering between same-class customers and of themaximum service capac-
ities on the mean system occupancy. We also discussed the impact of these parameters on the
relative error of the light-traffic, heavy-traffic and interpolated approximation. Finally, we
consider the conditions under which each of these approximations are accurate and compare
the results of this paper with the results obtained by using a simplified model without maxi-
mum service capacities. Some guidelines have also been included to predict which method
of approximating would be most accurate or useful.
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