Advanced search
1 file | 1.58 MB Add to list

Towards diagnosis of rotator cuff tears in 3-D MRI using 3-D convolutional neural networks

Mi Jung Kim (UGent) , Homin Park (UGent) , J.Y. Kim, Sofie Van Hoecke (UGent) and Wesley De Neve (UGent)
(2019) p.1-7
Author
Organization

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.58 MB

Citation

Please use this url to cite or link to this publication:

MLA
Kim, Mi Jung, et al. Towards Diagnosis of Rotator Cuff Tears in 3-D MRI Using 3-D Convolutional Neural Networks. 2019, pp. 1–7.
APA
Kim, M. J., Park, H., Kim, J. Y., Van Hoecke, S., & De Neve, W. (2019). Towards diagnosis of rotator cuff tears in 3-D MRI using 3-D convolutional neural networks (pp. 1–7). Presented at the Workshop on Computational Biology at the International Conference on Machine Learning, Long Beach, USA.
Chicago author-date
Kim, Mi Jung, Homin Park, J.Y. Kim, Sofie Van Hoecke, and Wesley De Neve. 2019. “Towards Diagnosis of Rotator Cuff Tears in 3-D MRI Using 3-D Convolutional Neural Networks.” In , 1–7.
Chicago author-date (all authors)
Kim, Mi Jung, Homin Park, J.Y. Kim, Sofie Van Hoecke, and Wesley De Neve. 2019. “Towards Diagnosis of Rotator Cuff Tears in 3-D MRI Using 3-D Convolutional Neural Networks.” In , 1–7.
Vancouver
1.
Kim MJ, Park H, Kim JY, Van Hoecke S, De Neve W. Towards diagnosis of rotator cuff tears in 3-D MRI using 3-D convolutional neural networks. In 2019. p. 1–7.
IEEE
[1]
M. J. Kim, H. Park, J. Y. Kim, S. Van Hoecke, and W. De Neve, “Towards diagnosis of rotator cuff tears in 3-D MRI using 3-D convolutional neural networks,” presented at the Workshop on Computational Biology at the International Conference on Machine Learning, Long Beach, USA, 2019, pp. 1–7.
@inproceedings{8632543,
  author       = {Kim, Mi Jung and Park, Homin and Kim, J.Y. and Van Hoecke, Sofie and De Neve, Wesley},
  location     = {Long Beach, USA},
  pages        = {1--7},
  title        = {Towards diagnosis of rotator cuff tears in 3-D MRI using 3-D convolutional neural networks},
  year         = {2019},
}