Investigating heavy metal behavior and microbe response to different types of gasified biochars in historically contaminated soil

Xiao Yang1,2, Ana Tsibart3, Filip M.G.Tack3, Young Han Lee4, Jin Hur5, Chi-Hwa Wang6, Daniel C.W. Tsang7, Yong Sik Ok1*

1Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
2Department of Biological Environment, Kangwon National University, Chuncheon 24341, Republic of Korea
3Department of Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
4Division of Plant Environmental Research, Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 52773, Republic of Korea
5Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
6Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
7Department of Civil and Environmental Engineering, HongKong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

* Corresponding author. Tel: +82-2-3290-3044, E-mail: yongsikok@korea.ac.kr

Abstract

Application of biochar for soil remediation has received extensive consensus within the scientific community in laboratory scale in the last decade. To upgrade biochar application, efforts to identify a sustainable production route with steady supply of biochar should be initiated in the next stage. Since development in advanced pyrolysis technology, the gasification process can convert bio-waste into clean energy (syngas & bio-oil), and provide guarantee of biochar supply as well. Compared to conventional biochar, gasified biochar (GBC) reveals difference in composition and surface functionality due to different heating programs. Objective of this study was to evaluate impact of GBCs on heavy metal immobilization and their influence on microbial activity by incorporation of biochars into contaminated soil. In doing so, we have (1) characterized different kinds of gasified biochars in qualitative and quantitative views via a series of spectroscopic analysis, (2) assessed the efficacy of GBC to mediate concentration of cadmium (Cd) and zinc (Zn) in amended soil with a 21 days incubation using CaCl\textsubscript{2} extraction method, (3) investigated pH-dependent release of heavy metals from GBC treated soil, (4) explored GBC-induced changes in terms of soil microbial activity and diversity as well as dissolved organic matter (DOM) other than chemical and physical changes of soil. Results demonstrated that addition of GBC amendments could increase soil pH because presence of base cations in GBC matrix and simultaneously elevated soil EC, but did not exceed the saline limit. GBC application reduced concentration of CaCl\textsubscript{2}-extractable forms of Cd and Zn in varying degrees. Promotions in soil microbial abundance and diversity were detected in GBC treated specimens.

Keywords: soil remediation, gasified biochar, metal immobilization, soil microbe, DOM
ECOTOXICOLOGY OF PERSISTENT TOXIC SUBSTANCES IN FOOD PRODUCTION

9-12 December, 2017
Peking University - Shenzhen Graduate School
Shenzhen, China
International Conference
on Geochemistry in the
Tropics & Sub-Tropics

ECOTOXICOLOGY OF PERSISTENT TOXIC
SUBSTANCES IN FOOD PRODUCTION

Shenzhen, 9-12 December 2017

ORGANIZERS

- Key Laboratory for Heavy Metal Treatment and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Hong Kong, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- School of Environmental & Resources Science, Zhejiang A&F University, Lin’an, China
- School of Environment, Jinan University, Guangzhou, China
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, China
- Department of Geography, and Department of Biology, Hong Kong Baptist University, China