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A B S T R A C T

Mercury (Hg) is a potentially harmful trace element in the environment and one of the World Health
Organization's foremost chemicals of concern. The threat posed by Hg contaminated soils to humans is perva-
sive, with an estimated 86 Gg of anthropogenic Hg pollution accumulated in surface soils worldwide. This
review critically examines both recent advances and remaining knowledge gaps with respect to cycling of
mercury in the soil environment, to aid the assessment and management of risks caused by Hg contamination.
Included in this review are factors affecting Hg release from soil to the atmosphere, including how rainfall events
drive gaseous elemental mercury (GEM) flux from soils of low Hg content, and how ambient conditions such as
atmospheric O3 concentration play a significant role. Mercury contaminated soils constitute complex systems
where many interdependent factors, including the amount and composition of soil organic matter and clays,
oxidized minerals (e.g. Fe oxides), reduced elements (e.g. S2−), as well as soil pH and redox conditions affect Hg
forms and transformation. Speciation influences the extent and rate of Hg subsurface transportation, which has
often been assumed insignificant. Nano-sized Hg particles as well as soluble Hg complexes play important roles
in soil Hg mobility, availability, and methylation. Finally, implications for human health and suggested research
directions are put forward, where there is significant potential to improve remedial actions by accounting for Hg
speciation and transportation factors.

1. Introduction

Mercury (Hg) contaminated soils pose a risk to global public health,
with Hg being listed as one of the ‘ten leading chemicals of concern’
(WHO, 2017). In 2013, the United Nations (UN) introduced the ‘Min-
amata Convention on Mercury’, which aims for a more global effort in
managing the risk of Hg to human health and the environment. Signed
by 128 countries (UNEP, 2016), it entered into effect in 2017 (Selin
et al., 2018). This concerted action, if successful, will have huge im-
plications for public health for decades to come; however, there are
many hurdles in the way to achieving this goal.

The global amount of Hg mass accumulated in soils is very large;
assumed to be in the range of 250–1000 Gg (Obrist et al., 2018). Al-
though Hg occurs naturally in soils from geologic sources (Obrist et al.,
2018), or through natural events such as forest fires and volcanic
eruptions (Ermolin et al., 2018), a significant proportion of that Hg is
attributed to anthropogenic influences, with an estimated 86 Gg of
anthropogenic Hg emissions now accumulated in surface soils (UNEP,
2009). The Hg contamination issue is exemplified by the Elbe flood-
plain, Germany, where it has been estimated that as much as 2 Gg of Hg
may have accumulated in this region alone (Wallschläger, 1996). An-
thropogenic mercury pollution has been brought about by the

https://doi.org/10.1016/j.envint.2019.03.019
Received 19 November 2018; Received in revised form 13 February 2019; Accepted 8 March 2019

⁎ Corresponding author at: School of Environment, and State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing
100084, China.

E-mail address: houdeyi@tsinghua.edu.cn (D. Hou).

Environment International 126 (2019) 747–761

Available online 15 March 2019
0160-4120/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/01604120
https://www.elsevier.com/locate/envint
https://doi.org/10.1016/j.envint.2019.03.019
https://doi.org/10.1016/j.envint.2019.03.019
mailto:houdeyi@tsinghua.edu.cn
https://doi.org/10.1016/j.envint.2019.03.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envint.2019.03.019&domain=pdf


chloralkali process, cement production, mining and smelting, artisanal
small-scale gold mining, coal burning, and oil refining, which together
emit huge quantities of Hg to the environment (Science Communication
Unit, 2013), on the order of 2 Gg per year (UNEP, 2009).

Mercury can exist in soils as a number of different states and species,
each possessing different properties (Table 1), adding further com-
plexity to the assessment of contaminated sites. Mercury has three
oxidation states: (1) Hg(0) (elemental mercury), (2) Hg(I) (mercurous),
or (3) Hg(II) (mercuric). Of these, the mercurous form is not stable
under typical environmental conditions and, therefore, is rarely ob-
served. Because of high volatility and susceptibility to oxidation, me-
tallic Hg0 is typically only present in the atmosphere. It can, however,
be found as a free phase in soils heavily polluted by anthropogenic
activities (i.e. spillages) involving this form of Hg. Deposition of at-
mospheric Hg0 to soils occurs over large spatial and temporal scales
(Lin et al., 2010), whereas atmospheric Hg2+ is nearly always quickly
disposed to the pedosphere by wet or dry deposition. Once introduced
in soils, Hg in the oxidized mercuric Hg2+ state readily forms inorganic
mercuric salts and minerals, such as HgCl2, HgO, or HgS, or, under
appropriate conditions, organo-Hg compounds. The mercuric com-
pounds are unlike most other metallic compounds in that they tend to
involve in covalent bonding, rather than ionic bonds. Organo-Hg
compounds are defined by their CeHg covalent bonding. It is the ex-
istence of this bond that differentiates organo-Hg compounds from in-
organic Hg compounds that are bound to organic matter (US EPA,
1997). The various Hg species found in soils have distinct properties,
which affect their fate and transport in soils (Table 1).

Risk assessment and long-term management of different Hg species
is imperative for successfully managing risk and, therefore, successful
implementation of the Minamata Convention. Recent notable reviews
on Hg in the environment have addressed the atmosphere and atmo-
spheric interfaces (Ariya et al., 2015), and Hg cycling in the various
environmental spheres (Beckers and Rinklebe, 2017). The objective of
the present review was to garner a better understanding of how Hg
behaves in soils, so that we may better identify, assess, and manage/
mitigate Hg risks at contaminated sites. Much research has been pub-
lished on the topic of Hg in recent years, and particularly on its beha-
vior in soils (Fig. 1). This review aimed to further our understanding of
Hg behavior by considering pertinent studies that have focused on the
following areas: (1) advances in Hg analysis and its various species in
soils, (2) the exchange of Hg between soil and the atmosphere, (3) how
Hg in its various forms interacts with the constituents of soil under

different environmental conditions (e.g. redox, pH, and in the presence
of other metals), (4) the transformation of Hg species in soil, and (5) the
transportation potential of Hg in soil. Based on the review's findings,
current needs for reliable environmental Hg risk assessment including
implications for authorities and future challenges are discussed. This is
of great interest for a wide international audience, including environ-
mental scientists and managers, applied ecologists, environmental and
technical engineers, and regulatory authorities.

2. Analysis of Hg in soils

2.1. Quantification of soil Hg

Mercury concentrations in soil are usually quantified in the la-
boratory from soil extracts involving concentrated acids (Sparks et al.,
1996). Detection of soil Hg concentration is usually performed in the
laboratory because handheld portable devices are not yet sufficiently
sensitive to detect the environmentally relevant Hg concentrations of
heterogeneous soils in the field. Portable X-ray Fluorescence deceives
can only detect Hg levels above 20mg/kg (Miller et al., 2013). Re-
cently, a handheld XRF method was described that achieved a detection
limit of 7.4 mg/kg (Brent et al., 2017). Such handheld XRF methods
may be sufficient for screening soils at generic assessment criteria le-
vels, but remain incapable of providing the low-level detection neces-
sary for detailed quantitative risk assessment.

Typically, laboratory soil sample preparation methods before metal
extraction will include homogenization, drying at< 60 °C, crushing,
sieving, grinding, and mixing as necessary to homogenize the sample.
While such methods reduce analytical variability, precautions should
be taken in the case of Hg analysis so as to prevent the loss of volatile
species such as Hg0, or to cause irreversible chemical change such as
precipitation of insoluble species or change in valence state (US EPA,
2007a). Adequate sample preparation, for example by following es-
tablished protocols such as US EPA Method 3051 (US EPA, 2007a), will
generally reduce losses during sample preparation to acceptable levels.

For the extraction of total-Hg, soil samples are typically digested
with aqua regia (HCl/HNO3) using microwave assisted digestion, be-
cause of its ability to dissolve cinnabar (HgS). Soil samples containing
large amounts of organic material may be digested in HNO3/H2SO4 and
then diluted with BrCl solution to destroy any remaining organic ma-
terial (US EPA, 2002). The total-Hg in the extract is then commonly
detected using cold vapor atomic florescence spectrometry (CV-AFS)

Table 1
Properties of specific Hg compounds (Armstrong, 1990; Beckers and Rinklebe, 2017; Chem-Supply, 2018; Gaffney and Marley, 2014; NCBI, 2018; NRC, 2000;
Pohanish, 2017; Toxnet, 2019; US EPA, 1997; Wang et al., 2012; Zheng et al., 2012).

Species Name Solubility in water (g/L) Henry's law constant (atm-
m3/mol)

Vapor pressure (Pa) Density (g/cm3)

Hg0 Elemental mercury 5.6×10−5 to 6.1×10−5 (25 °C) 7.1× 10−3 to 8.7× 10−3

(25 °C)
0.27 (25 °C) 13.53 (25 °C)

49.6× 10−6 (20 °C) 7.3× 10−3 (20 °C) 0.16 (20 °C)
HgCl2 Mercuric chloride 28.6 to 73.3 (25 °C) 7.1× 10−10 (25 °C) 9.00× 10−3 (20 °C) 5.43 (25 °C)

66 to 69 (20 °C) 3.6× 10−10 (20 °C)
HgSO4 Mercuric sulfate Decomposes to mercury oxide sulfate and sulfuric acid – – 6.47 (25 °C)
Hg3O6S (isomer) Mercury oxide sulfate 0.03 (16 °C) – – 6.44
HgS Mercury sulfide 2× 10−24 (25 °C) – – 8.1 (25 °C)
HgO Mercuric oxide 0.043 to 0.053 (25 °C) 7.1× 10−7 (25 °C) 9.20× 10−12 (25 °C) 11.14 (25 °C)
HgBr2 Mercuric bromide 6.12 to 6.77(25 °C) – – 6.03 (25 °C)
HgI2 Mercuric iodide 0.06 (25 °C) – – 6.36 (25 °C)
Hg(NO3)2 Mercuric nitrate 20 – – 4.30 (25 °C)
Hg(CN)2 Mercuric cyanide 93 (14 °C) – – 4.00 (25 °C)
CH3HgCl Methyl mercuric

chloride
<0.10 (21 °C) 4.7× 10−7 (25 °C) 1.10 to 1.76 (25 °C) 4.06 (20 °C)

3.8× 10−7 (15 °C)
(CH3)2Hg Dimethyl mercury Slightly soluble. Most sources state “negligible”, NRC

(2000) reports 1 g/L (21 °C)
6.4× 10−3 to 7.6× 10−3

(25 °C)
8.31× 103 (25 °C) 3.19 (20 °C)
7.80× 103 (23.7 °C)

CH3HgOH Methyl mercuric
hydroxide

1 to 10 (21 °C) – 0.90 –
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(US EPA, 2002) or inductively coupled plasma - mass spectrometry
(ICP-MS) (Frentiu et al., 2013; US EPA, 1994). However, traditional
laboratory techniques are time consuming and expensive. Table 2 lists
some alternative laboratory techniques involving reduced cost or labor
that have recently been reported in the literature. For instance, an ex-
traction method for CV-ASS analysis proposed by Almeida et al. (2016)
is reportedly much quicker than other described procedures, with the
additional advantage of not requiring expensive reagents for Hg ex-
traction (Almeida et al., 2016). The CV-μCCP-OES procedure has been
put forward by Frentiu et al. (2013) for its improved analytical per-
formance, simplicity, and reliance on low cost instrumentation. CV-ICP-
OES has also been noted for offering several advantages, such as re-
duced analysis interference, rapid turnover of samples, low detection
limits, and a wide calibration range. These features have made this
technique an appealing alternative for the determination of total-Hg in
soil samples (Hellings et al., 2013).

For methyl-Hg analysis, extraction of soil samples is more compli-
cated. For example, extraction may involve digestion with acidic KBr
and CuSO4 solution to extract organo‑mercury from inorganic com-
plexes, followed by dichloromethane (DCM) to extract methyl-Hg, and
then back-extraction into aqueous solution by Ar purging. The aqueous
solutions are ethylated in a purge vessel using sodium tetraethylborate
(NaB(Et)4) to convert methyl-Hg to the volatile methylethyl-Hg species.
In this method, CH3Hg and total recoverable CH3Hg are synonymous
(US EPA, 1998). The organo-Hg content can then be detected by using
various techniques. An inter-laboratory study was conducted by
Kodamatani et al. (2017) to compare detection by three separate ana-
lytical methods, which were: (1) high-performance liquid chromato-
graphy-chemiluminescence (HPLC-CL), (2) gas chromatography-elec-
tron capture (GC-ECD); and (3) gas chromatography-atomic
fluorescence spectrometry (GC-AFS); of these, the third is the most
commonly utilized approach in analytical laboratories. It was revealed
that, in general, all three methods returned comparable Methyl-Hg re-
sults for all soil and sediment samples tested. However, it was noted
that the HPLC-CL method performed poorly in analyzing samples with
high sulfur contents (Kodamatani et al., 2017). Solid phase micro ex-
traction (SPME) has also been successfully coupled with GC atomic
emission detection (GC-AED) for the determination of organo-Hg once
in the aqueous phase (Mothes and Wennrich, 2000).

2.2. Determination of Hg species

Methods exploited to identify different Hg species and fractions in
soils include (1) sequential extraction, (2) thermo-desorption, and (3)
X-ray absorption techniques.

2.2.1. Sequential extraction
Sequential extraction is an operationally defined and indirect ap-

proach in which the soil is successively extracted using different re-
agents, thereby releasing Hg fractions of different reactivity. Many
multiple step sequential extraction procedures have been developed,
some specifically for the characterization of Hg species. Table 3 lists
some of these approaches, and the rationale presented for each method.
Because of lack of specificity, researchers will often classify sequential
extraction fractions based on relative environmental mobility, or
availability (Frohne and Rinklebe, 2013). Reis et al. (2016) classified
the mobility of Hg in different sequential extraction fractions as either
high, medium or low. In general, highly mobile Hg involves water-so-
luble Hg species, such as dissolved Hg or soluble inorganic or organic
complexes (Section 6.1), or exchangeable species that are only weakly
sorbed to soil surfaces (Section 4.1). Medium mobility Hg entails acid
soluble or reducible species, for example, associated with oxides. Low
mobility Hg is often associated with oxidizable species, such as non-
labile organic carbon, and other insoluble species/minerals such as
HgS, which are not extracted in the other fractions.

It should be considered that some other researchers have found
sequential leaching methods to be lacking in extracting the precise Hg
species of interest. Extractant liquids used by sequential leaching
techniques may actually affect Hg speciation, thus giving mis-
representative results (Kim et al., 2000). For instance, Hall and Pelchat
(2005a, 2005b) found that HgCl2 and HgO could predictably be ex-
tracted using Ca(NO3)2 and hydroxylamine hydrochloride reagents,
respectively. However, when these species were mixed in a silicate
matrix these species were observed in other extraction steps too. Their
finding suggests a degree of undesirable Hg resorption that may affect
the accuracy of any derived speciation data. Therefore, Hall and Pelchat
(2005a, 2005b) recommended that sequential leaching results for ty-
pical soil samples (i.e. < 1mg/kg) should normally be viewed with
caution, particularly for the initial liable fractions. On the other hand,
they reported that HgS was always extracted in the final extraction step
(i.e. aqua regia), whether extracted alone or mixed with a granitic
matrix (Hall and Pelchat, 2005b). Because of this limitation, researchers
will often classify sequential leaching fractions based on relative en-
vironmental mobility, or availability. In other words, rather than de-
termining specific Hg species, sequential leaching provides classifica-
tion of Hg species in terms of behavior or mobility.

2.2.2. Thermodesorption techniques
Mercury thermodesorption (TD) techniques rely on the difference in

the volatility of different Hg species in order to separate species.
Quantitative detection of Hg after conversion to Hg0 is usually

Fig. 1. Articles by year returned from a search of titles, abstracts or keywords in Scopus (a) mercury in different environmental media, and (b) different topics for
mercury in soil (searched on 13 February 2019).
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performed via atomic absorption spectroscopy (AAS), and therefore,
this technique is also referred to as TDAAS. The results are presented as
thermo-desorption curves. Species are identified by comparison with
synthetic standard reference materials (Reis et al., 2015a). Overlapping
peaks can often be problematic. For example, there is often difficulty in
distinguishing between HgCl2 and humic acid–Hg complexes due to
peak overlap (Reis et al., 2012). Alternatively, fractional classification
based on behavior information can be garnered. Biester and Scholz
(1997) compared thermodesorption and sequential extraction techni-
ques for attaining Hg speciation information for soil samples collected
from a former chloralkali plant, a wood preservation site, and two
mining areas. The results revealed that Hg0, non-specific matrix-bound
Hg2+, and HgS could be identified by thermodesorption. However,
sequential extraction did not identify any specific Hg compounds, as
most of the Hg was extracted in the last non-specific ‘residual’ fraction.
Thus revealing inadequate selectivity of the extractants used. Moreover,
the authors reported that sequential extraction effectiveness was in-
fluenced by organic matter and buffering carbonates (Biester and
Scholz, 1997).

2.2.3. X-ray techniques
X-ray techniques provide the most conclusive information on Hg

speciation. However, the use of X-ray techniques for obtaining Hg
speciation information is typically expensive and may require samples
that contain Hg concentrations that are higher than normally found in
typical soils (> 100mg/kg) (Kim et al., 2000). Synchrotron radiation-
based X-ray absorption spectroscopy (XAS) can be used to garner mo-
lecular-level Hg speciation information. They are non-destructive, and
require minimal sample preparation. Kim et al. (2000) investigated the
speciation of Hg in heterogeneous mine tailing samples collected from a
site in California, USA. To derive speciation data, XAS spectra were
compared to a spectral database of crystalline Hg minerals and sorption
samples. Spectra phase and amplitude differences can be observed,
which are used as ‘fingerprints’ to identify species in heterogeneous
samples (Kim et al., 2003).

2.3. Gaseous elemental mercury (GEM) measurement

Estimation of gaseous elemental mercury (GEM) flux from soils is
often complex (Böhme et al., 2005). Researchers have made efforts to
develop mobile and cost-effective field methods to allow rapid mea-
surements, for example, portable Hg-AAS analyzers e.g. (Böhme et al.,
2005; Rinklebe et al., 2009). Some of the devices enable direct and
continuous quantification via Hg electrodeless discharge lamps posi-
tioned at 253.7 nm. Zeeman correction ensures accuracy, even in the
presence of dusts, aerosols, absorbing gases and vapors (Sysalova et al.,
2017). Measurements of soil Hg flux can also be performed using a
chamber, which is placed on uncovered ground (Bohme et al., 2005;
During et al., 2009; Rinklebe et al., 2009). Gas exchange chambers
(GECs) can be used for precise control of studied variables, with ex-
periments performed in the laboratory in an enclosed chamber holding
the sample. The more simplistic dynamic flux chambers (DFCs) are used
in the field to obtain ambient flux data from dry and wet soils, and can
be used to measure non-point source Hg emissions on a wide variety of
different ground surfaces (Eckley et al., 2010). Micrometeorological
methods (MM) have also been developed that allow for larger spatial-
scale measurements and for marginal modification of environmental
conditions with the Relaxed Eddy Accumulation (REA) method, the
Aerodynamic Gradient Method (AGM), or the Modified Bowen Ration
(MBR) method.

3. Release of Hg from soil to the atmosphere

Volatile Hg species, such as Hg0 and dimethyl-Hg (Table 1), have
the potential to be released to the atmosphere if present in soil. Glob-
ally, average emissions of Hg are estimated to be in the order of 1 ng/

m2 per hour (Lindqvist et al., 1991; Mason et al., 1994; Schroeder and
Munthe, 1998), but may be as high as 100,000 ng/m2 per hour at highly
contaminated sites (Zhang and Lindberg, 1999). Therefore, the flux at
the pedosphere-atmosphere interface is an important component of
global and regional Hg biogeochemical cycling (Beckers and Rinklebe,
2017; Gustin and Jaffe, 2010; Pierce et al., 2015). In the atmosphere,
Hg is widely dispersed and transported over thousands of km before
being redeposited to the pedosphere or other environmental spheres,
thus, having wide-ranging implications on global Hg distribution
(Zheng et al., 2012). Therefore, it is important to recognize the factors
that may affect Hg flux from soil to the atmosphere, with the intention
of managing contaminated sites in ways that consider this process.

Factors that influence Hg release from soil include Hg species and
their concentration in soil; atmospheric Hg concentration (Bahlmann
et al., 2006; Edwards et al., 2001; Gustin and Lindberg, 2005; Yu et al.,
2018); meteorological factors (e.g. atmospheric pressure, air tempera-
ture, wind speed and turbulence, solar radiation, snow cover) (Carpi
and Lindberg, 1997; Gustin et al., 2002); soil moisture content
(Bahlmann et al., 2006; Gustin and Stamenkovic, 2005); soil tempera-
ture and surface characteristics (Beckers and Rinklebe, 2017); and, air
mixing (Bahlmann and Ebinghaus, 2003). The interaction of different
factors on Hg flux can be synergistic. For example, Lin et al. (2010)
described the synergistic effects of two-factor interactions. Air tem-
perature-soil moisture and air temperature-solar intensity were the
most significant of the two factor interactions described. The effects of
these combined factors were observed to be greater than the sum of
each of the factors separately.

3.1. Influence of soil conditions on Hg flux

Lin et al. (2010) used DFC measurements (Section 2.3) to calculate
Hg flux for soils containing various levels of Hg. The Hg flux was as-
sociated with soil Hg content, with a linear positive correlation
(r2 > 0.99), thus revealing that Hg flux from the pedosphere to the
atmosphere is significantly dependent on its concentration in soil.
However, it should be noted that the soil tested contained a relatively
low fraction of organic carbon (< 2%), and the impact of organic
carbon on Hg flux levels warrants further investigation. Surface cov-
ering is also an important factor on Hg flux (Luo et al., 2016). For ex-
ample, Gabriel and Williamson (2008) found that Hg flux measure-
ments for turf grass were two times lower than bare soil; and paved
ground was 22 times lower than bare soil.

3.2. Influence of ambient conditions on Hg flux

Mercury flux from low concentration soils (i.e. < 100 ng/kg) is as-
sociated with weather conditions (Fig. 2), as was explained by Briggs
and Gustin (2013), building on (Gustin and Stamenkovic, 2005). It
should be noted that the Hg flux associated with such soils is relatively
low (i.e.< 20 ng/m2 per hour) but is significant on the global scale.
The proposed mechanism suggests six scenarios (A–F) during rainfall
events: (A) Initial infiltration water will desorb Hg0 from soils and
displace gaseous elemental mercury (GEM) to the atmosphere as a
pulse; (B) as rainwater further infiltrates the subsurface, freely available
Hg2+ species in the soil can be dissolved to the aqueous phase, and Hg0

sorbed to soil may desorb to a GEM phase, but Hg flux will be pro-
hibited as soils become water saturated; (C) after rainfall cessation, Hg
flux is increased by the increase of available energy (i.e. solar radiation
and higher soil temperature), and any abiotic or biotic Hg reduction
processes; (D) however, as the soil dries, Hg flux will be reduced as Hg
movement is conducted by upward water vapor movement, which
brings dissolved Hg2+ and GEM to the surface; (E) in vegetated areas,
Hg movement will also be conducted by transpiration; (F) finally, if the
soil becomes effectively dry, Hg flux is significantly reduced.

Hg flux is known to vary in daily patterns (Rinklebe et al., 2010). It
is long established that Hg flux from soils is influenced by daily
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fluctuations in solar radiation intensity (Carpi and Lindberg, 1997;
Poissant and Casimir, 1998). More recently, it has been suggested that
ambient atmospheric chemistry, especially oxidants such as ozone (O3),
also has a considerable role in daily Hg flux levels. For instance, re-
curring daily fluctuations in Hg flux from dry soils was observed under
dark conditions and constant temperature (Zhang and Lindberg, 1999).
Engle et al. (2005) reported a>75% decrease in Hg flux from Hg0

contaminated media in the presence of up to 70 ppb O3 in air, as
compared to the presence of oxidant free air. This is expected because
volatile Hg0 is converted to the non-volatile Hg2+ state. On the other
hand, a 1.7-51× Hg flux increase was observed from Hg2+ con-
taminated media. Although an exact mechanism for this could not be
put forward, the authors suggested that O3 oxidation of the sulfide
component of HgS might have freed Hg to be reduced to Hg0 by S
species. It is becoming clearer that atmospheric O3 is a significant in-
fluencing factor in Hg flux from dry Hg2+ contaminated soils; poten-
tially more so than solar radiation intensity. It is interesting to note that
because average O3 concentrations in the atmosphere now are twice as
high as they were 100 years ago, this has significant implications for Hg
flux from soils (Engle et al., 2005; Rinklebe et al., 2010). Chemical
reduction and oxidation rates for Hg in the presence of atmospheric
oxidants also require investigating, including determination of which
oxidants are important (AMAP/UNEP, 2013).

4. Interactions between Hg and soil

The pedosphere is deemed a net sink of Hg, primarily due to Hg
taken in by plants being deposited on soils (Obrist et al., 2018). Mer-
cury-soil systems involve complex systems, with Hg tending to be im-
mobilized in surficial soil due to its affinity for mineral surfaces and
bonding to organic matter. For typical concentrations in soils, Hg2+

tends to form stable complexes with, OH−, Cl−, and S containing
functional groups of organic ligands (Powell et al., 2004). Relationships
between various soil properties and Hg are discussed in the section
below so that determinants of Hg behavior can be identified at con-
taminated sites and, therefore, remediation strategies can be better
targeted to manage risk.

4.1. Hg-soil sorption

Mercury is known to be relatively immobile, as compared to many
other metals in soil, as it can bind strongly with soil constituents. A
number of studies have been carried out examining the competitive
sorption and selectivity sequences of various heavy metals by various
soils. As an exemplar, Seo et al. (2008) explored the sorption potential
of Hg and six other metals to a wetland soil. In batch mono-metal ex-
periments (at pH=6), the seven metals were ordered by adsorptive
capacity (mg/g) as follows: Pb (25.4)≫Hg (6.4) > Cr (4.9) > Cd
(2.9) ⩾ Cu (2.6) ⩾ Zn (2.4)≫As (0.8). Based on multi metal adsorption

they were ordered as Hg (3.0) > Cr (1.1) > Cu (0.6) ⩾ Cd (0.4)≈ Pb
(0.4)≫As (0.02)≈ Zn (0.02). Thus, it was apparent that the adsorption
capacity for Hg remained strong in the presence of the other metals,
whereas that for Pb was significantly lowered (Seo et al., 2008).
Antoniadis et al. (2017b) showed that Hg sorption was not related to
the presence of any other potentially toxic elements at a highly con-
taminated former mining area in Germany. Liao et al. (2009) con-
sidered the adsorption of Hg in different types of soils, with Sharkey
clay having greater Hg sorption capacity than Olivier loam, which was
itself greater than Windsor sand. It was also revealed that Hg sorption
in each case was rapid and strongly irreversible, with freely available
Hg typically being<1%. The binding of Hg in soils is due to its ten-
dency to bind with soil organic matter or soil matrix surfaces. Mercury
can be regarded as a highly immobile metal in most soils due to highly
stable complex formation (Liao et al., 2009). Mercury speciation also
has a significant effect on the amount binding to soil. For instance, Hg0

has a typical soil water partition coefficient of ~1000mL/g, whereas
Hg2+ can range between 24,000 and 270,000mL/g with a typical value
of ~60,000mL/g (US EPA, 1997).

4.1.1. Sorption to soil organic matter
Soil organic matter is a system of progressively decomposing or-

ganic compounds (Lehmann and Kleber, 2015), being byproducts of the
biogeochemical degradation of plants and animals. Organic matter
consists of different types of substances such as: high molecular-weight
hydrophobic compounds, hydrophobic neutral organic matter, and low-
molecular weight compounds that are more hydrophilic (Stevenson,
1994). Soil organic matter has a particularly high affinity for Hg2+.
Therefore, elevated total-Hg is often associated with organic rich soils,
such as forest soils, peaty soils, or rice paddy fields (Beckers and
Rinklebe, 2017). Mercury can bind to organic matter in a number of
ways. Organic matter functional groups, such as hydroxyl, carboxylic,
aromatic and S-containing ligands may facilitate cationic Hg2+ binding
(Sysalova et al., 2017). Mercury in soil is particularly inclined to form
covalent bonds with any available reduced S active sites (Reis et al.,
2015b). The reason for this was ascribed by Mousavi (2015) to the
phenomenon of polarizability. The hard and soft acids and bases rule
predicts that soft acids and soft bases will have strong interactions.
Because S containing thiol functional groups act as a soft base and Hg2+

is a polarizable soft acid, the binding is strong. Oxygen containing al-
cohol and carboxylic acid functional groups and N containing amine
groups act as hard bases and, therefore, do not bind with Hg as strongly.
However, S bearing functional groups of humic acids can quickly be-
come saturated with Hg, therefore, most Hg2+ bound organic matter is
found to be associated with O or N containing functional groups
(Gismera et al., 2007). Because of such binding, the amount and type
organic matter content in soil can significantly affect soil Hg solubility,
mobility and, toxicity (Sysalova et al., 2017). Chai et al. (2012) re-
ported stable interactions between soil humic acids and Hg, attributed

Fig. 2. Conceptual model of six stages of Hg flux from low Hg concentration soils associated with rainfall events (based on Briggs and Gustin (2013)).
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to the abundance of O containing ligands. Humic acids have high
complex stability potential, thereby causing a decrease in Hg mobility
(Aijun et al., 2006), whereas Hg bound to fulvic acids is considered a
more labile form Wallschlager et al. (1998).

The effect of soil organic matter on Hg sorption can also be influ-
enced by human practices. Dai et al. (2013) considered Hg distribution
of arable and natural unfarmed soils in the historic Hg mining area of
Wanshan in Guizhou, China. It was stated that Hg was introduced to the
study area via contaminated irrigation water, with Hg bound to parti-
culate matter. For natural unfarmed soils, positive correlations between
Hg levels and the amount of organic matter were observed; however, no
such correlations were observed for worked arable soils. Farming cul-
tivation practices generally decrease soil organic matter and increases
air exposure. In the case of rice paddy soils, farming practices minimize
exposure to air, and may reduce the fraction of large soil aggregates and
increase soil organic matter content. Therefore, where there is a source
of Hg introduction, concentrations of Hg in rice paddy soils can sig-
nificantly increase during long-term rice cultivation (D. Yin et al.,
2016).

4.1.2. Sorption to soil matrices
Reis et al. (2016) described how Hg might sorb onto a soil matrix

surfaces in two ways, either by ‘non-specific’ or ‘specific’ sorption.
Cation exchange drives non-specific sorption, resulting in ‘outer-sphere
complexes’. The cation exchange process occurs rapidly and is con-
sidered reversible. In the case of specific adsorption, stable complexes
are formed in which Hg diffuses inward to form ‘inner-sphere com-
plexes’. These are considered slow non-reversible processes (Bradl,
2004; Reis et al., 2016). Dissolution mechanism may cause Hg bound to
soil matrices to become available. Dissolution may be brought about by
the presence of complexing or chelating agents present in organic
matter, for instance, produced by plant roots (exudates) or mycorrhiza.
It is possible that dissolution will also occur due to reductive dissolution
of Fe oxides. The effect of organic ligands on Hg sorption by mineral
colloids in soils, in terms of the precise mechanisms and sorption ki-
netics, remains somewhat unclear. Recently, Yang and Ok (2017) ex-
plored Hg sorption by non-crystalline Al hydroxides under different pH
conditions in the presence of selected organic ligands such as S con-
taining cysteine, glycine, and citric acid. It was determined that Hg2+

sorption by the control sample, cysteine and glycine systems was
mediated by specific surface complexation, whereas ligand exchange in
the citric acid system was predominant. The Hg adsorption was ob-
served to be initially rapid, and the amount of sorption decreased with
increasing pH, except in the presence of higher concentrations of cy-
steine.

Soil clay content has an important role in soil-Hg binding (Biester
et al., 2002b; Boszke et al., 2008). For instance, rice paddy soils, which
are characterized by their clayey as well as organic content, are sus-
ceptible to high Hg levels (R. Yin et al., 2016). It has been reported that
clay Hg sorption capacity can reach ~1000mg for each 1 cmolc per kg
soil (Antoniadis et al., 2017a). Therefore, elevated Hg levels are often
associated with more clayey soils. Coufalík et al. (2012) divided soil
samples from northern Mongolia into different particle size fractions.
The greatest Hg levels were discovered in the finest sized fraction. The
authors attributed the greater Hg sorption to the clay's high specific
surface area (Coufalík et al., 2012) and high cation exchange capacity
(CEC). Antoniadis et al. (2017a) suggested that 2:1 clay minerals such
as illites have greater capacity to sorb Hg than 1:1 clay minerals such as
kaolinite. The expandable 2:1 type clay minerals including smectites
have greater capacity still (Antoniadis et al., 2017a). According to the
Pauling electronegativity theory, Hg is likely to form covalent bonds
with O atoms of clay lattices. Because of this favorable bonding me-
chanism, Hg is more readily immobilized than most other potentially
toxic elements in soils (Antoniadis et al., 2017b). Clay in soil can also be
an effective sorbent of organic matter. It is suggested that increased Hg
sorption capacity in clayey soils may also relate to binding with organic

matter.
Thermodesorption of Portuguese soils revealed a major peak at

125–250 °C ascribed to either HgCl2, Hg bound to Fe oxides, or Hg
bound to humic substances (Reis et al., 2015a, 2015b). This implies that
the Hg in the sample may have been sorbed to the matrix mineral
surfaces, or to organic matter. The precise species could not be dis-
tinguished by this technique. In fact, Hg organic matter complexes can
themselves be sorbed to soils matrix mineral surfaces - forming organo-
mineral Hg complexes – thus simultaneously existing as different forms.
In this case, it was reported that Fe oxides represented a large fraction
of the soil (~10%), whereas the organic matter content was low
(~0.5%), and there were no suspected sources of chloride. Therefore, it
was assumed that the Hg would likely be associated with Fe oxides.
Thermodesorption analysis of weathered Amazonian soils by do Valle
et al. (2006) revealed peaks attributed to Hg0 release at ~150 °C and
peaks at higher temperatures attributed to various mercuric salts. For
Hg that is released between 150 and 250 °C, the non-specific term
“matrix-bound Hg” is often used. This is because desorption of Hg
sorbed to mineral surfaces (e.g. Fe oxides) cannot easily be dis-
tinguished from Hg sorbed to organic matter (Biester and Scholz, 1997).

4.2. Influence of soil properties on Hg speciation and behavior

The physico-chemical parameters of soil, including pH, cation ex-
change capacity (CEC), soil grain size distribution, organic matter type
and content and the presence of different clay types and fractions, may
affect its interaction with Hg, and, thus be influential on Hg fate and
transport. Chen et al. (2016) reported that soil total-Hg levels at a
former goldmining area near Beijing, China, were correlated to soil CEC
(R=−0.408, P < 0.005), but not to pH and soil organic matter. It
should be noted that clay and organic matter content would usually
contribute CEC to soils. Mercury may exist as available labile species or
it can be in immobilized forms. Xu et al. (2014) found only a small
amount (< 0.2%) of total-Hg at the Tidermans padding area in Sweden
to be a freely available water-soluble form. The vast majority of the Hg
was bound to the various constituents of the soil (Xu et al., 2014). As
such, traditional total-Hg based assessments of soils may overlook such
complexities (Li et al., 2008).

Sequential extraction of soil samples by Chen et al. (2016) again
revealed freely available Hg accounting for only a small proportion of
total-Hg (0.3%), with high residual fractions. The high pH of the soil
may have facilitated the binding of Hg to Fe-Mn oxides. Lucjan
Rozanski et al. (2016) tested bioaccessibility of Hg in soils with Pentetic
acid (DTPA) extraction. These soils contained large amounts of clay and
amorphous Fe oxides, and only low amounts of bioavailable Hg (Lucjan
Rozanski et al., 2016). Retention of Hg2+ in weathered Amazonian soils
was reported to be highly affected by soil pH (Miretzky et al., 2005), as
Hg2+ could be released from soils under acidic conditions (Coufalík
et al., 2012). Various researchers have undertaken correlation analyses
between sequential extraction fraction and soil properties. Lucjan
Rozanski et al. (2016) found significant correlations between soil or-
ganic carbon (SOC) content and water leachable Hg, suggesting that
SOC was holding Hg in a freely available form, whereas soil clay con-
tent was associated with a less mobile fraction with tighter binding. Li
et al. (2008) also revealed a negative relationship between easily ex-
tractable Hg and clay content. Chen et al. (2016) assessed soils around
former gold mines and a reservoir near Beijing, China, and found that
carbonate, and organic-bound Hg fractions had strong correlation with
soil pH and organic carbon. The authors also stated that the formation
of Fe-Mn oxide-bound Hg was increased by the high pH conditions.

In anaerobic Hg contaminated soils, the microbial reduction of
sulfate can lead to the formation of mercuric sulfide (HgS) (Devai et al.,
2005). HgS is a dimorphous mercuric compound found in mineral forms
known as cinnabar (α-HgS), or metacinnabar (β-HgS). HgS is usually
encountered in the cinnabar form in nature. For instance, Kim et al.
(2004) reported that HgS at former Hg mining sites were in the
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cinnabar form. However, where soils had historically been exposed to
temperatures in excess of 600 °C due to ore processing, samples were
found to contain large amounts of metacinnabar. This was ascribed to
reconstructive HgS phase transformation processes occurring at tem-
peratures above 345 °C. Recently, direct HgS (metacinnabar) formation
has been demonstrated under aerobic conditions via linear Hg2+ thio-
late complexes in cysteine solution (Enescu et al., 2016). This finding is
relevant to soils where the most significant source of sulfide is organo-
sulfides.

Mercury residing in soils as HgS (cinnabar or metacinnabar) is
considered chemically stable, even over geological time periods. Revis
et al. (1989) revealed that Hg in floodplain soils in Tennessee, USA, was
mostly (85%) in the HgS form. The high percentage of HgS was brought
about by sulfate reduction occurring in the soils. HgS is the pre-
dominant form of Hg found in many gold mining waste ores and cal-
cines (Lowry et al., 2004) due to typically elevated S contents (Reis
et al., 2010). Because of its low solubility, low bioavailability and sta-
bility in anaerobic conditions, it is considered the least toxic Hg species
in soil (Sysalova et al., 2017). For this reason, researchers have con-
sidered adding reduced S to Hg contaminated soils in order to im-
mobilize Hg within the soil. To this aim, O'Connor et al. (2018c) suc-
cessfully tested an S modified biochar, a carbon rich product of biomass
pyrolysis, as a soil amendment to immobilize Hg in contaminated soil.
Selenium has also drawn attention as it may reduce Hg uptake in the
aerial portions of plants. This is thought to be due to insoluble Hg–Se
complexes forming in plant root zones, thus inhibiting Hg metaboliza-
tion and/or translocation (H. Zhang et al., 2012).

5. Chemical transformations of Hg in the soil environment

Mercury in soil can be converted between different chemical forms
depending on the physico-chemical soil conditions. This has implica-
tions for contaminated soils under long-term management post re-
mediation. Potential routes of chemical transformation must be iden-
tified as one of the requirements for obtaining a robust decision
framework for risk-based management of contaminated sites.

5.1. Oxidation of Hg in soil

The Hg2+ cation is more commonly found in soils than Hg0. This is
related to Hg0 being volatile and susceptible to oxidation to Hg2+ under
aerobic condition. This was exemplified at a former gold mining site in
Brazil that had been contaminated by metallic Hg pollution. After fifty
years, the majority of Hg at the site was in the form of oxidized Hg2+,
which had stabilized within the soil by sorption to soil minerals (Fe, Mn
and Al oxides) or organic matter (Durao et al., 2009). A number of
factors may influence Hg0 oxidation, however, identifying these speci-
fically is challenging. Windmoller et al. (2015) studied the Hg0 oxida-
tion process experimentally. They added Hg0 and HgCl2 to three surface
soil samples of pH 5.6–5.8 containing 1.6–2.7% OM and monitored the
Hg transformation via thermodesorption. After maintaining the samples
in ambient temperature or low temperature (4 °C) dark conditions a
large portion of Hg0 was oxidized to Hg2+ (~36–88%). The oxidation
process was reported to occur via Hg1+ as two first-order rate reactions.
Oxidation of Hg0 to Hg1+ was rapid (t1/2= 2–5 days), and ~43–139
times faster than the subsequent oxidation of Hg1+ to Hg2+ (t1/
2= 107–270 days). Based on the finding it is curious that mercurous
forms of Hg are not more frequently reported.

It has been observed that soil organic matter may perform a sig-
nificant role in Hg oxidation. Windmoller et al. (2015) found that large
amounts of organic matter in soil favors the oxidation of Hg0 to Hg2+

and hinders the reduction of Hg2+ to Hg0. On the other hand, the
presence of organic matter can provide substrates as electron acceptors,
being oxidized to CO2 by microbes (O'Connor et al., 2018a), and thus
bringing about reducing redox conditions. Further research is needed to
understand how each of these conflicting processes may dominate

under different environmental conditions and in different soil types.

5.2. Chemical reduction of Hg in soil

Microbial mediated reduction of Hg from the oxidized state (Hg2+)
to its elemental form (Hg0) can occur under low soil redox conditions in
permanently or periodically flooded anaerobic soils (Devai et al., 2005;
Frohne et al., 2012). Under these conditions, Hg2+ can also be pre-
cipitated as HgS, or be converted to Methyl-Hg. Therefore, an intricate
understanding of environmental conditions beyond oxidation-reduction
potential (ORP) is necessary to discern how Hg will transform. This is
an important area where more research is needed. For example, me-
thylation potential is highly dependent on Hg bioavailability (discussed
in Section 5.3 below). Abiotic reduction of Hg2+ is also possible in
certain circumstances. Organic acids, such as humic acids and other
humic substances may perform this role (Allard and Arsenie, 1991).
Chakraborty et al. (2015) found that abiotic reduction of Hg2+ to Hg0

by humic substances was faster at lower pH (i.e. pH≤ 4) and salinity
levels (i.e. ≤5.0 PSU). Some reduction reactions in surface soils may be
enhanced photochemically (Lin et al., 2010). Solar radiation may in-
crease the rate of some Hg2+ reduction reactions, but may also increase
the rate of Hg0 oxidation reactions (Zhang and Lindberg, 1999).

5.3. Organo-Hg formation in soil

In the reducing conditions that occur in many permanently or per-
iodically flooded soils, Hg may be biogeochemically transformed into
organo-Hg forms (Frohne et al., 2012; Parks et al., 2013), of which
Methyl-Hg is the most prevalent. The bioavailability of Hg species to
methylating microorganisms is crucial in determining the extent of
these conversions. Fernandez-Martinez and Rucandio (2014) found that
the most mobile Hg fractions, such as Hg-humic or Hg-fulvic complexes,
in a Ferric Lixisol soil at a former Hg mining area in Almaden, Spain,
only accounted for 3.2–7.7% of the total-Hg content. However, these
fractions were the most susceptible to Hg methylation. On the other
hand, soils with greater amounts of larger organic matter types (i.e.
larger molecular weight) are less at risk of Hg methylation because of
lower bioavailability (Sipkova et al., 2016; Skyllberg et al., 2006).

The direct conversion of insoluble HgS (cinnabar) species to Methyl-
Hg in anaerobic soils is generally believed to be low/insignificant (Gray
et al., 2015), due to its low bioavailability. But it is now known that in
certain circumstances, the mercury in HgS can be methylated by sulfate
reducing bacteria (Lefebvre et al., 2007). Benoit et al. (1999) proposed
that HgS methylation might occur when environmental conditions
favor HgS complexation (see Section 6.1). T. Zhang et al. (2012) sug-
gested that Hg methylation potential might be associated with geo-
chemical intermediate products deriving from rate-limited Hg-sulfide
precipitation reactions. However, the precise role of this in Methyl-Hg
formation is still not well understood. Thomas et al. (2018) put forward
two potential mechanisms for Hg2+ uptake by methylating micro-
organisms: (1) the passive diffusion of neutral HgS species, particularly
nano sized HgS; and, (2) the energy-dependent uptake of Hg2+ by ac-
tive transport. Regarding the former, it has been reported that nano
sized HgS particles may be favored in soil when Hg binds with dissolved
organic carbon species, due to a slow-down in growth rate of HgS
particles (Deonarine and Hsu-Kim, 2009). Recent reports suggest that
nano HgS may be bioavailable for methylation by microorganisms (T.
Zhang et al., 2012).

Methyl-Hg in rice paddy soil has been reported to contaminate rice
grain produce in some Hg contaminated farming areas. Rice paddies are
periodically flooded by farmers, making them susceptible to very low
redox conditions. It may be expected that Hg methylation in paddy soil
will be influenced by pH and organic matter content. However, Zhao
et al. (2016b) reported no direct impact these factors at two sites with
alkaline soils. A second article revealed that net Methyl-Hg formation
was significantly influenced by the recent deposition of Hg in surficial
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soils under anaerobic and low pH conditions (Zhao et al., 2016a).
Therefore, the Hg methylation rate in soil may also be a function of
atmospheric Hg concentration and deposition processes. Han et al.
(2006) also reported that organo-Hg is more likely found at sites of
recent contamination with soluble Hg species, and noted that methy-
lation is less likely at sites containing insoluble HgS forms. Tomiyasu
et al. (2017) investigated the influence of organic matter decomposition
stage, which was found to be correlated to organo-Hg formation. Fallen
leaves were reported to deposit Hg on the soil surface and the decom-
position of leaves led to Hg sorption. Despite recent advances in our
knowledge of Hg methylation, it is apparent that there remain gaps in
the research of Hg2+ reduction to Hg0, formation of HgS, and Hg me-
thylation.

6. Availability and mobility of Hg in soils

Transport of Hg by leaching to the subsurface and groundwater is
often thought to be insignificant (Grigal, 2003; Johnson and Lindberg,
1995). However, the influence of Hg speciation on the potential
transportation rates within soils has not yet been sufficiently studied.
The speciation of Hg in soil may vary from site to site, or even across
locations on a site (Boszke et al., 2008). For instance, Miller et al.
(2013) characterized a site contaminated by the historical use of ele-
mental Hg0 in Tennessee, USA. The authors found Hg0 to a depth of
3.2 m at a sampling location, and only in the top 0.3m at another lo-
cation just 12m away, due to the differences in soil conditions. This
section discusses factors that may influence Hg transport in soils and
the availability of different Hg species.

6.1. Solubility of mercuric species

Typically, Hg in soil is mostly bound to solids, and only a small
proportion partitioned to aqueous solution. For example, Liao et al.
(2009) revealed that Hg binding to three types of soil was rapid and
strongly irreversible, with freely available portion typically being<
1%. Typical soil-water partition coefficients for Hg in superficial soils
are ~1000mL/g for Hg0, ~60,000mL/g for Hg2+ (range of
24,000–270,000mL/g) and ~6700mL/g for methyl-Hg (range of
2700–31,000mL/g) (US EPA, 1997). The extent of partitioning to soil
solution will depend on Hg speciation and conditions at a site. The Hg
species found in soils are usually mercuric salts or minerals. The solu-
bility of these salts and minerals can vary widely (Table 1), and,
therefore, so can their transportation potential. In typical non-saturated
soil conditions, Hg2+ in soil solution is typically in the form of HgCl2,
HgClOH and Hg(OH)2 (Powell et al., 2004). Gai et al. (2016) calculated

that dissolved Hg2+ in a simulated rainwater was present as HgClOH
(47%), HgCl2 (39%), and Hg(OH)2 (11%). Many mercury compounds
dissolved in water do not disassociate (US EPA, 1997). For example,
mercuric chloride (HgCl2) will mostly exist as discrete molecules in
aqueous solution (Earnshaw, 1997). Dimethyl-Hg is much more lipo-
philic than mono methyl-Hg, consisting of stable covalent bonds that do
not dissociate at pH > 5.6 (Alexander et al., 2008; Fagerström and
Jernelöv, 1972).

The solubility of Hg compounds will also depend on the properties
of the soil solution. For instance, Jacobson et al. (2005) reported that
HgS may actually be soluble in waters that contain certain dissolved
organic matter (DOM) substances (e.g. fulvic acids) or in the presence
of thiol ligands, or, if there is an excess of sulfide ions present. In such
circumstances, insoluble HgS may form soluble complexes, such as the
soluble mercuric disulfide complex. The reactions that form HgS and
the disulfide complex are highly pH dependent. Moreover, dissolved Hg
may interact with DOM to form solid phase HgS (Skyllberg and Drott,
2010). The presence of humic fractions may inhibit this process, where
hydrophobic organic acids such as fulvic and humic acids will have a
greater effect on inhibiting aggregation than more hydrophilic organic
substances (Ravichandran et al., 1999).

Most organo-Hg compounds have low solubility in water (Table 1),
and have no tendency to react with weak acids or bases. This is because
of their low affinity for O bound to carbon. However, methylmercury
hydroxide (CH3HgOH), is highly soluble because the hydroxide group is
strongly involved in hydrogen bonding (US EPA, 1997). The solubility
of organo-Hg species is also highly dependent on Hg complexation with
organic matter and ion exchange processes (Sipkova et al., 2016).
Methyl-Hg aqueous complexes may vary under different environmental
conditions. For example, Blanc et al. (2018) reported that solid phase
stability domains dominate in carbonate sub-systems under various Eh
and pH conditions, whereas aqueous complexes stability domains
dominate under various sulfide and chloride activities or under various
sulfide activity and pH (Fig. 3).

6.2. Effects of soil organic matter and clay content on Hg transport

Sorption of Hg to colloidal organic matter, such as fulvic acids and
hydrophilic compounds, can increase Hg mobility in the soil profile.
These species can easily become suspended and transported in pore-
water (Naidu and Harter, 1998; Sipkova et al., 2016). Decreased mo-
bility has also been reported at Hg contaminated sites with high organic
matter contents. For instance, the Hg content of soils amended with
organic matter (vermicompost) was stable after 21 days, with mobile
Hg concentration reducing from ~700 to ~200 μg/kg (Sipkova et al.,

Fig. 3. Methyl-Hg aqueous complexes at 25 °C: (a) carbonate sub-system; (b) sulfide and chloride activity; and, (c) sulfide activity and pH. In yellow: solid phase
stability domains; in blue: aqueous complexes stability domains. [HgT]= 10−9 mol/L; [CO3,T]= 10−3 mol/L and [ClT]= 10−3 mol/L (Blanc et al., 2018). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2016). This contrast can be attributed to the high sorption capacity of
soil organic matter for Hg (Heeraman et al., 2001), some of which is
mobile in solution, while most is immobile and part of the solid matrix.
An investigation of Hg mobility in an organic matter rich peat bog in
Chile revealed that organic acids in the soil's surface horizon facilitate
Hg transport to deeper soils (Biester et al., 2002a). It is apparent that
the mobility of Hg sorbed to organic matter is dependent upon the type
of matter to which it is sorbed. Lighter molecular weight organic matter
substances are more susceptible to being suspended as colloids in
porewater and transported by advection (see Section 6.3). Mobility will
also depend on the organic matter surface charge density. Lehmann and
Kleber (2015) suggested that alkaline extracts of humic substances only
provide limited information on sorbed contaminant behavior. This was
ascribed to measurements of organic matter solubility in alkaline so-
lution over- or underestimating its reactivity (i.e. electron shuttling,
metal adsorption). A better understanding of contaminant mobility may
be obtained by examination of a soil's entire soil organic matter, or at
least the portion in soil solution, as the most relevant fraction.

The transportation of soil-bound Hg by physical processes such as
soil erosion has been explored only to a limited extent. Zheng et al.
(2016) addressed how different types of organic matter may affect Hg
transported by surface runoff by measuring Hg in heavy and light or-
ganic matter fractions, based on density fractionation. It was found that
Hg transport was dominated by the heavier fraction of organic matter,
which was associated with clay minerals. The clay mineral content was
itself an indirect influential factor. For normal rainfall events, an un-
derstanding of soil constituents is just as critical for understanding Hg
mobility as the soil Hg concentration. Wang et al. (2016) observed that
Hg in the tillage layer (0–20 cm) of a site in the North China Plain, a
major grain producing area, was less than in the deeper soils. This could
have been due to Hg being taken up by plants, or to downward mi-
gration of Hg into the soil subsurface. The authors stated that down-
ward migration was unlikely due to large amounts of clay minerals. The
clay content of soil may have reduced Hg transport due to Hg sorption
to clay mineral surfaces, or hydrogeological conditions (i.e. reduced
permeability). On the other hand, Hg may be mobilized by sorption to
suspended colloidal clay minerals, which is discussed in Section 6.3.

6.3. Colloidal-Hg transport

Any Hg2+ in soil at a site will mostly reside immobilized to solid
phases in surface soil. However, because of their small size, solid phase
colloidal particles have the potential to migrate within soil pore spaces,
presenting a potential pathway for the transportation of bound Hg.
Colloids in the pedosphere have been defined as 0.005–5 μm diameter
particles in soil (Richards et al., 2007), which may be formed of organic
matter, clay minerals, metal oxides, sulfides, etc. It should be noted that
dissolved organic carbon is often defined as being<0.45 μm, which is
within this definition of a colloidal fraction. The Hg binds to colloids
due to high specific surface area and the presence of surface functional
groups. Zhu et al. (2014) suggested that organic matter colloids, or
organic matter coated on clay colloids, may be considered primary
colloidal carriers of Hg, due to their abundance and strong Hg binding
potential. Mineral colloidal kaolinite particles in pore water can also
mobilize Hg that would otherwise be immobilized by sand particles, by
a process of desorbing Hg from the sand and resorbing it onto itself
(competitive sorption) and acting as a carrier in soil pores (Zhu et al.,
2012).

It is long-known that DOM can influence the mobility of suspended
colloids (Aiken et al., 2011). However, it has been reported only re-
cently that nano-sized HgS particles may form in the pedosphere when
Hg binds with DOM species such as humics or thiolates. The small size
of HgS nanoparticles means that they may pass through a standard
0.45 μm laboratory filter. Researchers have observed solid phase HgS
particles< 5 nm in diameter present in transmission electron micro-
scopy (TEM) images, with HgS aggregates stabilized in the order of

20–200 nm (Deonarine and Hsu-Kim, 2009). EDX spectra confirmed the
presence of Hg and S, and possibly Cl.

The potential for subsurface transportation of HgS nanoparticles
will be greatly affected by their particle size, surface charge, and ag-
gregation. Gai et al. (2016) synthesized HgS nanoparticles with average
hydrodynamic diameters of ∼230 nm, which were polydisperse in
5mM NaCl solution at pH 7.5. Aggregation of HgS nanoparticles was
not observed in a 200mM NaCl solution, suggesting that the 147mg/L
of organic carbon in solution may have sterically stabilized the nano-
particles. Thus, Hg interaction with DOM may constitute a mechanism
of stabilization of HgS in colloidal suspension, with the metal to DOM
ratio altering the precipitation kinetics, reactivity and bioavailability,
as well as the transportation potential. It has been reported by Anh Le-
Tuan et al. (2015) that diffusive passive sampling techniques sample
only the freely available dissolved Hg fraction, and not particulate
bound species. The authors used X-ray absorption spectroscopy (XAS)
to determine Hg species accumulated on a diffusive gradient in thin-
film (DGT) passive sampler binding layer. They reported that HgS na-
noparticles were excluded; thus suggesting that the use of diffusive
samplers may overlook this fraction in soil environments where HgS
nanoparticles are of importance for assessing risks.

6.4. Relative mobility of different Hg species

The relative mobility of different Hg species has received little at-
tention so far. Recently, Gai et al. (2016) considered the vertical mo-
bility of four different Hg species by laboratory column experiments.
The four Hg species considered were: (1) dissolved Hg2+, (2) a pre-
pared Hg2+ and DOM complex, (3) Hg0, and (4) HgS nanoparticles. The
species were applied to the surface of various porous media (sand, sand
with 2% kaolin clay, a low-organic carbon natural soil, and a high-
organic carbon natural soil) in columns, and subjected to simulated
rainfall under semi-saturated conditions i.e. at an infiltration rate that
did not fully saturate the soils. Based on effluent Hg concentrations
against time, the percentage of total Hg mass immobilized in the col-
umns was calculated for the different Hg species. The Hg2+ DOM
species were the most mobile, and HgS nanoparticles the least mobile,
yet the mobility in each case was relatively low, showing the suscept-
ibility of Hg to bind with surface soil constituents even in sandy soil.

7. Implications for risk management

The fact that Hg is hazardous to human health is long known. The
use of inorganic Hg to produce felt for the 19th century hat industry led
to the characteristic neurological disorders experienced by hatters
(Mahajan and Sharma, 2011). Organo-Hg compounds have proven to
be even more harmful. Methyl-Hg has a high affinity for fatty tissues,
and can readily accumulate to highly toxic levels (Liu et al., 2018).
Organo-Hg poisoning epidemics have occurred in countries such as Iraq
and Japan - where the infamous Minamata disaster occurred. At pre-
sent, Hg pollution is affecting many communities around the world
(Wang et al., 2012), with ~8 million people being potentially impacted
(Pure Earth and Green Cross, 2016). Moreover, soil pollution in many
parts of the world is pervasive (Jin et al., 2019; Peng et al., 2019; Zhang
et al., 2019), with a numerous complications surrounding land man-
agement (Hou and Li, 2017). As the pharmacokinetics and toxicological
effects of mercury compounds have been comprehensively reviewed
elsewhere (Rice et al., 2014), this review has focused on factors that
may impact risk assessment for the long-term management of different
Hg species in soil, which is an imperative for successfully managing risk
and, therefore, successful implementation of the Minamata Convention
(World Bank, 2016).

It is established that Hg is highly attracted to certain soil con-
stituents, particularly, organic matter and soil mineral surfaces.
Mercury can form covalent bonds with the O atoms of organic matter
functional groups, and can react with sulfides to form the highly stable
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HgS mineral cinnabar. This makes Hg relatively immobile; under
normal environmental conditions, Hg is usually only found to reside
only in superficial soils, with low transportation potential to deeper
soils. Therefore, it may be prudent to focus health risk assessment on
surface soil exposure scenarios. However, the complexity of Hg-soil
systems is increasingly being unraveled. For example, although gen-
erally small fractions of total soil Hg will partition to pore water, the
extent of this partitioning will depend on Hg speciation at a site.
Moreover, stable insoluble compounds such as HgS may become soluble
when soil solutions contain certain DOM substances (e.g. fulvic acids)
or thiol ligands, or, if there is an excess of sulfide ions present. This is
due to the formation of soluble complexes, such as the mercuric dis-
ulfide complex. The reactions that form these complexes are highly pH
dependent. Such complexities should be considered in detailed site
specific risk assessments.

Under the chemically reducing conditions found in many perma-
nently or periodically flooded soils, Hg may be biogeochemically
transformed into the more toxic organo-Hg forms (Frohne et al., 2012).
Moreover, Methyl-Hg formed in rice paddy soils, which are periodically
flooded by farmers, is susceptible to being taken up into the rice grain
produce, thus posing a risk to health through the food chain (Zhang
et al., 2010). The bioavailability of different Hg species is a crucial
factor in this process, as some Hg forms are more readily available to
methylating microorganisms. For example, mobile Hg-humic or Hg-
fulvic complexes tend to be susceptible to Hg methylation, whereas, Hg
bound with larger organic matter types is at less at risk of methylation.
The direct conversion of insoluble HgS (cinnabar) species to Methyl-Hg
in anaerobic soils is generally believed to be low, but this can change
when environmental conditions favor HgS complexation. Methylation
potential may be associated with intermediate geochemical products
deriving from rate-limited Hg-sulfide precipitation reactions, but this is
still not well understood. Recent reports suggest that nano-sized HgS
particles may be bioavailable for methylation by microorganisms
(Thomas et al., 2018). It is also reported that organo-Hg is more likely
found at sites of recent contamination (Han et al., 2006).

It is imperative that Hg contaminated land is managed in a way that
Hg species and behavior are incorporated as part of risk assessment.
Some nations have already adopted soil environmental quality

standards that take into account Hg speciation and soil conditions
(Table 4). For example, the US EPA has implemented separate screening
levels for total Hg, methyl Hg, and mercuric chloride (and other Hg
salts), and China introduced their 2018 soil screening values for total
Hg and methyl Hg with soil pH specific levels, due to the differences in
bioavailability of Hg under different pH conditions. However, there
remains a need for greater consideration of bioavailability in environ-
mental risk assessment in general (O'Connor et al., 2018b). There is also
a need for remediation engineers to have a better understanding of how
soil remediation methods influence contaminant speciation and trans-
portation. For example, some researchers are now using the addition of
reduced S modified sorbents in soils. As we have noted, Hg can bind
strongly to reduce S species, thus immobilizing Hg in situ, with low
apparent risk to receptors. However, we suggest that further attention
should be paid to the soil environmental conditions, and whether or not
a long-term residual risk remains after remedial actions have been
completed. Residual risks may arise due to complexation, methylation
or colloidal transport processes. Researchers have also recently pro-
posed the use of increased Hg flux to clean up soils via microorganism
augmentation, which facilitates Hg transformation to more volatile
species. It is suggested that further attention is paid to the long-term
potential changes of environmental factors such as the frequency of
rainfall events and ambient conditions, so that better predictions of
remediation efficacy can be made.

8. Summary and outlook

The global risk posed to humans and the wider environment by Hg
contaminated soils is severe, with anthropogenic emissions of Hg to the
environment being on the order of 2 Gg per year. This review has ex-
amined research published in recent years in order to garner a better
knowledge of Hg behavior in soils, which may allow a better under-
standing and management of contaminated sites.

This review has examined recent studies regarding Hg transport
processes, such as how colloidal particles have the potential to act as
carriers of bound Hg within soil pores, presenting a potential pathway
for Hg transportation and increasing availability. Mercury can readily
bind to colloids due to their high specific surface area and the presence

Table 4
Soil guideline values for Hg in various countries.

Country Values (mg/kg) Guideline

Total-Hg
Canada 6.6e

(Residential/parkland)
50e

(Industrial)
6.6e

(Agricultural)
24e

(Commercial)
(CCME, 1999)

China 8a

(Residential land, school,
hospital, parks, etc.)

38a

(Industrial land, commercial land,
roads, public service land, etc.)

33b

(Residential land, school,
hospital, parks, etc.)

82b

(Industrial land, commercial land,
roads, public service land, etc.)

(MEE, 2018b)

0.5a

(Paddy field, pH≤ 5.5)
0.5a

(Paddy field, 5.5 < pH≤ 6.5)
0.6a

(Paddy field, 6.5 < pH≤ 7.5)
1.0a

(Paddy field, pH > 7.5)
(MEE, 2018a)

1.3a

(Other agricultural land,
pH≤ 5.5)

1.8a

(Other agricultural land,
5.5 < pH≤ 6.5)

2.4a

(Other agricultural land,
6.5 < pH≤ 7.5)

3.4a

(Other agricultural land, pH > 7.5)

2.0b

(pH≤ 5.5)
2.5b

(5.5 < pH≤ 6.5)
4.0b

(6.5 < pH≤ 7.5)
6.0b

(6.5 < pH≤ 7.5)
USA 11c

(Resident soil)
46c

(Industrial soil)
0.033d

(Protection of ground water)
(US EPA,
2018)

Methyl-Hg
China 5a

(Residential land, school,
hospital, parks, etc.)

45a

(Industrial land, commercial land,
roads, public service land, etc.)

10b

(Residential land, school,
hospital, parks, etc.)

120b

(Industrial land, commercial land,
roads, public service land, etc.)

(MEE, 2018b)

USA 7.8c

(Resident soil)
120c

(Industrial soil)
14d

(Protection of ground water)
(US EPA,
2018)

Mercuric chloride (and other Hg salts)
USA 23c

(Resident soil)
350c

(Industrial soil)
(US EPA,
2018)

Note: aRisk screening value; bRisk intervention value; cScreening Levels; dRisk-based Soil Screening Level (SSL); eSoil quality guidelines for mercury.
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of surface functional groups. On examining Hg flux from soils to the
atmosphere we found that mechanisms have been put forward that
describe gaseous Hg release associated with the progressive stages of
rainfall events. The influence of ambient conditions was also found to
be critical, with atmospheric chemistry, such as O3 levels, playing a
crucial role in Hg flux. Mercury contaminated soils constitute complex
systems where many interdependent factors, including amount and
composition of soil organic matter and clays, oxidized minerals (e.g. Fe
oxides), reduced elements (e.g. S2−), as well as soil pH and redox
conditions affect Hg forms and transformation. Speciation influences
the extent and rate of Hg subsurface transportation, which often has
been assumed insignificant. Nano-sized Hg particles as well as soluble
Hg complexes play important roles in Hg mobility, availability, and
methylation in soils.

Considering the global scale and hazardous nature of Hg con-
taminated sites, the need to develop new, effective, and preferably
‘green’ remediation technologies to cleanup Hg contaminated soils is
now urgent (O'Connor et al., 2018c). This review focused on improving
the understanding of Hg behavior in soil, which may allow optimization
of risk management and improved remediation approaches to protect
human health. Going forward, new approaches may involve en-
gineering soil environments so that Hg behaves in a more favorable way
for its removal or immobilization. For example, researchers have re-
cently begun to consider the use of citric acid facilitated thermal
treatments for the remediation of Hg contaminated soils (Ma et al.,
2015), to apply microorganisms for increased Hg flux (with capture)
(Mahbub et al., 2017; Mahbub et al., 2016), and Hg biosorption
methods (Dash and Das, 2015; K. Yin et al., 2016). Such approaches fit
well with the current movement to promote green & sustainable re-
mediation (GSR) practice (O'Connor et al., 2018d; Song et al., 2019;
Zhang et al., 2018) in preference of resource/energy intensive tradi-
tional Hg remediation approaches such as conventional thermal treat-
ment or soil washing (US EPA, 2007b).

Environmental pollution by Hg is a global problem. Often, autho-
rities are sanctioned by law to conduct appropriate risk assessment and
to implement practical actions that mitigate environmental hazards to
acceptable risk levels (Table 4), but often without consideration of
possible wider impacts (O'Connor and Hou, 2018). Wider ranging risk
assessments with a view to land ecosystems (vegetation as green fodder
and hay production, grazing and wild animals), in order to evaluate the
potential transfer of Hg into the human food chain, should also be
encouraged. This will require accurate determination of Hg species, soil
constituents, fluxes, and their dynamics, since gaseous Hg exchange
from soil to atmosphere is an important pathway to the environment.
However, reliable estimates of Hg fluxes in certain areas around the
world, and its influencing factors, remain scarce. It is recommended
that further research should be implemented to assess this pathway in
terms of impacts to human health.
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