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Samenvatting

In onze fysieke omgeving kan men veel verschillende soorten ruimtelijk verspreide
informatie meten. Enkele typische voorbeelden zijn temperatuur, vochtigheid,
druk, trillingen, geluid, enz. Draadloze sensornetwerken (Wireless Sensor Net-
works, WSN’s) zijn ontwikkeld om deze informatie uit de fysieke wereld te ver-
zamelen en door te geven aan de digitale wereld voor verdere verwerking. WSN’s
kunnen verschillende praktische toepassingen ondersteunen, zoals de bescherming
van civiele infrastructuren, habitatmonitoring, precisielandbouw, detectie van gif-
tige gassen of gezondheidsmonitoring op afstand. Een typisch WSN bestaat uit
een verzameling uiterst kleine sensoren, verspreid over een bepaald gebied, die in-
formatie in hun onmiddellijke omgeving verzamelen, en uitgerust zijn met zender-
ontvangers om de informatie door te zenden. Daarenboven is elke sensor uitgerust
met een geheugenchip en een kleine batterij. De geheugenchip kan de sensorin-
formatie tijdelijk opslaan en alle vermogen die nodig is voor het detecteren, ver-
werken en doorgeven van deze informatie wordt onttrokken aan de batterij. Omdat
sensoren doorgaans ruimtelijk worden verspreid, is het duur, of zelfs onmogelijk,
om batterijen te vervangen eenmaal de sensoren verspreid zijn. Een onmiddellijk
gevolg hiervan is dat de capaciteit van de batterij de levensduur van de sensor be-
perkt. De sensor is nu eenmaal niet langer operationeel als de batterij leeg is. In
sommige gevallen wordt daarom de communicatie geoptimaliseerd met betrekking
tot energieverbruik. In veel andere toepassingen worden sensoren voorzien van een
hernieuwbare energiebron zodat bijkomende energie kan onttrokken worden aan
omgevingsbronnen, zoals bijvoorbeeld de zon, de wind of warmte. Zowel het sce-
nario met als het scenario zonder energiebron legt extra beperkingen en enorme
uitdagingen op bij het ontwerp en de modellering van draadloze sensornetwerken.
Energiebronnen zoals wind, zon en warmte fluctueren in de loop van de tijd, zo-
dat de hoeveelheid energie die kan onttrokken worden ook fluctueert. Dergelijk
tijdsvariërend gedrag kan de prestaties van het netwerk sterk beïnvloeden.

In dit proefschrift onderzoeken we de prestaties van draadloze sensornetwer-
ken aan de hand van een aantal stochastische modellen. Deze modellen leggen
de belangrijkste onzekerheden vast die de dynamiek van de WSNs bepalen, zoals
bijvoorbeeld het onttrekken van energie, het energieverbruik, en de gegevensover-
dracht. Het belangrijkste doel van het netwerk is om zoveel mogelijk informatie
te verzamelen en tegelijkertijd het energieverbruik tot een minimum te beperken.
Over het algemeen wordt een aanzienlijke hoeveelheid energie verbruikt om ver-
schillende WSN-operaties uit te voeren, zoals detectie, verwerking en transmissie.
De hoeveelheid energieverbruik is echter niet voor elke operatie gelijk. Transmis-
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sies vereisen bijvoorbeeld aanzienlijk meer energie dan waarnemingen. Boven-
dien kunnen voor een optimaal ontworpen WSN beslissingen om al dan niet te
verzenden worden beïnvloed door verschillende attributen van de informatie, in-
clusief de kwaliteit en de waarde van de informatie. De kwaliteit van informatie
(quality of information, QoI) houdt rekening met de nauwkeurigheid, consistentie,
volledigheid en tijdigheid van de informatie. De waarde van informatie (value of
information, VoI) beschrijft daarentegen het belang van de informatie. Elke keer
dat een sensor iets detecteert, verzamelt het informatie die al dan niet belangrijk
kan zijn. We modelleren de evolutie van de VoI onder verschillende assumpties
en onderzoeken de impact van deze assumpties op de algemene prestaties van het
netwerk.

In het eerste deel introduceren we stochastische modellen die een statische
sensorknoop isoleren van de rest van het netwerk, en bestuderen we de interactie
tussen gegevensverzameling, energieopname en energieverbruik. Afhankelijk van
de aard van de waarde van het informatieproces, stellen we verschillende model-
len voor. Aanvankelijk gaan we ervan uit dat de waarde van informatie additief is,
d.w.z. dat we nieuw gemeten sensorwaarde kunnen optellen bij de reeds gevatte
waarde in de knoop. Het model voorziet in een redelijk algemeen proces om de
sensorwaarden doorheen de tijd te beschrijven: we veronderstellen een stationair
ergodisch maar niet noodzakelijk Markoviaans model voor om de prestaties van
een statische sensorknoop te evalueren. Het basisraamwerk stelt ons in staat om
de evolutie van het batterijniveau en de VoI te schrijven in termen van een stelsel
van recursieve vergelijkingen voor de stationaire ergodische rij. We maken ge-
bruik van de lineariteit van de vergelijkingen om het gedrag op lange termijn van
de verschillende netwerkprocessen te analyseren. We bewijzen in het bijzonder het
bestaan van een stationair ergodisch proces voor de batterijniveaus en de VoI. De
ergodiciteit stelt ons verder in staat om het lange-termijngemiddelde gedrag van
het systeem af te leiden. Hierbij berekenen we verschillende prestatiematen zoals
de stationaire verdeling van het batterijniveau en de gemiddelde waarde van infor-
matie verzameld door een mobiele knoop. We berekenen ook het tweede moment
om de spreiding van de waarde van informatie van zijn gemiddelde waarde in te
kunnen schatten. Een andere uitbreiding van het basismodel vat het gecorreleerde
gedrag van de energiecaptatie in meer detail. We includeren deze tijdscorrelatie
door de energiecaptatie te modelleren aan de hand van een Markov-gemoduleerd
proces. Enkele numerieke voorbeelden illusteren dat tijdcorrelatie een aanzienlijke
invloed heeft op de algehele prestaties van de sensor.

In sommige toepassingen wordt informatie gewaardeerd op basis van de leef-
tijd van de informatie, i.e., hoe recenter hoe waardevoller. In dergelijke gevallen
wordt de informatie in de sensorknoop vervangen als de knoop nieuwe waardevol-
lere informatie ontvangt, hetzij vanuit de omgeving of van een naburige sensor. Dit
motiveerde ons om VoI met een niet-additieve karakter te beschouwen, dat bekend
staat als de “age of information” of de leeftijd van de informatie. Om de prestaties
van een dergelijk netwerk te onderzoeken, ontwikkelen we een stochastisch mo-
del dat steunt op het kader van de Markov-beslissingsprocessen (Markov decision
processes, MDPs). In tegenstelling tot de modellen in de vorige paragraaf, laat dit
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raamwerk niet alleen toe om de prestaties van sensoren te bepalen, maar kan het
ook de optimale controle vinden zodat mogelijks verschillende ontwerpdoelstel-
lingen met elkaar kunnen verzoend worden. Men kan bijvoorbeeld streven naar
het minimaliseren van het energieverbruik of het maximaliseren van de waargeno-
men informatie. In het bijzonder richten we ons op het bepalen van de optimale
transmissiecontrole zodat de maximale VoI een (mobiele) centrale knoop bereikt.
Bovendien maken we gebruik van de quasi-birth-death-structuur van het probleem
en gebruiken we het policy-iteratie algoritme om de optimale controle te bepalen.
De oplossing laat zien dat de beslissing om te zenden enkel afhangt van een VoI-
drempelwaarde, zodat de controle in de praktijk zeer eenvoudig te implementeren
is.

In tegenstelling tot de modellen voor een geïsoleerde knoop in het eerste deel,
breiden we het controleraamwerk uit naar grootschalige draadloze sensornetwer-
ken in het tweede deel. We bestuderen netwerken waarbij een groot aantal sen-
soren met elkaar interageren om de informatie door te geven aan een bepaalde
eindknoop, mogelijks in meerdere stappen. De interactie tussen sensoren heeft
meerdere voordelen, zoals een lager energieverbruik, het afdekken van een groter
gebied en een verbeterde connectiviteit met de eindknoop. Vanuit wiskundig oog-
punt zijn stochastische modellen voor dergelijke netwerken een uitdaging en vaak
te complex om exact op te lossen. Hoewel het mogelijk is om een Markov-proces
formeel te introduceren voor het volledige netwerk, is het numeriek evalueren van
het Markov-proces (d.w.z. het oplossen van de zogenaamde balansvergelijkin-
gen) rekenkundig zwaar en enkel praktisch haalbaar voor netwerken met slechts
een paar knooppunten. Deze Markoviaanse modellen hebben meestal een multidi-
mensionale toestandsruimte (één dimensie per sensor) en hebben daarom last van
wat bekend staat als het probleem van de toestand-ruimte-explosie. Schalings-
technieken, zoals vloeistoflimieten en diffusiebenaderingen, bieden een manier
om een dergelijk probleem gedeeltelijk te ondervangen. Daarom evalueren we
de prestaties van ons grootschalige WSN-model binnen het zogenaamde mean-
field-limietraamwerk. Door de waarnemings- en interactiesnelheden op de juiste
manier te schalen, kunnen we de evolutie van het WSN beschrijven aan de hand
van een set gewone differentiaalvergelijkijgen (ODE), althans wanneer het aantal
sensorknooppunten groot is. Dit is een belangrijk voordeel: in de limiet kunnen
we het stochastische controleprobleem vervangen door een deterministisch con-
troleprobleem dat aanzienlijk gemakkelijker is op te lossen. We bewijzen formeel
de convergentie van het Markoviaans netwerkmodel naar de oplossing van de set
differentiaalvergelijkingen en vinden het optimale controlebeleid in deze limiet.
In de pre-limiet kan men dan verwachten dat de gevonden controle zo goed als
optimaal is. Om deze aanpak te illustreren, onderzoeken we verder een systeem
waarbij de sensoren in drie toestanden kunnen zijn en onderzoeken we zowel the-
oretisch als numeriek de optimale transmissiecontrole. Bovendien valideren we de
mean-fieldbenadering door middel van Monte-Carlo-simulaties door de prestaties
van het willekeurige systeem te vergelijken met de mean-fieldlimiet.

In een laatste deel concentreren we ons op een specifiek type WSN, namelijk
onderwater-WSN’s (underwater WSN, UWSN). In dit deel ontwikkelen we een
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numeriek traceerbaar stochastisch model om de prestaties van het depth-based-
routeringsprotocol in UWSN’s te beoordelen, wat één van de belangrijkste rou-
teringsprotocollen is voor dergelijke netwerken. De snelheid van het akoestische
signaal in UWSNs verschilt erg van de snelheid van de signalen voor land-WSNs.
De tijd die een pakket nodig heeft om van de ene naar de andere sensor te reizen
is dan ook significant. Naast de gemiddelde bron-tot-oppervlaktetransmissietijd,
verkrijgen we ook uitdrukkingen voor andere prestatiematen zoals de distributie
van het aantal hops en het gemiddelde energieverbruik. We valideren ons stochas-
tische model door de berekende prestatiematen te vergelijken met schattingen die
zijn verkregen door stochastische simulatie. We vergelijken ook nog de computati-
onele complexiteit van het model en de simulatie en tonen aan dat het stochastische
model de prestatie veel sneller kan inschatten.



Summary

Our physical environment exhibits many diverse types of spatially distributed in-
formation. This information can be anything like temperature, humidity, pressure,
vibration, sound, etc. Wireless sensor networks (WSNs) are developed to collect
this information from the physical world and provide it to the digital world for
further processing. WSNs can support various practical applications, like the pro-
tection of civil infrastructures, habitat monitoring, precision agriculture, toxic gas
detection and remote health monitoring. A typical WSN is formed by a collection
of tiny sensor nodes, equipped with transceivers and distributed over some area of
interest that collect data from their environment. In particular, each sensor node is
equipped with on-board memory and a small battery. The on-board memory stores
the information that is sensed from the environment and all the power required for
sensing, processing and relaying this information is drawn from the battery. As
sensor nodes are typically spatially deployed, it is expensive if not impossible to
replace batteries once the nodes are deployed. As a consequence, the battery ca-
pacity limits the lifetime of the sensor node as the sensor node fails once it is out
of energy. In some cases, the communication is optimised with respect to energy
consumption, whereas many other applications rely on energy harvesting sensors
which extract the energy from ambient sources such as solar, wind or heat. Both
scenarios with and without energy harvesting impose additional constraints and
formidable challenges in the design and modelling of wireless sensor networks.
For example, external conditions from which the harvesting circuitry draws its en-
ergy fluctuate over time, so the amount of energy that can be harvested fluctuates
as well. Such time-varying behaviour can greatly affect the performance of the
network and thus extra care is needed while designing such networks.

In this dissertation, we investigate the performance of a wireless sensor net-
work through a number of stochastic models. These models capture the key un-
certainties that determine the dynamics of the WSN, like energy harvesting and
consumption, and data transmissions. The main goal of the network is to gather as
much information as possible while keeping the energy expenditure at a minimum.
In general, a significant amount of energy is consumed to perform various WSN
operations such as sensing, processing and transmitting. However, the amount of
energy consumption is not the same for each operation. For example, transmis-
sions require considerably more energy than sensing and processing. Moreover,
for an optimally designed WSN, transmission decisions can be influenced by dif-
ferent attributes of the information like the quality or the value of information. The
quality of information (QoI) accounts for accuracy, consistency, completeness, and
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timeliness of the information whereas the value of information (VoI) describes the
importance of the information. Each time a node senses, it gathers information that
may or may not be important. We model the evolution of the VoI by two different
processes and investigate the impact of their nature on the overall performance of
the network.

In the first part, we propose stochastic models for a sensor node in isolation that
assess the interaction between data collection, energy harvesting and energy ex-
penditure. Depending on the particular nature of the value of information process,
we propose different models. Initially, we assume that the value of information is
additive and propose a stationary ergodic but not necessarily Markovian model to
evaluate the performance of a sensor node. The basic framework allows us to write
the battery level and VoI in terms of a set of recursions, which define a stationary
ergodic sequence. We take advantage of the linearity of the equations to analyse
the long term behaviour of the different network processes. We prove the existence
of a stationary ergodic process consisting of battery levels and VoI. The ergodic-
ity further allows us to derive the long-term average performance of the system
in terms of the model parameters. Performance measures include the stationary
distribution of the battery levels and the mean value of information collected by
a mobile sink at a particular battery level. We also calculate the second moment
to investigate the spread of the value of information from its average value. An-
other extension of the basic model is inspired by the correlated behaviour of the
harvesting process. We capture the time correlation by modelling the energy har-
vesting process by a Markov modulated process and show that time correlation has
a significant impact on the overall performance of the sensor node.

In some applications, information is valued on the basis of its freshness. In
such cases, information is not additive, but replaced if the node receives updated
information either from the environment or from a neighbouring node. This mo-
tivates us to consider the non-additive nature of the VoI, which is widely known
as the age of information. To investigate the performance of such a network, we
develop a stochastic model within the framework of Markov decision processes.
Unlike the previous models, this framework not only calculates the performance
of a static control policy of the sensor node, but also allows for finding the optimal
control policy that balances possibly different design objectives. For example, one
may aim at minimising the energy consumption or at maximising the sensed infor-
mation. In particular, we focus on obtaining the optimal transmission policy that
achieves the maximum collection of VoI at a mobile sink. Furthermore, we exploit
the quasi-birth-death structure of the problem and use the policy iteration algo-
rithm to obtain the optimal control. The solution reveals that the optimal policy is
a threshold policy that is very easy to implement in practice.

While the first part assesses performance of sensor nodes, we extend the con-
trol framework to large-scale wireless sensor networks in the second part. In this
part we focus on networks where a large number of sensor nodes interact with
each other to pass on the information to a dedicated sink in multiple hops. The in-
teraction among nodes has multiple benefits such as reduced energy expenditure,
coverage of a larger area and improved connectivity to the sink. From a math-
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ematical point of view, stochastic models for such networks are challenging and
often too complex to allow for obtaining an exact solution. While it is possible to
formally introduce the Markov process that models the complete network, assess-
ing the Markov process numerically (i.e., solving the so-called balance equations)
is computationally expensive, and only practically feasible for networks with but
a few nodes. These Markovian models typically have a multidimensional state
space (one dimension per node) and therefore suffer from what is known as the
state-space-explosion problem. Scaling techniques like fluid limits and mean-field
approximations offer a way to partially overcome the state-space-explosion prob-
lem. Therefore, we evaluate the performance of our large scale WSN model within
the framework of mean-field limits. By properly scaling the sensing and interac-
tion rates, we find that the evolution of the WSN model can be described by a
set of ordinary differential (ODE) equations when the number of sensor nodes is
large. This is a key advantage: in the limit the stochastic control problem reduces
to a deterministic control problem that is considerably easier to solve. We formally
prove the convergence of the network model to the solution of the ODE and find
the optimal control policy in this limit. We then also obtain a good approximation
of the optimal control policy in the pre-limit. To illustrate the approach, we further
investigate a system where the sensor nodes can be in three states and investigate
the optimal transmission policy theoretically as well as numerically. Moreover, we
validate the mean-field approximation through Monte-Carlo simulations by com-
paring the performance of the random system to the mean-field limit.

In a last part, we focus on a particular type of WSN, namely underwater WSNs.
In this part, we develop a numerically tractable stochastic model to assess the per-
formance of the depth-based routing protocol in UWSNs, which is one of the main
routing protocols for such networks. The major difference between terrestrial and
underwater networks lies in the speed of the signal. The speed is much lower in
underwater acoustic channels, compared to their terrestrial counterparts. Thus, the
delay for a packet to reach from one node to another node is significant. In addition
to the mean end-to-end delay, we obtain expressions for other performance metrics
like the number-of-hops distribution and the mean energy consumption. We vali-
date our stochastic model by comparing the average performance indices obtained
by our analysis with the estimates obtained by stochastic simulation. Moreover,
we compare the computational complexity of both model and simulation and it
turns out that the stochastic model is much faster than the simulations in assessing
the performance of depth-based routing.
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1
Introduction

Sensor networks gather spatially distributed information and transfer it to a cen-
tral location. These networks capture real-world phenomena and convert them
into a suitable digital form that can be processed, stored, and analysed further
on. Sensors, typically being tiny, can be integrated into numerous devices and
the information they collect can provide an essential aid to decision making. The
information gathered by sensors spans a wide range including temperature, humid-
ity, pressure, position, vibration, sound, etc. Such measurements can help to avoid
or mitigate the effects of catastrophic infrastructure failures caused by intensive
natural events like floods or earthquakes, conserve natural resources, and enhance
home and national security. Often, the collection of the information is essential for
our understanding of physio-chemical and biological processes and, in most cases,
can provide the basis for predictive modelling. For example, weather forecast-
ing largely relies on accurate measurements of the current atmospheric conditions.
Such predictions in turn can help farmers, exterior painters, tour guides, teachers
and students to plan their activities accordingly. Some other instances of wireless
sensor network applications include the detection and prediction of floods so that
timely warnings can be issued for the affected areas, health and safety monitoring
activities, fire detection in forests, etc. In all these cases, the availability of infor-
mation is key for making informed decisions and it is of utmost importance that the
available information is error-free and up-to-date as much as possible. Moreover,
the information is spatially distributed, making it necessary to collect information
from multiple sources.

To facilitate the collection and transfer of information over large distances,
many network applications require hundreds or even thousands of sensor nodes.
These nodes then make up the sensor network, the nodes being connected to each
other by mostly wireless transmission channels. The nodes use these channels to
transfer the information towards a particular destination node for further process-
ing. In general, not all sensor nodes have a direct channel to the final destination
node. If the sensor network covers a considerable area, directly connecting to a
central node would require a powerful transmitter which would drain the sensor
node’s battery quickly. Instead, the information that is collected by the nodes is
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relayed by other nodes to the final destination. In other words, a long distance
transmission is replaced by a number of short distance transmissions.

These sensor nodes are usually battery-operated devices. Their lifetime after
deployment is heavily dependent on the capacity of the small on-board battery.
In general, it is not possible to replace or recharge this battery due to terrestrial
challenges. Many research works have been devoted to extending the lifetime of
the network. Some researchers use efficient energy-saving mechanisms or power
optimisation tools such as duty cycling while others use energy harvesting nodes
to extract the necessary energy from ambient energy sources available to the sen-
sor node. Each approach comes with advantages and limitations. For example, the
use of harvesting techniques can mitigate the dependency on the batteries but the
uncertain nature of the energy source can affect the performance of the network
significantly. Similarly, the other processes such as sensing the information or
availability of the sink to transmit the data are also not deterministic and appropri-
ate techniques are needed to model these phenomena to understand the overall sys-
tem’s behaviour with respect to its parameters. In this dissertation, we investigate
the performance of a wireless sensor network through several stochastic models.
These models capture the behaviour of different environmental processes and sup-
port optimising the transmission strategies of the sensor nodes. These strategies
can vary according to the need of applications. Moreover, the detailed investiga-
tion of these models allow us to provide strong insights on network design. We use
different modelling and performance evaluation techniques, such as queueing net-
works, Markov models, the asymptotic analysis of networks through mean-field
limits, and numerical simulations. These methodologies help us answer questions
about either the transient or steady-state behaviour of the network. A detailed
discussion on stochastic modelling is presented later in this chapter in subsection
1.2.

The remainder of this introductory chapter is organised as follows. In the next
section we discuss sensor networks in more detail, including some key characteris-
tics for modelling such networks. Section 1.2 then briefly introduces the key tools
from probability theory that will be used throughout the dissertation. Finally, 1.3
outlines the main contributions of the following chapters.

1.1 Wireless sensor networks
A wireless sensor network (WSN) is a group of spatially dispersed, dedicated in-
terconnected sensors for monitoring and recording the physical conditions of the
environment. A WSN can be comprised of only a few devices or sensor nodes
(SN), but can equally well consist of several thousands of these SNs. The SNs ex-
tract information from their environment and transmit the information wirelessly
to a centralised station (or user). WSNs mainly consist of three components: gate-
ways, relay nodes, and sensors. Gateways act as an interface between the wireless
sensor nodes and the application platform, where the collected data is processed.
Relay nodes, sometimes referred to as routers, are used to extend the coverage
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area of the sensor network. Finally, sensors can sense, measure and collect the
information from the environment. Some nodes may both act as relay and sensor
as well.

The information sensed at a sensor node is analysed and the node can then de-
cide whether to transmit the data or not. In addition to sensing, the wireless sensor
has on-board processing, communication, and storage capabilities. However, the
capabilities of the sensor nodes can vary widely depending on the particular ap-
plication. For example, some simple sensors only collect and transfer information
whereas more powerful devices can also perform extensive preprocessing, includ-
ing data compression and aggregation.

WSNs can be used in many applications that require close monitoring of the
physical world. They provide a cost-effective and energy efficient solution for
a wide range of applications including health care, utilities, remote monitoring
and diverse industrial contexts. Among the principal WSN applications, we count
surveillance (e.g., real-time highway traffic surveillance), environmental monitor-
ing to detect biological or chemical threats, and ecosystem monitoring in forests
to get information on populations of exotic plants and/or animals [1]. Moreover,
WSN technology is one of the key enabling technologies of the Internet of Things
(IoT) [2, 3]. For more details on the applications of WSNs, we refer to [4, 5].

1.1.1 Communication in a WSN
For many areas in which WSNs are applied, it is common that the sensor nodes
have to operate without the support of infrastructure or the possibility of main-
tenance and repair. In some applications such as highway traffic monitoring and
flood forecasting, sensor nodes are fixed at predetermined locations while in disas-
ter management applications such as volcano monitoring and earthquake detection,
nodes are thrown out of a plane in the area of interest. In such applications, a sen-
sor node can detect the earthquake event based on the seismic frequency spectrum.
The efficient measurement from the sensor nodes can be used to reduce the loss of
life and property. Furthermore, these measurements can also be used to establish a
more optimal search and rescue system, saving many lives. Having knowledge of
the disaster area can help in deploying resources (e.g., food trucks) for meeting the
needs of the maximum number of people. The SN must autonomously perform
a number of operations including setting up the communication with other nodes,
determining its own location and initiating its sensing and transmission activities.

The communication between nodes can be categorised mainly into two topolo-
gies as shown in Figure 1.1. When the transmission range of each sensor node is
large enough to send data directly to the sink or base station, they form a star topol-
ogy. In this case, remote nodes do not send data to each other. This means the sink
must be within the transmission range of each individual node. Therefore many
sensor nodes may require considerable transmitting power to transfer the informa-
tion in one hop to the sink. The use of a mobile sink can mitigate this problem by
moving the sink along a designated path to collect the information at each node.
While the nodes can send the information with less power, they will sometimes
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Sensor node

Mobile sink

(a) One hop Communication (Star)

Sensor node

Mobile sink

(b) Multi-hop Communication (Mesh)

Figure 1.1: Communication topologies

have to wait for a transmission opportunity as the sink may not be in range. In
many other applications, the network allows transmitting data from one node to
another node to cover a larger area. This allows for what is known as multi-hop
communication forming a mesh topology. Here, sensor nodes not only capture the
data from the environment but also serve as relays for other nodes. They collab-
orate to propagate the sensor data towards the sink. The main advantages of this
topology are redundancy and scalability. If some node fails to communicate with
neighbouring nodes, the other nodes are still able to forward the message to the de-
sired location through an alternate path. Although a mesh topology can achieve a
considerable reduction in energy expenditure, it also requires efficiently designed
routing protocols.

1.1.2 Key Processes

A sensor node is the main component of a WSN through which sensing, processing
and communication take place. It is a small electronic device, equipped with a
small battery and on-board memory. The primary objective of the sensor node is
to gather as much information as possible while keeping the energy expenditure at
a minimum. The main power source for sensor nodes is a small on-board battery
that limits the lifetime of sensors. Since they are often installed in hostile terrain, it
is very expensive and difficult, if not impossible, to replace or recharge the battery
due to environmental and terrestrial challenges. To increase the lifetime, one can
opt to increase the battery size, but this incurs an additional cost and increases the
weight and size of the SN that makes this solution less attractive [6]. To overcome
this problem, one can either efficiently manage energy consumption or harvest the
energy from the environment. Each approach has its advantages and limitations.

To study the operation of a sensor node over time, we identify three important
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processes: the consumption of energy, the harvesting of energy and the sensing of
information that are explained in detail below.

Energy consumption

The energy consumption in a sensor node is mostly due to SN operations like
sensing, computing, switching and transmitting. In the conventional view, the en-
ergy consumption is mostly dominated by radio communications. Moreover, the
amount of energy consumed for data transmission normally depends on the vol-
ume of data to be transmitted in the network and the duration the sensor node has
the opportunity to transmit. In most cases, the energy cost is due to computing
is insignificant compared to the energy cost associated with communication. For
example, Pottie et al. [7] mention that the energy required to transmit one bit of
information is approximately equal to that needed to perform a thousand processor
operations. Therefore, data compression can be used to minimise energy consump-
tion and extend the overall lifetime of the network, see e.g. [8] where the authors
investigate optimal algorithms for the compression of sensed data, communication
and sensing in WSNs.

An alternative approach focuses on optimising the energy expenditure of the
SN. If less energy is used over time, the SN remains operative for a longer time
with the same initial energy budget [9,10]. In particular, controlling the communi-
cation subsystem of the SN can be very useful to reduce energy consumption [11].
The control can be based on computing the redundancy of nodes in the WSN [12]
or include duty cycling [13]. For example, as there is still significant energy con-
sumption when the sensor node is idle, switching off the sensor node can save the
battery and therefore extend the lifetime of the SN. In such strategies, the sensor
node periodically wakes up to transmit the data and then sleeps by powering off to
conserve the energy. WSN technology must efficiently manage the frequency of
ON and OFF times of the node. In addition to the energy requirement, WSNs also
need to have efficient routing protocols for relaying the information from source
to sink.

Energy harvesting

Even though energy consumption is optimised, the lifetime of a SN is still deter-
mined by the limited energy budget on deployment. To overcome this dependency,
one promising solution is to use sensor nodes that scavenge the necessary energy
from the environment, see [14]. Such sensor nodes are referred to as energy har-
vesting sensor nodes (EH-SN). The provisioning of harvesting capability (e.g. so-
lar, wind or heat harvesting) and a rechargeable battery removes the fixed upper
limit on the energy budget. An EH-SN can constantly recharge during its lifetime.
However, energy management is still required to balance energy harvesting and
energy expenditure.

In general, the behaviour of the energy harvesting source is dynamic in nature.
It can affect the amount and rate of energy being harvested over time. For exam-
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ple, solar or wind based harvesting sources are predictable but non-controllable in
nature. In such cases, one can forecast the availability of the source, but a care-
ful mechanism is needed to decide how to spend the available energy and how
much to store for future operations. There are considerable research efforts in the
area of predictive models for energy harvesting and we refer to a comprehensive
review [15] for further reference.

Value of information

Sensor networks are built and deployed mainly for the purpose of providing par-
ticular information to their users. This information may, for example, pertain to
the temperature distribution in a building whose environmental conditions need to
be controlled; the vital signs and location of a patient whose health needs to be re-
motely monitored; the stress levels of a bridge whose structural health needs to be
monitored; or the position, capabilities, and intentions of enemy troops, insurgents,
etc., so that adequate military and/or civilian preparations can be made. There are
two important aspects related to the information: the quality of the information
(QoI) and the value of information (VoI). The QoI takes into account the quality
attributes, such as accuracy, consistency, completeness, and timeliness of the infor-
mation [16, 17, 18] whereas the VoI tells us how well the values of these attributes
reflect and accommodate the information needs of applications that consume it.

The information gathered by the nodes can be comprised of a predefined set of
attributes, which take up the same amount of bytes. However, the quantity of the
data not necessarily reflects its importance. For example, information on a fire in
a forest or on an intruder in a military area carries more importance than regular
weather updates. Similar differences in importance can be attributed in landslide
detection, agricultural area monitoring as well as structural monitoring and control
[19, 20, 21, 22]. In environmental monitoring, we can associate the VoI to the
age of information. It acts as the measure for the freshness of the information.
The sensor node updates the information if its age is less than that of the current
information. Thus, outdated information is dropped from the network as it is of
less or no importance to the user. Throughout this dissertation, we make use of
the VoI concept and keep track of the value of information that is stored in the
sensor node. As we will see later, the value of information significantly impacts
the transmission decision and the performance of the network.

1.1.3 Uncertainties in these processes
Due to the recent advancements in sensor technology and wireless networking,
mobile devices are revolutionising the way that information from the physical
world is collected and used. However, some constraints like varying and hostile
environments, ever-changing network topologies, untrustworthy communications,
etc. point to what is known as uncertainty in the operation of networks. The
presence of uncertainty can have a devastating impact on standard protocols, and
disturb implicit structural assumptions. Moreover, they propagate throughout the
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network and eventually lead to overall performance degradation. Therefore, uncer-
tainty should be properly identified and accounted for with priority in the design
of sensor networks. Below, we list a number of important sources of uncertainty
in WSNs.

Sensing uncertainty

The sensing of data from the environment depends on the coverage area of the
sensor node, which is an essential determinant of the sensing quality of a WSN.
From a stochastic point of view, uncertainty in the sensing process can occur due
to the interference caused by node mobility or environmental interference such as
noise. Quantifying sensing uncertainty (e.g., uncertainty in sensor range) can help
to facilitate effective sensor (re-)deployment strategies for mobile as well as static
sensor networks. Some recent studies [23, 24] suggest to use probabilistic models
to capture sensor behaviour since the phenomena being sensed, the sensor design,
and the environmental conditions are all stochastic in nature. For instance, noise
and interference in the environment can be modelled by stochastic processes.

Energy harvesting uncertainty

The most common problem in WSN is known as the node death which follows
from energy depletion either caused by battery discharge or due to short circuits.
Low batteries not only lead to fail-stop behaviour of a node but also causes the node
to show random behaviour (e.g., wrong sensor readings [25]). As discussed earlier,
energy harvesting provides a promising solution to avoid the node death problem.
However, external conditions from which the harvesting circuitry draws its energy
fluctuate over time, so that the amount of energy that can be harvested fluctuates
as well. Specifically, harvesting circuitry can be highly sensitive to uncertainties,
arising from the imprecise characterisation of the host environment or, alterna-
tively, from manufacturing defects and tolerances. From a performance evaluation
point of view, the harvesting process is an additional source of uncertainty that
can greatly affect performance. Hence, accurate models of WSNs should take into
account the random nature of the harvesting process. Moreover, there is a need for
efficient power management in energy-harvesting wireless sensor networks (EH-
WSN) due to the heavy dependence of the harvesting process on environmental
factors.

Communication uncertainty

Wireless links are most often susceptible to transmission loss due to node mobil-
ity, dynamic obstacles, fading, limited energy resources, and spectrum allocation
regulations. Sensor node mobility or a dynamic WSN environment result in in-
termittent connectivity. For instance, in WSNs with a mobile sink, the sink may
not always be in range and thus the data transmissions have to be postponed till
the sink comes in range. In some other cases, environmental interference or data
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collision when two nodes want to send the data at the same time through the same
link leads to transmission loss. Quantifying the communication uncertainty (e.g.,
the availability, quality and connection patterns of communication links) can sup-
port network algorithms for better routing decisions. Many network communica-
tion protocols and applications are built upon global static knowledge of network
connectivity derived from collected traces [26]. Here, capturing the dynamically
evolving relationship between nodes and the intermittent connectivity among sen-
sor nodes is an important challenge.

1.1.4 Modelling perspective
As discussed earlier, the dynamics of WSNs are usually influenced by several dy-
namic environmental processes. These processes are often (i) very complex and
(ii) highly unpredictable. It therefore does not suffice to describe these processes
by some deterministic functions of time. Indeed, when the sensor nodes have to
act upon their environment, they can at most make some predictions on the fu-
ture dynamics of the environment based on past observations. That is, they know
some statistics of the future evolution but not the exact evolution. As slight devi-
ations from a prescribed evolution can have a profound impact on performance, it
often does not suffice to replace the uncertain evolution by the predicted average
evolution. In other words, as having perfect foreknowledge about every process
is impossible to obtain, uncertainty should be accounted for and these processes
should be modelled as stochastic processes in order to understand the dynamics of
the system.

Stochastic models offer an accurate portrayal of real-world processes that can
account for the different types of uncertainties as listed above. In particular, they
can be used to predict how systems will behave under specified stochastic con-
ditions. These predictions further provide powerful insights into the design of
the systems under study. Stochastic modelling is used to cast the observed phe-
nomenon from the dynamic environment into a probabilistic description such that
tools from probability theory can be used to investigate the dynamics of the sys-
tem. Most often, the systems are far too complicated to model in their entirety.
Hence, the stochastic model only gives us a simplified view of the real system that
can be tackled by the above mentioned probabilistic tools.

It is, however, important to note that modelling is as much an art as it is a sci-
ence. Specifically, it is of utmost importance to include the right level of detail.
On the one hand, adding details can make models more realistic and enable us to
make useful predictions with high accuracy, while on the other hand, too many
details make the model highly complex and difficult to solve as small changes in
the structure of the equations may require enormous changes in the mathematical
methods. Thus, we first have to identify the most important parts of the system
and then find an appropriate mathematical technique to solve the model. In other
words, we need to focus on reducing the complexities of real systems, isolating
the important components, and then develop models that characterise the impact
of the design decisions. In many research works, the model accuracy can be veri-
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fied by conducting experiments to compare model predictions with what actually
happens in practice. However, in some situations, experimentation is impossible
due to ethical or financial reasons. In these circumstances, the model can only be
tested less formally, for example by seeking an expert opinion or through com-
puter simulations. We also make use of stochastic simulations to verify some of
our models in this dissertation.

In a broader sense, the stochastic models can also provide answers to some
additional questions. For example, what is the probability that the node runs out
of energy, or how fast does the mobile sink have to travel in order to collect max-
imum information. Considering the dynamic nature of the WSN environment, we
provide the appropriate framework to describe each process and evaluate the per-
formance of the network using a wide range of mathematical techniques. These
techniques can range from recursive difference equations and simple matrix oper-
ations to the complex asymptotic analysis of large scale systems.

1.2 Stochastic modelling
Wireless sensor networks are continuously evolving in terms of technology, imple-
mentation and deployment. As a result, they have become increasingly complex,
with many interacting effects from the viewpoint of the system architecture and
the application management. This trend is likely to persist in the future and thus,
performance evaluation is playing a crucial role in network design to ensure a suc-
cessful deployment and operation. It allows researchers to understand the impact
of the network parameters on the system’s performance in a rigorous way. More-
over, the stochastic modelling effort allows for directly expressing the behaviour
of the system and its performance metrics in terms of the system’s parameters.
This in terms is the key for studying various trade-offs in the system’s design, or
for finding the set of parameters that ensures some target performance objective.

In this dissertation, we discuss different modelling and performance evaluation
techniques, such as queueing networks, Markov models, the asymptotic analysis of
networks through appropriate scalings, and numerical simulations. These method-
ologies have been applied to various problems and scenarios of data-aware WSNs
and allow for investigating the effects of the different environmental factors on data
collection, for obtaining the optimal sink trajectory, for improving power-saving
and throughput, etc.

We study wireless sensor networks with a specific focus on the value of in-
formation and the energy harvesting dynamics. The stochastic models help us
to capture the dynamics of harvesting and data collection accurately. For exam-
ple, the detailed analyses of the models can answer questions such as how the
restriction on battery capacity impacts the performance of the network. One can
naturally assume that battery capacity should yield better performance, but, as we
will see later, the performance evaluation shows that the gain of increasing the bat-
tery capacity quickly disappears due to the complex interaction between different
network processes.
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The remainder of this section introduces the main mathematical tools that are
used throughout this dissertation. We mainly focus on the evaluation of the perfor-
mance of the sensor network by means of Markov processes. We can only provide
a basic introduction to the mathematical techniques to frame the remaining chap-
ters. The application of these techniques for particular WSN scenarios of interest
most often requires one to overcome one or several particular technical difficulties.
These are discussed in the subsequent chapters whenever they appear. We start
with discrete-time countable Markov chains and their control and subsequently
turn our attention to continuous-time Markov chains and their deterministic ap-
proximations.

1.2.1 Markov chains
For many applications in communication systems, Markov chains with a discrete
state space serve as a popular probabilistic model for network processes and algo-
rithms. For instance, random processes like energy harvesting or data arrivals at a
sensor node can be well characterised by Markov chains.

In general, a discrete-time stochastic process is a family (a sequence) of ran-
dom variables {Xk,k ∈ Z+} defined on a common probability space (Ω,F ,P).
Here Ω is the set of outcomes of the probabilistic experiment, F is a σ -algebra1

of subsets (events) of Ω, and P is a probability measure defined on F . The random
variables Xk : Ω→ S take values in some space S, which in our case will be finite
or countable.

For a process with a countable state space, the process is characterised by the
family of finite-dimensional probability mass functions,

P(Xk = ik,Xk−1 = ik−1, . . .X0 = i0,), i0, . . . ik ∈ S, k ≥ 0.

In the simplest case, the random variables are independent and the joint probabil-
ity above can be expressed as a simple product of probabilities. In many practical
situations however, these processes are most interesting when the random vari-
ables are not independent, i.e., when there is some dependence structure between
them. An elementary, but highly useful stochastic process that is important in the
remainder is the discrete-time Markov chain (DTMC) with countable state space.
It is defined as follows.

Definition 1.1. A stochastic process X = {Xk : k≥ 0} on a countable set S is called
a (time-homogeneous) discrete-time Markov chain if, for any i, j ∈ S and k ≥ 0,

P(Xk+1 = j|Xk = ik, . . . ,X0 = i0) = P(Xk+1 = j|Xk = ik)
.
= pi j . (1.1)

Here, pi j is the probability that the Markov chain jumps from state i to state j and
the set S is referred to as the state space of the Markov chain.

1a σ -algebra on a set A is a collection of subsets of A that includes A itself, and is closed under
complements and countable unions.
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The property 1.1 means that the DTMC is memoryless. That is, the probability
of future outcomes does not depend on the steps that led up to the present state.
This property is commonly known as the Markov property. The theory of Markov
chains is precisely important as many processes in real life satisfy the Markov
property. Even if the process of interest itself is not a Markov process, it is often
possible to extend the states so that the extended process is Markovian. Note
that the last term in (1.1) says that the process is time-homogeneous meaning the
transition probabilities are independent of k. More precisely,

P(Xk+1 = j|Xk = i) = P(X1 = j|X0 = i) = pi j. (1.2)

If the transition probability did depend on the time index, then the Markov chain
is called non-time-homogeneous, which we will not be addressing throughout this
dissertation. To this point, let us define the matrix P with elements pi j (i, j ∈
S) that describes the evolution of the system. The matrix P is called transition
probability matrix and satisfies,

∑
j∈S

pi j = 1 ∀i , (1.3)

as each row is a probability mass function, and therefore satisfies the normalisation
condition.

Simulation of Markov chains

While our main focus lies on solving the Markov processes either analytically or
numerically, we sometimes need to make simplifying assumptions, as the exact
solution may either be analytically or numerically intractable. To evaluate the
effect of such simplifications, we can compare with simulation results.

We here briefly summarise how trajectories of Markov chains with a given tran-
sition matrix can be constructed by evaluating a stochastic recursion. Vice versa,
we also show how the transition matrix of the Markov chain can be constructed for
a given stochastic recursion.

Let {Xk : k ≥ 0} be an S-valued Markov chain, where S is countable and or-
dered. Then for fixed i ∈ S, {pi j, j ∈ S} is a probability mass function. Therefore,
let f (x,y) be the function,

f (x,y) = ∑
j∈S

j1{∑ j<x px j<y≤∑ j≤x px j}

for x ∈ S and y ∈ [0,1]. Here 1{·} is the indicator function which evaluates to one
if its argument is true and to zero if this is not the case. Now, one can generate a
trajectory of the Markov chain by the stochastic recursion,

Xk = f (Xk−1,Uk) ,

where Uk is a sequence of independent random variables, uniformly distributed on
[0,1]. Indeed, it is easy to check that f (i,U) is an S-valued random variable with
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probability mass function {pi j, j ∈ S}, see [27] for more details. While this ex-
pression holds for any Markov chain with countable state space, in most practical
cases, there exist simpler and more intuitive recursions, which express the evolu-
tion of the Markovian state in terms of the input processes that drive these state
changes.

Consider now an S-valued stochastic process {Xk : k ≥ 0}, where S is a count-
able set and assume the random variables Xk are related by the stochastic recursive
equation,

Xk = f (Xk−1,Zk), k ≥ 1 . (1.4)

Here f : S× S′ → S is an arbitrary measurable function and Z1,Z2, . . .Zk is a se-
quence of independent and identically distributed random variables with values in
some general space S′. Now, if X0 is independent of Z1,Z2, . . . , Zk, then Xk is a
Markov chain.

It is indeed easy to verify this from definition of Markov chain. Recall that, for
any i, j ∈ S and k > 0, we have

P(Xk = j|Xk−1 = i, . . . ,X0) = P( f (Xk−1,Zk) = j|Xk−1 = i, . . . ,X0)

= P( f (i,Zk) = j|Xk−1 = i, . . . ,X0)

= P( f (i,Zk) = j) ,

where the last equality is due to the fact that the random variables X0, . . . ,Xk−1
are functions of Z1, . . . ,Zk−1 only. In other words, f (i,Zk) is independent of
X0, . . . ,Xk−1. We can conclude that the stochastic process given by (1.4) is a
Markov chain with transition probabilities pi j = P( f (i,Zk) = j).

Remark 1.1. The recursive characterisation of Markov chains can also illustrate
how a process can be fit into a Markovian framework by extending the state space
of the Markov chain. For example, consider two functions f and g such that,

Xk = f (Xk−1,Yk−1), and Yk = g(Yk−1,Zk), k ≥ 1.

Then the process {Xk,k ≥ 0} does not constitute a Markov chain as the random
variables Yk are not independent and identically distributed. However, the pro-
cess {(Xk,Yk),k ≥ 0} is a Markov chain, as (Xk,Yk) can be expressed in terms of
(Xk−1,Yk−1) and Zk, the latter being an independent random variable.

Classification of states and ergodicity

When we refer to having solved a Markov chain, we most often mean that we
have found the stationary distribution of the Markov chain. The existence of a
unique stationary distribution of a Markov chain can be expressed in terms of the
probabilities that the process returns to the different states, as well as on the mean
time to return to the same state. We here briefly discuss how the states can be
classified, and what this means for the existence of a stationary distribution of the
Markov chain.
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Two states of a Markov chain communicate if one can have a transition from
one state to the other (and back) with positive probability in a finite number of
steps. Let

p(n)i j = P(Xn = j|X0 = i)

denote the n-step transition probability from state i to state j. Note that p(n)i j is
the (i, j)th element of the matrix Pn. Then, states i and j communicate if m > 0
and n > 0 so that p(n)i j > 0 and p(n)ji > 0. Communication partitions the state space
of the Markov chain into communicating classes, the most important case being
Markov chains that have a single communicating class. These Markov chains are
said to be irreducible.

A state i is said to have period di, if di is the greatest common divisor of all n
that satisfy p(n)i,i > 0. In general, we are not so interested in periodic behaviour and
it is beneficial to notice that if pi,i > 0 for all states i, then the Markov chain is guar-
anteed to be non-periodic. Moreover, one easily verifies that two communicating
states have the same period.

A state i is said to be recurrent if the chain returns to this state i with probability
1, while state i is said to be transient if this is not the case. For recurrent states, if
the expected time until the process returns to the recurrent state i is finite, then state
i is said to be positive recurrent, if this is not the case the state is null recurrent. As
for periodicity, if a positive recurrent (null recurrent, transient) communicates with
another state, then the other state is positive recurrent (null recurrent, transient) as
well.

We are often interested in the behaviour of {Xk : k ≥ 0} over long time peri-
ods. In applied mathematics, infinitely long periods offer a good approximation
for long periods, and ergodic theory offers a mathematical means to study the
long-term average behaviour of complex systems. In particular, if we have only
one sample function of a stochastic process instead of the entire ensemble, ergod-
icity allows us to derive all statistical information from that one sample function.
More precisely, the process is ergodic if its time averages equal its ensemble aver-
ages. For Markov chains, ergodicity means that the Markov chain is irreducible,
aperiodic and positive recurrent.

The long-run or limiting behaviour of a Markov chain is characterised by its
stationary distribution, which is defined as follows.

Definition 1.2. A probability measure π on S is a stationary distribution for the
Markov chain Xn if

π j = ∑
i

πi p(n)i j j ∈ S.

This equation reads π = πP in matrix notation, where π = (πi : i ∈ S) is a row
vector. Moreover, if we start with a stationary distribution i.e., X0 ∼ π , then the
distribution of all future states remains the same, Xn ∼ π for all n≥ 0.

For ergodic Markov chains (or more general, for Markov chains that have at
most one ergodic class), the existence and uniqueness of a stationary distribution
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is guaranteed. If there is more than one positive recurrent class, then there are in-
finitely many stationary distributions, since all convex combinations of stationary
vectors are stationary as well.

We can also study the limiting distribution of a Markov chain, the limiting dis-
tribution being πi = limn→∞P(Xn = i) for i ∈ S. For an ergodic Markov chain, the
limiting distribution coincides with the stationary distribution and is independent
of the initial distribution P(X0 = i), i ∈ S. This is stated in detail in the following
theorem from Ross [28] about the existence of the limit of the n-step transition
probabilities.

Theorem 1.1. For an irreducible, ergodic Markov chain, limn→∞ p(n)i j exists and
is independent of i. Furthermore, letting

π j = lim
n→∞

p(n)i j , j ≥ 0.

then π j is the unique non-negative solution of

π j = ∑
i

πi pi j j ≥ 0,

with,
∑

i
πi = 1.

In other words, it also tells us that the limiting probability of the process being
in state j at time n is equal to the fraction of the total time that the process will
be in state j. The proof of the theorem is out of the scope for this dissertation
and we refer interested readers to [28]. In the remainder of the dissertation, we
will assume that all DTMCs, whenever mentioned, are ergodic, and irreducible
and refer to limiting or stationary distribution π as the equilibrium distribution. In
matrix form, it is compactly written with π taken as a row vector, with 1 a column
vector of 1′s, and with I the identity matrix,

πP = π, and π1 = 1 , (1.5)

or equivalently as,
π(P+11T −I) = 1T .

1.2.2 Markov Decision Processes
WSNs are driven by random events, the sensor nodes need to act upon events under
uncertainty. For example, a sensor node may choose not to transmit the data even
if it has opportunity to transmit. Sensor nodes in WSN are generally resource-
limited devices and static decisions like “always transmit” may lead to inefficient
energy usage. The optimal decision not only depends on the value of the data it
holds but also on the amount of energy as a transmission takes considerable en-
ergy. The decision to transmit now may impact the possibility to transmit later,
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and therefore the node needs to assess whether or not it is best to wait till there is
a higher value of information at the node. Similarly, the channel conditions can
be accounted for. If the channel conditions are bad, considerably more energy is
required to guarantee that the data can be transmitted correctly (or at least with a
high probability). Hence, dynamically optimising the network operations to fit the
physical channel conditions may result in significantly improved resource utilisa-
tion and overall performance.

Formally, in such scenarios, the sensor nodes need to adopt a certain policy,
which leads to optimal performance over time in terms of a number of prede-
fined design goals. As we model sensor nodes by means of Markov chains, the
framework of Markov decision processes (MDP) can be used to study the optimal
control of sensor nodes. MDPs entail that the system description possesses the
Markov property, and add a set of possible actions to each state. Solving the MDP
problem corresponds to finding the best action for each state. The MDP model
allows for a balanced design of different objectives like, for example, minimising
the energy consumption and maximising the data collection.

At this point, we formally define the MDP framework and its solution method.
Assume that we have an ordinary Markov chain with state space S. At each time-
step k, this process makes the decision to move according to some transition prob-
ability distribution as described in the previous section. Now the difference here is
that we introduce a set of actions to be taken before this transition happens at each
time-step with a probability distribution for each possible action. Thus, instead
of having a process that makes the transition by itself, we now have a decision-
making agent moving through the process. After action Ak = a has been chosen by
the agent in state Xk = sk at time k, the process moves to a new state Xk+1 = sk+1
according to some probability distribution P(Xk+1 = sk+1|Xk = sk,Ak = ak), for
which the Markov property hold, i.e.,

pk(sk+1|sk,a) = P(Xk+1 = sk+1|Xk = sk,Ak = ak, . . . ,X0 = s0,A0 = a0)

= P(Sk+1 = sk+1|Sk = sk,Ak = ak) .

The actions define the transition distributions, but no criterion is yet introduced
for indicating the award that is given to take a certain action in a state. Therefore,
we introduce the reward function rk(s,a) for taking action a in state s at time k.
We will always assume that rk(s,a) is bounded. This is the immediate reward at
time k. As the action determines the transition and therefore also future rewards,
one needs to account for both the immediate and future rewards. Depending on
the length of the future (horizon) for the problem, there are two main types of
MDPs — finite horizon and infinite horizon problems. We particularly consider
the second type of problems where we do not have a fixed predetermined number
of time steps, these can vary and in principle could be infinite. This type of MDPs
are often useful in the applications where the total operation time of the system is
unknown.
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Value function and policy evaluation

Each subset of actions through the states from starting state to terminal state forms
a policy, denoted by µ = (µ1, µ2, . . . ,µk) for k ≤ ∞, where µk : S→ A specifies
the set of decision rules to be used at time steps k. I.e., µk associates an action with
each possible state for time step k. Moreover, a policy is called stationary if the
action only depends on the state but not on time, µk = µ̄ for all k. These policies
are fundamental to the theory of infinite horizon Markov decision processes. Now,
the problem for the agent comes down to finding a path that maximises the rewards
received while following this policy. The agent aims to find a policy that is better
or equally good, with respect to some given objective, than all the other feasible
policies. Such a policy is called the optimal policy and denoted by µ∗. Note that
the policy fully defines the behaviour of an agent and depends only on the current
state (not the history).

In infinite horizon MDPs, each policy µ induces a bivariate discrete-time re-
ward process, {(Xk,Rk);k = 1,2, . . .}, where Xk represents the state of the system
at time k and Rk represents the reward at time k, i.e., Rk = rk(Xk,Ak) with Ak the
action taken at time k. The expected total discounted reward of policy µ is then
defined as,

vµ(s) = lim
N→∞

vN
µ (s) = lim

N→∞
Eµ

s

[
N

∑
k=1

α
k−1rk(s,a)

]
. (1.6)

for 0≤ α ≤ 1. The parameter α is known as the discount factor, higher α meaning
that rewards in the further future are more important. The limit in 1.6 exists when
the rewards Rk are bounded, sups∈S,a∈A |rk(s,a)| < ∞. Moreover, when the limit
exists and interchanging the limit and expectation is valid, we have,

vµ(s) = Eµ
s

[
∞

∑
k=1

α
k−1rk(s,a)

]
. (1.7)

We now introduce some vector notation for MDPs for the description of the
policy iteration algorithm below. Let Pµk be the |S| × |S| matrix with (s,s′)th
entry given by pµk(s

′|s) = P(Xk+1 = s′|Xk = s,Ak = µk(Xk)). Under policy
µ = (µ1,µ2, . . .), we can similarly define the k-step transition probability matrix
Pk

µ with entries pk
µ(s
′|s) = Pµ(Sk+1 = s′|S1 = s). Here, the subscript µ indicates

that these entries are the transition probabilities for policy µ . This matrix can then
be expressed in terms of the one-step transition matrices Pµk as follows,

Pk
µ = Pµk Pµk−1 . . . Pµ1 .

Let vµ be the column vector with entries vµ(s). In view of the definition of
vµ(s), we can express vµ as follows,

vµ =
∞

∑
k=1

α
k−1Pk−1

µ rµk , (1.8)
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where rµk is the column vector with entries rk(s,µk(s)). For ease of notation, let
P0

µ = I be the identity matrix, then we have,

vµ = rµ1 +αPµ1rµ2 +α
2Pµ1Pµ2rµ3 + . . .

= rµ1 +αPµ1

(
rµ2 +αPµ2rµ3 + . . .

)
= rµ1 +αPµ1vµ ′ .

where µ ′ = (µ2,µ3, . . .). For a stationary policy µ , we have µ = µ ′ = (µ̄, µ̄, . . .),
and therefore,

vµ = rµ +αPµ vµ . (1.9)

One can show that that there is a unique solution vµ if 0≤ α < 1, see [29] for the
proof.

Solving MDPs

There are three basic methods for solving MDPs - value iteration, policy iteration
and linear programming. As the name suggests, the first two approaches solve the
problem iteratively while the third approach transforms the problem into a linear
program which can be then solved using the simplex method. We particularly
focus on policy iteration as the WSN problems we address have large state and
action space and solving the model with policy iteration is more efficient in such
cases, compared to value iteration or linear programming.

The rewards for our models are bounded and positive. Moreover, we assume
that the transition probabilities and rewards do not vary with time. That is, we
have pk(s′|s,a) .

= p(s′|s,a) and r(s,a) .
= rk(s,a), for all k. With these assump-

tions, the limit limk→∞ vk
µ(s) exists. Restricting our attention to stationary policies

when seeking for optimal policies, we have the following expression for the value
function v∗(s) that characterises the optimal policy,

v∗(s) = max
a∈A

[
r(s,a)+α ∑

s′∈S
p(s′|s,a)v∗(s′)

]
. (1.10)

The above system of equations is called the system of optimality or Bellman equa-
tions. It now remains to find the policy that maximises the above expected reward.
Let µ∗(s) be the optimal policy that satisfies following the Bellman equation,

µ
∗(s) = argmax

a∈A
v∗(s) = argmax

a∈A

[
r(s,a)+α ∑

s′∈S
P(s′|s,a)v∗(s′)

]
. (1.11)

Policy iteration

The basic idea behind policy iteration is to generate a sequence of policies that
gradually increase the value function. In particular, the algorithm alternates be-
tween a value determination step where the current policy is evaluated, and a policy
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improvement step that aims to improve the current policy based on its evaluation.
The policy is improved by selecting an action for each state that increases the total
expected discounted reward. The algorithm is summarised below.

1. Initialisation : set k = 0 and consider an arbitrary decision rule µ0.

2. Policy evaluation : Obtain vk by solving the linear system,

vk = (I−αPµk)
−1rµk .

3. Policy improvement : update the policy as follows,

µk+1← argmax
µ

[
rµ +αPµ vk

]
.

4. If µk+1 = µk , stop and set µk+1 = µ∗ otherwise increment k by 1 and return
to 2.

Since we consider systems with a finite number of states and a finite number of ac-
tions in each state, policy iteration is guaranteed to stop in a finite number of steps.
Although policy iteration is computationally efficient as it often takes a consider-
ably fewer number of iterations to converge, each iteration can be computationally
expensive as it involves solving a linear system. We defer a further discussion
on the complexity of policy iteration as well ways to execute policy evaluation
efficiently to Chapter 3, where we present an MDP model for a wireless sensor
node.

1.2.3 Mean field approximation
A WSN consists of a large (several hundred to thousand) number of sensor nodes.
These nodes can continuously interact with each other in order to achieve a com-
mon goal such as maximising information transfer from the sensors to a desig-
nated sink node. Developing stochastic models and analysing such a network us-
ing mathematical techniques is quite challenging. The first reason is their high
complexity, which makes them difficult to solve. Secondly, the complexity of the
analysis is highly sensitivity to the mathematical assumptions. Small changes in
the modelling assumptions may require gigantic changes in the mathematical for-
mulations. Stochastic scaling techniques like fluid limits and mean field approxi-
mations help to study the performance of such large-scale systems. We particularly
focus on the mean field approximations and give a basic introduction to the frame-
work in this chapter.

Curse of dimensionality

Markov chains are often characterised by their state space and by the transitions
that can be taken from any of these states. In general, the Markovian system may
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be described by an arbitrarily large number of state variables that introduces addi-
tional challenges in assessing the performance of the system and in obtaining the
optimal control policy of the system. The main motivation of using approximation
techniques in control theory is to address one of the challenges related to large
state spaces, often referred to as the curse of dimensionality. The curse of dimen-
sionality relates to the observation that as the dimension of the system (number of
state variables) grows, it becomes increasingly difficult to solve the problem using
standard numerical methods. In particular, iterative solutions become computa-
tionally expensive because they involve matrix operations that grow in size with
the size of the state space. This motivates us to look for approximation techniques
that can accurately capture the dynamics of the original system.

Mean Field approximations originate from statistical physics [30] and are a
technique developed within the field of probability theory. This technique is use-
ful to study the behaviour of stochastic processes with highly-dimensional (and
hence a very large) state space. Classical applications of this technique generally
require two levels of abstraction. The first is to assume that all the interacting
objects are indistinguishable from each other and take away their individual iden-
tities. Instead of capturing the behaviour of each instance, the system’s behaviour
is observed at the population level. The second level of abstraction ignores the
spatial distribution of the agents across the system and the objects are assumed to
be uniformly distributed across the system space. Applying mean-field analysis
involves describing how the population evolves through the system of differential
equations, finding the deterministic behaviour of the system by solving these dif-
ferential equations and analysing properties of this behaviour. Depending on the
system under analysis, each of these steps may become challenging and modifica-
tions of the general idea are needed in order to obtain desired results.

Continuous time Markov chains

In order to understand the mean field framework, one needs to know a fair amount
of mathematical techniques. We need a deterministic approximation in continuous
time and hence we start by introducing continuous-time Markov chains (CTMC).
In essence, a continuous-time Markov chain is a discrete-time Markov chain with
the modification that, instead of spending one time unit in a state, the chain remains
in a state for an exponentially distributed amount of time whose rate depends on
the state. A continuous-time Markov process X = {X(t) : t ≥ 0} on a countable
state space S satisfies the Markov property i.e., for integers (states) i, j,k and for
all time instants s, t,u with t ≥ 0, s≥ 0, and 0≤ u≤ s, we have,

P(X(t + s) = k|X(s) = j,X(u) = i) = P(X(t + s) = k|X(s) = j)

= P(X(t) = k|X(0) = j).

The definition above defines a time-homogeneous process because the last proba-
bility does not depend on s.

In general, a CTMC is completely characterised by the so-called generator
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matrix Q with elements,

qi j = lim
∆t→0

P(X(t +∆t) = j|X(t) = i)
∆t

, i 6= j, i, j ∈ S.

The parameter qi j is known as the transition rate from state i to state j, for i 6= j.
The diagonal elements of the Q are defined as qii =−∑ j 6=i qi j, which is notation-
ally convenient. Similar to DTMCs, we have a unique stationary distribution for
the CTMC if it is finite and irreducible. Let π denote the stationary distribution of
CTMC. The solution can be found by solving πQ= 0 and π1= 1, where 1 denotes
a column vector of appropriate dimension.

The key concept in obtaining a deterministic approximation is a sequence of
Markov processes for which the magnitude of both jumps and the average time be-
tween consecutive jumps goes to zero. In such a situation, the fluctuations become
negligible and we can approximate a process with discrete jumps by a continuous
process that satisfies (a set of) ordinary differential equations.

Population model and deterministic approximation

Consider a process with N different entities, the state of each entity being described
by some state vector. The entities can interact, resulting in a CTMC where the state
is described by the state variables of all entities. If each entity is in one out of K
states, the state space of the population process is KN . Even for moderate K and N,
direct analysis of such systems by classic numerical techniques quickly becomes
computationally prohibitive.

In order to construct the mean field model, we take away the individual identi-
ties of the interacting entities. We then only need to count the number of entities
in each of the different states. This introduces a new Markov chain, with a re-
duced state space. The number of dimensions in the new state space is equal to
the number of states an individual object can take. More importantly, the new rep-
resentation allows for studying what happens when N grows to infinity. To this
end, we study a sequence of models for increasing system size N. We normalise
the models in order to bring them to the same scale (e.g., divide each variable by
size N) and study relevant dynamics. In particular, we require proper scaling and
regularity assumptions on transition rates. We only consider models that satisfy
a density dependence condition. In simple terms, this condition requires that the
transition rates are scaled together with the population size so that they are inde-
pendent of the population size in the normalised model. The transition rates are
Lipschitz continuous in such cases. Additionally, if we have convergence of initial
conditions, the behaviour of the normalised system can be characterised by a set
of ordinary differential equations whose solution gives an accurate approximation
of the normalised system. We defer technical discussions on scaling and conver-
gence to the deterministic approximation of the normalised system to Chapter 4.
To illustrate the idea of the mean field, we provide a simple example below.
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Figure 1.2: Comparison of solution of ODE and trajectories for different population of
network CTMC model

Example

Consider a network with N nodes. Each node can be in two possible states, say
state 1 if the node carries information and state 0 if this is not the case. Let XN

n (t)
denote the state of the nth node in the model with N nodes. The nodes can ei-
ther get information from their environment with rate `N

1 or from the neighbour-
ing node through an exchange process. Let γN be the rate at which nodes in the
network meet each other. When two nodes meet each other information is only
exchanged if the receiving node has no information while the sending node has
something to send. Let `N

0 be the rate at which a node loses its information and
returns to state 0. Thus, the overall state of the network is described by the vec-
tor XN(t) = (XN

1 (t), . . . ,XN
N (t)). The process XN(t) constitutes a Markov process

and we immediately see that the state space of the overall network is 2N . Thus,
analysing such a network becomes very difficult.

We now introduce the reduced Markovian description, by applying a count-
ing abstraction. Let MN(t) =

[
MN

0 (t)MN
1 (t)

]
, where MN

i (t) counts the number of
nodes in state i. We have sequence of models MN(t) with increasing system size
and we normalise them with system size N. Let mN

j (t) = N−1MN
j (Nt) and assume

that the rates are scaled as follows: `N
j = ` j/N,γN = γ . We can then show that

for N → ∞ the process mN
j (t) converges to a deterministic process m j(t) (almost

surely) which is described by the system of ordinary differential equations,

m′0(t) = `0m1(t)− `1m0(t)− γm0(t)m1(t) , (1.12)

and m1(t) = 1−m0(t). The first term on the right-hand side of (1.12) represents
the loss of information of a node (so the number of nodes without information in-
creases), while the second term represents the arrival of new information. The last
term relates to an information exchange between nodes. The proof of convergence
of the scaled process is discussed in chapter 4 in a broader context.
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To understand how well this ordinary differential equation (ODE) represents
the system, we simulate a number of trajectories of the continuous time Markov
chain of the system for different values of N and compare it with the solution of
equation 1.12.We set the rates as `0 = 0.2, `1 = 0.8 and γ = 1. We assume that
all nodes have zero VoI initially and plot the solution of ODE and trajectory of
continuous time population model. Figure 1.2 depicts the comparison between the
solution of the ODE and some trajectories of the stochastic process for different
population levels. As we can see, as N increases, the trajectories can no longer be
distinguished from the limiting deterministic solution.

1.3 Dissertation Outline
We now provide a general overview of the dissertation and explain how the chap-
ters of this dissertation are interconnected. We also take advantage of this moment
to highlight the publications that resulted from our work. Stochastic modelling of
wireless sensor networks is the main theme of this dissertation. We mainly focus
on terrestrial WSNs covering two main objectives. Each objective addresses the
performance issues of wireless sensor networks at different levels of abstraction
and detail. The first objective is to develop models for isolated energy harvesting
sensor nodes. These models provide important insights on how different environ-
ment processes affect the performance of the sensor node. The second objective is
to consider the interactions between (a large number of) sensor nodes, under the
assumption that they cooperate towards common goals. Such models are highly
complex and we use stochastic scaling techniques to provide closed form solutions.
Lastly, we also provide a short analysis of stochastic modelling of the depth-based
routing protocol in an underwater wireless sensor network.

Chapter 2 and 3 mainly address the first objective i.e., the analysis of a static
sensor node in isolation. The models in these chapters are mainly useful in one-hop
communication applications. The work in chapter 2 has resulted into two journal
publications [31, 32]. This chapter mostly relies on discrete time Markov chain
theory and the sensor nodes are modelled as systems of two interacting buffers: a
data buffer and an energy buffer. The key assumption is that the VoI is additive
in nature. This can be true in many practical applications where information gets
accumulated at the sensor node until transmission. In such cases, the VoI denotes
the amount of sensed information. We investigate the long term behaviour of the
different network processes such as the amount of energy in the system and the
mean value of information collected from the node. In particular, we start with
a basic model that captures the most important dynamics of WSNs and then add
more complicated assumptions in order to generalise the model for more appli-
cations. We provide the stability analysis of the value of the information process
and calculate the first two moments of VoI theoretically [31]. We then extend this
model by allowing energy consumption for sensing the information. Moreover,
we provide an additional analysis of the behaviour of the node when it is aware of
the presence of information at a particular time [33]. Finally, we introduce time
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correlation in the energy harvesting process to capture its bursty nature and study
the trade-off between the cost of frequent data collection and timely data delivery
in this setting [32]. We illustrate each model with the help of numerical exam-
ples and provide powerful insights on the impact of the different parameters on the
network design.

The use of a controlled framework for WSNs starts in Chapter 3. In contrast to
chapter 2, we now assume that the nature of the VoI process is non-additive. This
is highly important in WSN applications where the age of information is more
important than the amount of information. This work has resulted into a journal
article in performance evaluation [34]. We introduce a two-dimensional Markov
decision process and rely on the Quasi-Birth-Death (QBD) structure of the tran-
sition matrices to facilitate finding the optimal control of the energy-harvesting
sensor node. We further investigate the structure of the optimal policy and provide
interesting properties of the value function. We evaluate a policy with the linear
level reduction method and obtain the exact solution with the policy iteration al-
gorithm. The optimal control policy turns out to be the threshold in nature. We
investigate the sensitivity of this threshold by means of numerical experiments.

Chapter 4 mainly addresses the second objective: we investigate large-scale
WSNs where a high number of nodes interact with each other. Unlike Chapter 3,
the control problem in this chapter is a finite-horizon problem and the state of the
system is one dimensional, denoting only the VoI. That is, energy harvesting is not
accounted for. The nodes in the network now can gain the information either from
the environment or from a neighbouring node. However, an exchange of informa-
tion between nodes costs a significant amount of energy, compared to sensing from
the environment. The network tries to keep the maximum value of information
while keeping the exchange process at a minimum. We use a continuous-time de-
terministic approximation and obtain the limit of the population process in terms
of ordinary differential equations as the number of nodes in the network grows
to infinity. Then, we use the Hamilton-Jacobi-Bellman (HJB) equation, which
is based on Bellman’s principle of optimality. We evaluate the control problem
through Pontryagin’s minimum principle and establish some interesting properties
of the optimal policies. Finally, we illustrate our approach by providing a close
form solution for the three state system.

We consider the underwater wireless sensor network in Chapter 5. Like their
terrestrial counterparts, UWSNs adopt multi-hop routing protocols that aim at de-
livering the harvested data packets to on-surface sink nodes. We particularly limit
our attention to Depth based routing (DBR) which is one of the most important
routing strategies for underwater networks, due to its simple implementation and
robustness against node mobility. This work has led to a journal article in AdHoc
networks [35]. In particular, we use a decomposition approach to study depth-
based routing in underwater sensor networks, and evaluate the performance of the
system in terms of the end-to-end delay, the packet delivery probability, the distri-
bution of the number of hops to reach the surface and the energy consumption. We
observe that the performance evaluation of the model is far less time consuming
than that of simulations.
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Finally, in Chapter 6, we summarise our contributions and draw some overall
conclusions from the work done in this dissertation. We also provide an outlook
on possible future direction.



2
Modelling and analysis of

an isolated sensor node

As the key constituent of the Internet of Things (IoT), WSNs have attracted con-
siderable research interest in the past years. They enable fast data-to-decision
applications that act in real time on collected data. In this chapter, we develop ana-
lytical models for static energy harvesting sensor nodes in isolation, which collect
the information from their environment and pass it on to a mobile sink. The models
quantify the value of the data that is collected by the sink. Such models are very
useful in one hop communication applications like highway traffic surveillance. In
particular, our analytical models assess the interaction between data collection, en-
ergy harvesting and energy expenditure. The decisions made by a node most often
depend on the quality as well as on the timeliness of the information. Therefore,
we consider the concept of “value of information” which covers both aspects.

The typical sensor node (SN) can be modelled as a system of two interacting
buffers, i.e. a data buffer to store the collected information, and an energy buffer
to store the energy harvested from the environment. Each buffer is generally fed
by an input process that is typically bursty. While burstiness in data buffers is
a well-studied subject, the interaction of two such buffers holds interesting ques-
tions, for example in terms of optimal control and dimensions. We assume that the
sensor node under consideration operates energy neutral; all energy for sensing
and transmissions is harvested from the environment. The energy buffer is in fact
a small on-board battery for temporary energy storage. As the node solely depends
on harvested energy, it may run out of energy. As a result, the sensor node at hand
can only transmit when the mobile sink is in range and the sensor has sufficient
energy for transmitting its data.

We focus on optimal data collection, adopting the hybrid WSN of Zhou et
al. [36], which consists of static sensors responsible for sensing environmental
variables, and mobile sensors called IoT mobile sinks that move to designated
sink locations where they gather data sensed by static sensors. Mobile sinks were
introduced to overcome the hot-spot effect in sensor networks [37]. Both static and
mobile sink nodes (or base terminals) collect data from sensor nodes and some-
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times act as gateways to other users by processing and sending relevant informa-
tion. If all sensor data is relayed by the sensor nodes to a (static) sink, nodes closer
to the static sink are more heavily loaded as they need to relay more packets to
the static sink in comparison with nodes further away. As a result, they consume
more energy and may die at an early stage, or will frequently run out of energy if
they can harvest energy. Mobile sinks overcome this problem by moving the sink
around. See e.g. [38] for a discussion on design issues and challenges in existing
distributed protocols for mobile sinks. Although mobility increases the network
lifetime by balanced utilisation of power [39], it also introduces new challenges as
minimising the delay in packet delivery [40].

Finally, we mention some applications of hybrid WSNs. Ren et al. [1] op-
timise the data collection scheduling of a hybrid WSN, and propose such WSN
for highway traffic surveillance and ecosystem monitoring . In the highway traf-
fic scenario, sensors are deployed along a highway and collect traffic information
such as the number of vehicles and their speeds, the types of vehicles, etc. The
ecosystem scenario includes monitoring of exotic plant growth or endangered an-
imals. In a typical ecosystem monitoring scenario, humans or vehicles can only
access the system via limited roads, while the exact sensor locations in the forest
are not easily reached. In unmanned agriculture, Huang and Chang [41] propose a
wireless sensor network with a mobile sink for collecting image data. The mobile
sink mitigates the need to relay large amounts of data or to transmit large amounts
over a long distance. In either case, considerable energy is required that cannot
be delivered by the sensors. Similarly, Yang and Miao [42] propose a mobile sink
to solve the problem of poor scalability and unbalanced energy consumption in
farmland WSNs. Finally, motivated by energy constraints for the sensor nodes,
Taherian et al. [43] propose a WSN with a mobile sink for monitoring a railway
transportation system.

The remainder of this chapter is organised as follows. In the next section, we
give an overview of closely related literature. Sections 2.2 to 2.4 then introduce
increasingly complex models for a sensor node in isolation in a hybrid sensor
network. Finally, we summarise our findings in section 2.5.

2.1 Related work
As we focus on a stochastic model for an EH-WSN, we now discuss some re-
lated stochastic models. The first set of models consider the battery dynamics of
a wireless sensor node, without data buffering. The battery state is usually discre-
tised, meaning that the battery provides chunks of energy, rather than a continuous
stream of energy. The simplest Markovian model of the battery is a continuous
or discrete-time (quasi-) birth-death Markov process, where births and deaths cor-
respond to energy harvesting and energy expenditure respectively, see e.g. [44]
where harvesting and recharging are combined and [45] where the harvesting pro-
cess exhibits time correlation. The latter authors model the energy harvesting pro-
cess as a two-state Markov modulated model, i.e., a node either harvests energy
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leading to a random increase of the amount of energy or is unable to harvest any
energy. Michelusi et al. [46] also consider a two-state harvesting process and de-
termine a transmission policy such that energy harvesting and consumption are
balanced. While two-state Markov models already exhibit some time correlation,
more realistic models for the time correlation in harvesting processes are studied
in [47] and [48]. These authors study traces of solar harvesting processes and sta-
tistically verify that a Markov modulated process can be used to model the solar en-
ergy harvesting process. Relaxing the assumption that the sensor node remains in
its different operational modes for an exponential amount of time, a semi-Markov
model for the battery dynamics is studied in [49].

While the former models account for energy storage, data buffering is not con-
sidered. Data buffering however is accounted for in [50, 51, 52, 53, 54]. In [53],
Gelenbe considers a model with Poisson arrivals of data and energy. Assuming
that the time to transmit a packet is far smaller than the time to harvest the energy
for the transmission, there is either no data or no energy at the node, which simpli-
fies the analysis considerably. In [52], a similar model is studied where the sensor
nodes are also subject to ongoing energy loss through standby power consump-
tion and leakage from batteries and capacitors. In addition, transmissions can be
corrupted by noise and mutual interference. If transmissions can be neither con-
sidered to happen almost immediately nor postponed due to unavailability of the
receiver, both the data and energy queue can be simultaneously non-empty. There-
fore, Markov models with two queues (an energy and a data queue) are required.
In [50, 51] such a Markov model is studied where energy and packet arrivals de-
pend on an exogenous Markovian background process. This allows to include cor-
relation in both harvesting, sensing and transmission processes. A similar Markov
process is studied in [55] in the context of a “green” base station. Such a base
station uses renewable energy sources for powering its operations. A somewhat
different approach is proposed in [54]. In contrast to the models above, these au-
thors do not adopt energy chunks but model the battery as a fluid queue. The model
allows for correlated energy harvesting (a fluid Markov process with two states),
packet queueing and re-transmissions, a sleep period and temporal death of the
node. A temporal death state is reached when the node runs out of energy.

Various authors have also tackled control problems for EH-SNs by formulat-
ing the dynamics and control as a Markov decision process (MDP). The survey of
Alsheikh et al. [56] reviews numerous applications of MDPs in EH-WSN and dis-
cusses and compares various algorithms and solution methods. We discuss some
more recent contributions. In [57], Rao et al. use the framework of Markov deci-
sion processes to determine the optimal task scheduling for a sensor node. Tasks
include sensing, reading and writing from flash storage, packet reception and trans-
mission, as well as computation. The MDP formulation accounts for task priorities
and deadlines. Although energy harvesting is making WSNs self-sustainable, Lei
et al. [58] note that the uncertainty on harvesting leads to unreliability and instabil-
ity which is becoming a major challenge in the design of networks. These authors
formulate the problem as a constrained MDP and focus on scheduling algorithms
that minimise data loss under delay constraints. Zordan et al. [59] investigate



28 Modelling and analysis of an isolated sensor node

energy-aware lossy data compression policies for SNs, and model the SN’s trans-
mission and energy dynamics as a constrained Markov decision problem. If a SN
does not have sufficient energy to perform its tasks, a significant amount of energy
can be saved by temporarily powering off. An MDP formulation for similar sleep
and wake-up strategies is considered in [60].

2.2 Basic analytical model
For most real-world phenomena, it is far too complicated to model the phe-
nomenon in its entirety. Hence, a first step is to identify the most important com-
ponents of the system at hand that need to be included in the model, while com-
ponents of lesser importance can be excluded. In this subsection, we start with a
basic model, which already captures part of the dynamics of a SN. We will then
add more complicated and realistic assumptions later on.

2.2.1 Mathematical model
We consider an energy harvesting sensor node operating in discrete time as de-
picted in Figure 2.1 . That is, time is divided into fixed length intervals or slots
and all transmissions are synchronised with respect to slot boundaries. The sen-
sor node is equipped with on-board memory to store the sensed information and
a battery for storing harvested energy. For ease of analysis, we adopt the energy
chunk paradigm. That is, we discretise the battery levels; the battery can store
up to C discrete units (or chunks) of energy. We study the evolution of the value
of information (VoI) of the sensed data and the energy levels at slot boundaries.
During each slot, sensor data is collected and stored in on-board memory, and en-
ergy is collected and stored in the battery. Whenever the mobile sink passes by,
the data is transferred to the mobile sink, provided the sensor node has sufficient
energy to transmit. The specific assumptions on sensing, energy harvesting and
data collection are introduced below.

Energy harvesting process

As we adopt the energy chunk paradigm, the amount of energy that is harvested
during a slot is a discrete random variable. Let Hn denote the number of energy
chunks that are harvested during slot n. Hn only includes the energy that is avail-
able for transmission. That is, accounting for any conversion loss and assuming
that the node can constantly harvest sufficient energy for sensing, Hn is the excess
energy that can be used for transmissions. The amount of energy provided by a
single chunk corresponds to 1/Nth of the energy required to make a single trans-
mission of the information. The choice of large N corresponds to more energy
chunks (C is larger) which implies that the performance analysis is more computa-
tionally demanding (cfr. infra). The sequence {Hn,n ∈N} constitutes a sequence
of independent and identically distributed random variables, taking values in N.
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Notation Definition
C Maximum battery capacity
M Number of energy chunks needed for sensing the data
N Number of energy chunks needed for transmitting the data
α Discounting factor for the value of information
c Cost associated with data collection
Bn Battery level at the beginning of slot n
Vn Value of Information at the beginning of slot n
Hn Number of energy chunks harvested during slot n
H̄n Tail distribution of Hn
hk Probability that k energy chunks are harvested in the kth slot
Sn The value of data sensed during slot n
s0 Probability that there is nothing to sense
S̄ Mean value of the data sensed in a slot
Tn Binary random variable that indicates if there is a transmission

during slot n or not
Pn Binary random variable that indicates whether data is collected

during the nth slot or not
An Binary random variable that indicates if there is a data to transmit

during slot n or not
En State of the modulating process for energy harvesting
bk Stationary probability of having battery level k
b̃k Stationary probability of having battery level k when there is no

information at the sensor node
b̂k Stationary probability of having battery level k when there is

information at the sensor node
vk Mean value of information at the sensor node for battery level k
V̄p Mean value of information after data collection

Table 2.1: List of notations used in this Chapter

Let hk denote the probability that k energy chunks arrive in a slot. For further
use, we always assume that the sensor node can harvest energy, that is, we assume
h0 < 1. Moreover, we introduce the following notation for the tail distribution
function of Hn,

H̄k =
∞

∑
m=k

hm = 1−
k−1

∑
m=0

hm . (2.1)

Sensor data arrival process

Assuming that sensing data does not require much storage, we do not track the size
of the sensor data, but track the value (or the quality) of the information of the data
instead. Note that in some specific cases, the size of the data can even be constant
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Figure 2.1: WSN Model

over time. This is e.g. the case if the data is a vector of environmental quantities
that is regularly updated by the sensing process. The amount of information that is
described by this vector however depends on the actual data values and can differ
considerably over time.

Let Sn denote the value of the data sensed during the nth slot. We assume that
the sequence Sn is stationary ergodic. For the sequence {Sn,n ∈ N} of the value
of harvested information, no independence assumptions are required. We only
assume that the mean value does not depend on time; let S̄ = E[S0] < ∞ and let
σm = E[S0Sm]< ∞ n ∈ N.

Assuming that older data is less relevant to decision making, the value of the
information drops while it is not collected. To capture such loss, we assume that
the value of information at the sensor node is discounted in each time slot with
discount factor α . Moreover, we assume that the value of information is additive:
the value of the data sensed during a time slot that cannot be transmitted is added
to the (discounted) value already at the sensor.

Data collection process

Finally we assume that the time (in slots) between data collection constitutes a se-
quence of independent and identically geometrically distributed random variables
with success probability p. Let Pn be the binary random variable that denotes
whether data is collected at the nth slot boundary or not. Then, with the assumption
above, the process {Pn} constitutes a Bernoulli process with P[Pn = 1] =E[Pn] = p.

The data collection process models the availability of the sink at the location of
the sensor node and therefore relates to the trajectory that is followed by the mobile
sink. I.e., Pn = 1 if the sink is in the transmission range in slot n, while Pn = 0 if
this is not the case. The probability p therefore corresponds to the fraction of time
that the mobile sink is in range during the trajectory of the mobile sink.
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2.2.2 Stochastic difference equations
We now study the evolution of the battery level and the VoI at slot boundaries. Let
Bn denote the battery level at the beginning of time slot n and let Vn denote the VoI
at the sensor node at the nth slot boundary. Assuming that the energy harvested
in slot n cannot be used for sensing and transmitting data in slot n, and that any
energy that cannot be stored in the battery is lost, we have,

Bn+1 = min(Bn−NTn +Hn,C) . (2.2)

Here Tn is the binary random variable that indicates if there is a transmission dur-
ing slot n or not. We express Tn in terms of the battery level Bn, the value of
information Vn, and the indicator of the mobile sink Pn below.

As the value of information is discounted with discount factor α and informa-
tion is additive, we have,

Vn+1 = αVn(1−Tn)+Sn . (2.3)

Here we assumed that all information is immediately transferred to the mobile sink
when there is a transmission (Tn = 1), while any newly sensed data Sn is not yet
available for transmission.

It now only remains to express Tn in terms of the sequence of transmission
opportunities. We express Tn in terms of Bn and Pn as follows,

Tn =

{
1 for Pn = 1 and Bn ≥ N ,

0 otherwise.

Alternatively, we can express Tn as,

Tn = 1{Bn≥N}Pn . (2.4)

That is, there is a transmission provided there is energy to transmit (Bn ≥ N), and
an opportunity to transmit (Pn = 1). Here, 1{·} denotes the indicator function
which equals 1 if its argument is true and zero if this is not the case.

2.2.3 Analysis
The set of recursions (2.2)–(2.4) now allows for determining the first two moments
of the value of information collected by the IoT mobile sink. We first investigate
the existence of a stationary solution (B∗,V ∗) of these recursions.

Stability

The evolution of battery level does not depend on the value of information. Sub-
stituting (2.4) into (2.3) shows that for h0 < 1, h1 > 0, 0 < p < 1, the sequence
Bn constitutes an ergodic unichain with finite state space {0, . . . ,C}. Hence,
a stationary process {B∗n, n ∈ Z} exists that adheres the recursion (2.3). Let
T̄ ∗n = 1−Pn 1{B∗n≥N} be the corresponding stationary indicator of having no trans-
mission. We now define the stationary value of information process V ∗n .
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Definition 2.1. The stationary value of information process V ∗n is given by,

V ∗n =
∞

∑
k=1

Sn−k α
k−1

k−1

∏
`=1

T̄ ∗n−` . (2.5)

Provided that the sum on the right-hand side converges, the process V ∗n is sta-
tionary by the stationarity of the sequence {(Sn,B∗n),n ∈ Z}. Moreover, one can
easily verify that (2.5) satisfies the recursion (2.3). Indeed, assume that V ∗n is given
by (2.5), then we find that V ∗n+1 can be expressed as,

V ∗n+1 = αV ∗n T̄ ∗n +Sn

= α

∞

∑
k=1

Sn−k α
k−1

k−1

∏
`=1

T̄ ∗n−`T̄
∗

n +Sn

=
∞

∑
k=1

Sn−k α
k

k−1

∏
`=0

T̄ ∗n−`+Sn

=
∞

∑
k=2

Sn+1−k α
k−1

k−2

∏
`=0

T̄ ∗n−`+Sn

=
∞

∑
k=1

Sn+1−k α
k−1

k−1

∏
`=1

T̄ ∗n+1−` .

Before providing our results on the convergence of V ∗n , we recall some basic prop-
erties of martingales below.

Martingales Martingales play an important role in stochastic processes for
which the conditional expectation of its future value, given the information accu-
mulated up to now, equals its current value. Mathematically, a stochastic process
Z = {Zt}t≥0 is called a martingale with respect to the filtration Fs, if it satisfies:

1. E(|Zt |)< ∞ for all t ≥ 0; and

2. E(Zt |Fs) = Zs for all t ≥ s≥ 0;.

The filtration Fs formalises the idea of “information” accumulated up to time s.
A filtration is an increasing family of σ -fields. This is a vast topic in probability
theory and we refer interested readers to [61] for more mathematical details.

Intuitively, the definition of a martingale means that the conditional expected
value of the future value, given all its historical values, equals its current value.
Note that this is not the same as conditioning on only the current value. For the
stability proof, we rely on the following two theorems, which are stated without
proof.

Theorem 2.1. Monotone convergence theorem
Suppose that {Xn : n ≥ 0} is a sequence of non-negative random variables for
which Xn ≤ Xn+1 for n≥ 0, almost surely. Then,

X∞ = lim
n→∞

Xn
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exists and E[Xn]↗ E[X∞] as n→ ∞.

Theorem 2.2. Martingale convergence theorem
Let Z be a martingale bounded in L 1, i.e., supnE[|Zn|] < ∞, then the following
statements are equivalent,

1. (Zn)n∈N are uniformly integrable;

2. There exist a random variable Z∞ such that Zn → Z∞ almost surely and in
L 1;

3. There exist a random variable Z∞ such that Zn→ Z∞ in L 1;

4. There exist a random variable Z∞ ∈L 1 with Zn = E[Z∞|Fn] ∀ n ∈ N.

Stability theorems Having introduced martingales and their properties, we now
rely on these theorems to show some properties of the stationary value of informa-
tion process V ∗n . First we show that the stationary process V ∗n has finite mean.

Theorem 2.3. The sum on the right hand side of eq. (2.5), that is,
∑

∞
k=1 Sn−k αk−1

∏
k−1
`=1 T̄ ∗n−`, converges to a random variable with finite mean.

Proof. Consider the sequence, {Zm,m ∈ N}, with Zm = φm −∑
m
k=1 S̄αk−1 and

where φm is the partial sum,

φm =
m

∑
k=1

Sn−k α
k−1 .

Calculating the expected value of Zm with respect to the filtration Fm =
σ(Sn−1,Sn, . . . ,Sn−m)

1 yields,

E[Zm+1|Fm] = E[Zm +Sn−m−1α
m− S̄α

m|Fm]

= Zm +α
mE[Sn−m−1− S̄|Fm]

= Zm .

Thus, the process {Zm} is a martingale. Moreover, it is bounded in L 1 since
supmE[|Zm|] = 0 < ∞. From the martingale convergence theorem, the limit φ∞−
S̄/(1−α) is finite, while E[φ∞] is finite by the monotone convergence theorem.
Finally, note that φ∞ is an upper bound for the sum in right-hand side of eq. (2.5),
which concludes the proof.

Theorem 2.4. |Vn−V ∗n | → 0 for n→ ∞ for any initial value V0.

Proof. Consider again the process (Bn,Vn), starting at n = 0 with given (B0,V0).
From eq. (2.3), we have,

Vn = α
n V0

n

∏
`=1

T̄n−`+
n

∑
k=1

Sn−kα
k−1

k−1

∏
`=1

T̄n−` (2.6)

1σ(Sn−1,Sn, . . . ,Sn−m) is the minimal σ -algebra generated by these random variables.
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As Bn is an ergodic Markov process, we have |B∗n−Bn| → 0 for n→∞. Moreover,
|V ∗n −Vn| → 0 for n→∞. Indeed, substituting (2.5) and (2.6) into |V ∗n −Vn| yields,

|V ∗n −Vn|=
∣∣∣∣ ∞

∑
k=1

Sn−k α
k−1

k−1

∏
`=1

T̄ ∗n−`−α
n V0

n

∏
`=1

T̄n−`−
n

∑
k=1

Sn−kα
k−1

k−1

∏
`=1

T̄n−`

∣∣∣∣
=

∣∣∣∣ n

∑
k=1

Sn−kα
k−1

k−1

∏
`=1

T̄ ∗n−`+
∞

∑
k=n+1

Sn−k α
k−1

k−1

∏
`=1

T̄ ∗n−`

−α
n V0

n

∏
`=1

T̄n−`−
n

∑
k=1

Sn−kα
k−1

k−1

∏
`=1

T̄n−`

∣∣∣∣
By using the transformation k = k−n, we can write the second summation as

αn
∑

∞
k=1 S−k αk−1

∏
k−1
`=1 T̄ ∗n−`. Since ∏

k−1
`=1 T̄ ∗n−` ≤ 1, we obtain following inequal-

ity,

|V ∗n −Vn| ≤ α
n

∞

∑
k=1

S−k α
k−1 +α

n V0 +
n

∑
k=1

Sn−kα
k−1
∣∣∣∣ k−1

∏
`=1

T̄ ∗n−`−
k−1

∏
`=1

T̄n−`

∣∣∣∣
The sum in the first term is finite with probability 1, and as α < 1, the first

two terms converge to 0 almost surely for n→ ∞. For the third term, consider the
random variable τ = inf{n;Tn = 1 and Bm = B∗m for m≥ n} which is finite almost
surely. Then for n > τ , the third term is 0. As limn→∞P[τ ≥ n] = 0, we conclude
that the third term converges to 0 as well.

Summarising, we have shown that a stationary ergodic process (B∗n,V
∗
n ) exists

with V ∗n given by (2.5), adhering the recursions (2.2) - (2.4). Moreover, whatever
the initial conditions (B0,V0), |B∗n−Bn| → 0 and |V ∗n −Vn| → 0, for n→ ∞.

Moments

We now turn our attention to calculating the first two moments of the stationary
process V ∗n . The first moment tells us about the mean value of information at
a particular battery level, while the variance is a measure for how the value of
information is spread out from the average value for a particular battery level.

Mean VoI The set of recursions above allows for determining the value of the
information collected by the mobile sink. To this end, let vk = E[V ∗n 1{Bn = k}]
be the mean value of the information at the sensor node for battery level k, and
let bk = P[B∗n = k] be the stationary probability of having battery level k. By con-
ditioning on the battery level and the availability of a transmission opportunity in
the preceding slot, we find that the mean value of the information at battery level
k adheres the following set of equations,

vk = α

C

∑
`=0

v` hk,` (1− p1{`>N})+ S̄ bk (2.7)
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for k = 0,1, . . . ,C, where we introduced,

hk,` = 1{k<C} hk−`+1{k=C} H̄C−`,

to simplify the notation. The first term in the equation above corresponds to the
situation where the battery does not become saturated while the second term covers
the opposite case.

Again by conditioning on the battery level and on the availability of a trans-
mission opportunity in the preceding slot, the battery level probabilities adhere,

bk =
C

∑
`=0

b` (hk,`+ p(hk,`−N−hk,`)1{`>N}) (2.8)

for k = 0,1, . . . ,C.To simplify notation, we write the system of battery and VoI
equations in terms of matrices. To this point, we introduce the column vector
v = [vk]

C
k=0 and b = [bk]

C
k=0, as well as the following matrices,

A= [hk,` (1− p1{`>N})]
C
k=0 ,

and,
B = [hk,`+ p(hk,`−N−hk,`)1{`>N})]

C
k,`=0 .

The set of eqs. (2.7) - (2.8) is then equivalent to v = α A v+ S̄b and b = B b.
Accounting for the normalisation condition eT b = 1, we find,

b = (B−I+ eeT )−1e, and v = S̄(I−α A)−1b . (2.9)

Here, e is a column vector of ones, the superscript T indicates the matrix transpose
and I denotes the identity matrix.

Finally, we can express the mean value of the sensed data per time slot that is
actually collected in terms of vk’s as follows,

V̄ = E[Vn 1{Pn=1,Bn≥N}] = p
C

∑
k=N

vk . (2.10)

Indeed, there are only transmissions if the battery level exceeds the threshold and
there is a transmission opportunity.

Variance of the VoI The calculation of the second moment is considerably more
tedious. From the system of eqs. (2.4)–(2.5), we have,

v(2)k = E[(V ∗n+1)
2 1{Bn+1=k}]

= α
2

C

∑
`=0

(1− p1{`>N})hk,` v(2)` +2α

C

∑
`=0

(1− p1{`>N})hk,` ξ
(0)
` +σ0 bk
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for k = 0,1, . . . ,C, with ξ
(0)
`

.
= E[V ∗n Sn1{B∗n=`}]. This set of equations then corre-

sponds to the following matrix equation,

v(2) = α
2Av(2)+2αAξ

(0)+σ0b ,

with v(2) = [v(2)]Ck=0 and ξ
(0) = [ξ

(0)
k ]Ck=0. To determine the remaining unknown

vector ξ
(0), let ξ

(m)
k

.
= E[V ∗n−mSn1{B∗n−m=k}], such that in view of the system equa-

tions (2.5)–(2.4) we have,

ξ
(m)
k = α

C

∑
`=0

(1− p1{`≥N})hk−`ξ
(m+1)
` +σm+1bk .

The former equation allows for calculating ξ
(m)
k recursively. Indeed, defining the

vector ξ
(m) = [ξ

(m)
k ]Ck=0, we have,

ξ
(m) = αAξ

(m+1)+σm+1b .

Recursively substituting this equation into itself then yields,

ξ
(0) =

m−1

∑
`=0

σ`+1α
`A`b+α

mAm
ξ
(m) =

∞

∑
`=0

σ`+1α
`A`b .

where we used the fact that αmAm→ 0 for m→ ∞ as its largest eigenvalue is less
than one.

Summarising, the second order moment vector v(2) can be written as,

v(2) = (I−α
2A)−1

(
2

∞

∑
`=0

σ`α
`A`b−σ0b

)
The variance of the value of information collected in a slot is then,

var[V ] = E[(V ∗n )
21{Pn=1,B∗n≥N}]−V̄ 2 = p

C

∑
k=N

v(2)k −V̄ 2. (2.11)

2.2.4 Extension to Markov modulated energy arrivals
The assumption that the number of energy chunks that arrive in a slot constitutes
a sequence of independent random variables is not essential for the calculations.
We here extend the method to allow for correlated arrivals. We discuss correlated
arrivals in detail later in the chapter. For the moment, we limit the discussion to
the calculation of the mean value of the sensed data per time slot.

Let {En,n ∈ Z} be an ergodic Markov process with finite state space J =
{1, · · · ,J}, and let θi j denote the transition probability from state i to state j, for
i, j ∈J . En is the environment process that modulates the energy arrival process.
That is, we assume that the number of energy chunks Hn that arrive in slot n,
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depends on En. Such energy arrival processes have been proposed a.o. for energy
harvesting body sensor networks in [45] and for solar harvesting [62].

Let h(i)k = P[Hn = k|En = i] be the probability that k chunks arrive when the

environment is in state i. Further let H̄(i)
k = ∑`≥k h(i)k and h(i)k,` = 1{k<C} h(i)k−` +

1{k=C} H̄(i)
C−`. We now calculate the joint probability of the environment state and

the battery level. Let b( j)
k = P[Bn = k,En = j]. By conditioning on the battery

level, the environment state and the availability of a transmission opportunity in
the preceding slot, these probabilities adhere,

b( j)
k =

J

∑
i=1

θi j

C

∑
`=0

b(i)`

(
h(i)k,`+ p(h(i)k,`−N−h(i)k,`)1{`>N}

)
, (2.12)

for k = 0,1, . . . ,C. The set of equations above, complemented by the normalisation
condition ∑

C
k=0 ∑

J
j=1 b( j)

k = 1, allows for determining the probabilities b( j)
k .

Let v( j)
k = E[Vn1{Bn=k,En= j}] be the mean value of information at the sensor

node for battery level k and the environment state j. By conditioning on the battery
level, the environment state and the availability of the transmission opportunity
in the preceding slot, we find the mean value of information at battery level k
k = 0,1, . . . ,C and the environment state j adheres,

v( j)
k = α

J

∑
i=1

θi j

C

∑
`=0

v(i)` h(i)k,` (1− p1{`>N})+ S̄ b( j)
k . (2.13)

The system of equations (2.12) - (2.13) are again linear, though there are now
J equations for every battery state. The mean value of the sensed data per time slot
that is actually collected then finally equals,

V̄ = p
J

∑
i=1

C

∑
k=N

v(i)k . (2.14)

2.2.5 Numerical evaluation and discussion
We now numerically investigate the optimal data collection policy for the sensor
node at hand. We assume that there is a cost c associated to data collection, so that
the average value after collection equals

V̄p =−cp+V̄ .

Figures 2.2(a) and 2.2(b) depict the value of information V̄p in terms of the data
collection probability p. We assume that the mean value of information sensed
in a slot S̄ equals twice the cost of collecting it: c = 1 and S̄ = 2. Moreover,
N = 4 energy chunks are required for transmission and the number of harvested
energy chunks is Poisson distributed with mean λ . Figure 2.2(a) fixes the discount
factor to α = 0.9 and shows V̄p for various battery capacities C ∈ {4,8,32} and
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Figure 2.2: Value of the information V̄p versus p for different (a) C as indicated; and (b) α

as indicated.

λ ∈ {0.5,2} as indicated. In contrast, Figure 2.2(b) fixes the energy arrival rate
to λ = 1, and shows the value of information V̄p for various discount factors α ∈
{0.6,0.7,0.8,0.9,0.95,0.99} and battery capacities C ∈ {8,32} as indicated.

If no data is collected, there is neither cost nor data so that the value is zero
for p = 0. As the cost of data collection is limited in the figures, the value of
information first increases for increasing p and then decreases again. For high p,
the chance of insufficient energy increases so that the gain of more frequent data
collection cannot compensate the collection cost. Figure 2.2(a) and 2.2(b) further
reveal that increasing the battery size is beneficial, as a larger battery can better
compensate periods with little energy harvesting. The marginal gain of increasing
the battery capacity however drops quickly. In addition, Figures 2.2(a) and 2.2(b)
show that increasing λ and α is beneficial as well. This is also expected as there
can be more transmissions if λ increases (there is more energy) and there will be
more information if α increases.

The dotted lines in Figures 2.2(a) and 2.2(b) connect the values of the different
curves at the optimal collection probability (for fixed λ and variable C in Figure
2.2(a) and for fixed C and variable α in Figure 2.2(b)). Figure 2.2(a) shows that
the optimal collection probability can either increase or decrease for increasing C,
depending on λ . For larger λ , the optimal collection probability increases for in-
creasing C. This is what one expects as the chance to have energy for transmission
increases when C increases (there is less energy loss). For small λ , the optimal
collection probability decreases for increasing C. This can be explained by noting
that energy is scarce for small λ . If C is small as well, even more energy is lost
if the information is not frequently collected. When C increases, the energy loss
drops and the collection probability can drop as well. For increasing α , Figure
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Figure 2.3: (a) Optimal polling probability p versus the discount factor α for different
harvesting distributions and (b) Variance of the value of the information var[V ] versus the
discount factor α for different β as indicated.

2.2(b) shows a slight increase followed by a quick decrease of the optimal col-
lection probability. For α large, a drop in α means that the value of information
is discounted faster such that we need to collect more. For α small, the cost of
collection is high compared to the value at the sensor node. If α increases, this
value increases so that we can collect more.

The latter observations are also confirmed by Figure 2.3(a) that depicts the
optimal collection probability versus α for different energy arrival distributions
and different values of the mean number of energy chunks λ arriving in a slot as
indicated. The collection cost is c = 2, the battery can store C = 32 energy chunks
and the mean value of the sensed data is S̄ = 2. The optimal collection probability
is higher for higher λ as an increase in λ implies that it is less likely that a lack
of energy prevents transmissions. Moreover, as an increase in the variance of the
energy chunk distribution (the variance of the geometric distribution is higher than
that of the Poisson distribution, which in turn is higher than that of the Bernoulli
distribution) implies that it is more likely to run out of energy, popt decreases with
the variance. Finally, we note that the optimal collection probability is not sensitive
to changes in α for low α , while it is very sensitive for high α , irrespective of the
energy chunk distribution.

Figure 2.3(b) illustrates the influence of the correlation in the information pro-
cess Sn on the variance of the value of information. We assumed that the auto-
covariance function of the information process decays exponentially with rate β :
σn = β nvar[S0]+ S̄2. Such a decay can e.g. be found when the information process
constitutes an auto-regressive process of order 1. Figure 2.3(b) shows the variance
of the value of the information at the optimal collection probability versus the dis-
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Figure 2.4: (a) Value of the information V̄p versus the polling probability p (a) for different
κ and (b) for different σ as indicated.

count factor α for β as indicated and for var[S0] = 16 and S̄ = 2. The collection
cost is c = 2, the battery can store C = 32 chunks and the energy arrival distribu-
tion is a Poisson distribution with mean λ = 1. The figure shows that for higher α

as well as for higher positive correlation in the sensing process, the variance of the
value of information increases considerably. While correlation does not affect the
mean value of information, it does affect the corresponding variance meaning that
the collected value of information is more likely to deviate considerably from its
average value.

Finally, we investigate the effect of correlation in the harvesting process. Us-
ing the results of Section 2.2.4, Figures 2.4(a) and 2.4(b) show the value of the
information V̄p versus the collection probability p when the harvesting process is
an interrupted Poisson process. The harvesting process is either active or inactive,
the mean time to remain active and inactive being denoted by κa and κi, respec-
tively. Let κ = κa +κi denote the mean length of an active-inactive cycle and let
σ = κa/κ denote the fraction of active slots. While active, the number of energy
chunks is Poisson distributed with mean λ , and there is no harvesting during inac-
tive slots. In both Figures, the collection cost is c = 1, the battery can store C = 32
energy chunks, the discount factor is α = 0.9, the mean value of the sensed data
is S̄ = 2, and N = 4 chunks are required per transmission. In Figure 2.4(a), we
fix σ = 50% and λ = 1 and consider different κ as indicated. Large κ means that
there are long periods with harvesting followed by long periods without harvest-
ing, which clearly affects performance. Moreover, the optimal collection proba-
bility decreases for larger κ as well, as it is likely that there is no energy during
long periods without harvesting. In Figure 2.4(b), we fix κ = 100 and choose dif-
ferent σ as indicated, while we keep the mean number of energy chunks per slot
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constant, σλ = 1. Small σ means that harvesting is concentrated in a few slots,
again followed by many slots without harvesting, and therefore negatively affects
performance. For increasing σ , the optimal collection probability increases as the
lengths of the periods without harvesting decrease.

2.3 Energy consumption for sensing
In the basic model, we assumed that there is always sufficient energy for sensing
the information from the environment. That is, we did not explicitly account for
any energy expenditure related to sensing. However, in many real situations, sen-
sors dissipate energy while sensing and it is reasonable to assume that they may not
have sufficient energy to sense the information in some time slots. In this section,
we incorporate this complication.

We again introduce a discrete-time stochastic model for studying the optimal
data collection probability in energy-harvesting hybrid WSNs and aim at control-
ling the collection frequency of the mobile sink. The concept of value or quality
of information is again key to our study. We first assume that the nodes are com-
pletely unaware of the value of their information. We then refine the model: while
the sensor node is still unaware of the value of the information it carries, it is aware
whether or not there is any value.

2.3.1 Mathematical model
We consider a stochastic performance model of an energy harvesting sensor node
in isolation. As in the preceding subsection, the performance of the sensor node
depends on three exogenous processes: (i) the sensing process, which describes
the value of the information that is sensed; (ii) the energy harvesting process; and
(iii) the data collection process, which models the presence of the mobile sink such
that the SN can offload its information.

We retain the assumptions and notation of the harvesting process, the data col-
lection process, the visits of the sink and the battery capacity. Recall that the num-
ber of harvested energy chunks is independent from slot to slot, while the value of
the sensed information constitutes a stationary ergodic sequence. For the energy
expenditure, we now however account for the energy that is consumed by sensing.
More precisely, we assume that transmitting and sensing data requires N > 0 and
M > 0 energy chunks, respectively, sensing having priority over transmissions if
there is insufficient energy for both. Let Tn be the indicator that there is a trans-
mission during slot n. As the sensor node harvests Hn chunks during slot n, the
evolution of battery level at slot boundary now becomes,

Bn+1 = min(Bn−M1{Bn≥M}−NTn +Hn,C) . (2.15)

This recursion accounts for the fact that the node only senses if there is a suffi-
cient energy to sense (this is for Bn ≥ M). Similarly, Tn takes care of the energy
utilisation when there is a transmission during a slot n.
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Let Vn denote the value of the sensed data in the sensor node at the beginning of
the nth slot. We retain the assumption that the value of the sensed data is additive
and discounted over time. Let 0≤ α ≤ 1 denote the discount factor. The values of
the data at two consecutive slot boundaries then relate as,

Vn+1 = αVn(1−Tn)+Sn1{Bn≥M} . (2.16)

The recursion above implies that any data sensed during slot n cannot be transmit-
ted during slot n. In addition, any chunks of energy harvested during slot n cannot
be used to sense and/or transmit data in slot n.

It now remains to express the indicator Tn that there is a transmission in terms
of Bn. We assume that the sensor node cannot evaluate the value of its information,
and therefore transmits if sufficient energy is available. We therefore have,

Tn =

{
1 for Pn = 1 and Bn ≥M+N ,

0 otherwise.

The set of recursions above now allows for determining the value of the in-
formation collected by the mobile sink. To this end, let vk = E[Vn1{Bn = k}] be
the mean value of the information at the sensor node for battery level k, and let
bk = P[Bn = k] be the probability of having battery level k. In view of the equa-
tions for Vn, Bn and Tn and by conditioning on the battery level and the availability
of a transmission opportunity in the preceding slot, we find that the mean value of
the information at battery level k adheres to the following set of equations,

vk = α

M−1

∑
`=0

v`hk−`+α

C

∑
`=M

v`hk−`+M−α p
C

∑
`=M+N

v`hk−`+M

+ S̄(bk−
M−1

∑
`=0

b`hk−`) , (2.17)

for k = 0,1, . . . ,C−1. whereas for k =C we have,

vC = α

M−1

∑
`=0

v`H̄C−`+α

C

∑
`=M

v`H̄C−`+M−α p
C

∑
`=M+N

v`H̄C−`+M

+ S̄(bC−
M−1

∑
`=0

b`H̄C−`) . (2.18)

To find the battery level probabilities, we again condition on the battery level
and the availability of a transmission opportunity in the preceding slot. We have
the following equations for the battery level probabilities,

bk =
M−1

∑
`=0

b`hk−`+
C

∑
l=M

b`hk−`+M + p
C

∑
l=M+N

b`(hk−`+M+N−hk−`+M) , (2.19)
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for k = 0,1, . . . ,C−1. The system of equations (2.19) along with the normalisation
condition

C

∑
k=0

bk = 1 ,

allows for solving for the probabilities bk. We can then solve the system of equa-
tions (2.17) and (2.18) for the conditional mean values vk.

Finally, we express the mean value of the sensed data per time slot that is
actually collected in terms of the vk’s as follows,

V̄ = p
C

∑
k=M+N

vk ,

as there are only transmissions if the battery level exceeds the threshold and there
is a transmission opportunity.

Remark 2.1. If C is small, both systems of equations (for bk and vk) are easily
solved. For larger C, we can exploit structural properties of the systems of equa-
tions. As hk = 0 for k < 0, we see that equation (2.19) expresses bk in terms of
the probabilities b` for `≤ k+M+N. This implies that the Markov chain Bk is a
G/M/1-type Markov chain. Hence, solution methods for a G/M/1-type Markov
chain (e.g. [63]) can be applied to solve the system of equations of the bk’s. Anal-
ogously, we see that equation (2.17) expresses vk in terms of v`, for ` < k+M.

Remark 2.2. The assumption h0 > 0 and equation (2.17) imply that limp→0 vk <∞

for k <C and any value of α , as well as for k =C and α < 1. For α = 1, we have
0 < limp→0 pvC < ∞. This shows that for α < 1 we have limp→0 V̄ = 0, whereas
for α = 1 we have limp→0 V̄ = limp→0 pvCB > 0.

Remark 2.3. We assumed that the battery can be modelled by a queueing-like
system with “arrivals” and “departures” of chunks of energy. Such battery models
were considered several times in literature, see e.g. [64,65]. While being modelled
as a queueing system, one prefers that the battery/queue is full in contrast to most
other queueing systems. That is, the preferred operation differs significantly.

2.3.2 A refinement
While it is reasonable to assume that the sensor node cannot value its data, it is
not always reasonable to assume that the sensor node is unaware of the presence
of data. We therefore now refine the model so that the sensor node does not trans-
mit when there is no data to transmit. To this end, we introduce the indicator An,
which is 1 if the node has data to transmit and 0 otherwise. Of course we have
An = 1{Vn>0}, but it is more convenient to track An separately, see below. In addi-
tion, we assume that the sequence {Sn,n∈N} exhibits the following independence
assumption. The indicators, 1{Sn=0}, that there is nothing to sense constitutes a se-
quence of independent and identically distributed random variables. Note that this
assumption does not exclude the presence of correlation in the sensing process. As
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in the preceding section, S̄ = E[Sn] denotes the mean value of the sensed informa-
tion. Moreover, let s0 = P[Sn = 0] denote the probability that there is nothing to
sense.

Following similar arguments as in the preceding section, we find that the sys-
tem variables Vn, An and Bn adhere the following set of recursive equations,

Vn+1 = αVn(1−Tn)+Sn1{Bn≥M} ,

An+1 = 1{Sn>0}1{Bn≥M}+(1−1{Sn>0}1{Bn≥M})An(1−Tn) ,

Bn+1 = min(Bn−M1{Bn≥M}−NTn +Hn,C) ,

where Tn denotes the indicator that there is a transmission,

Tn = 1{Bn≥M+N}AnPn .

That is, there is a transmission when (i) there is sufficient energy (Bn ≥ M +N),
(ii) there is something to send (An = 1) and (iii) there is a transmission opportunity
(Pn = 1).

In contrast to the preceding section, the sequence {Bn,n ∈N} is not a Markov
chain as the evolution of Bn depends on the presence or absence of information.
Therefore we focus on the sequence {(An,Bn),n ∈ N}, which is a Markov chain
(from (1.4)). Let b̃k = P[Bn = k,An = 0] be the probability that there are k chunks
of energy in the battery at slot boundaries and there is no information at the sensor
node. By conditioning on the values of Pn, Hn and An, we find,

b̃k =
M−1

∑
`=0

b̃`hk−`+ s0

C

∑
`=M

b̃`hk−`+M + ps0

C

∑
`=M+N

b̂`hk−`+M+N , (2.20)

for k = 0,1, . . . ,C−1, and,

b̃C =
M−1

∑
`=0

b̃`H̄C−` + s0

C

∑
`=M

b̃`H̄CB−`+M + ps0

C

∑
`=M+N

b̂`H̄C−`+M+N .

Here, b̂k = P[Bn = k,An = 1] is the probability to have k chunks and information at
a slot boundary. Again, by conditioning on the values of Pn, Hn and An, we have,

b̂k =
M−1

∑
`=0

b̂`hk−`+
C

∑
`=M

(b̂`+ b̃`(1− s0))hk−`+M

+ p
C

∑
`=M+N

b̂`((1− s0)hk−`+M+N−hk−`+M) , (2.21)

for n = 0,1, . . . ,C− 1. Complementing the set of equations above with the nor-
malisation condition,

C

∑
n=0

(b̂n + b̃n) = 1 ,
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allows for determining the probabilities b̃n and b̂n. For further use, we also define
the probability bn to have n chunks of energy at the node, irrespective of whether
there is information at the node,

bn = b̃n + b̂n .

We now focus on the mean value of the information at the sensor node. Let
vn = E[Vk1{Bk=n}] be the mean value of information when there are n chunks of
energy available. Notice that by the definition of Ak we have that Ak = 0 implies
Vk = 0. Hence, there is no need to focus on the expectation of Vk for Ak = 0 and
Ak = 1 as vn = E[Vk1{Bk=n}] = E[Vk1{Bk=n,Ak=1}] and E[Vk1{Bk=n,Ak=0}] = 0. By
conditioning on the presence of transmission opportunities, the availability of data
and the amount of harvested energy, we find,

vk =
M−1

∑
`=0

v`αhk−`+
C

∑
`=M+N

b̂`pS̄hk−`+M+N +
C

∑
`=M

(αv`+ S̄b`)hk−`+M

−
C

∑
`=M+N

(αv`+ S̄b̂`)phk−`+M ,

for k = 0, . . . ,C−1, while for k =C we have,

vC =
M−1

∑
`=0

v`αH̄C−`+
C

∑
`=M+N

b̂`pS̄H̄C−`+M+N +
C

∑
`=M

(αv`+ S̄b`)H̄C−`+M

−
C

∑
`=M+N

(αv`+ S̄b̂`)pH̄C−`+M .

Finally, as we collect information when there is energy and information at the
sensor at a transmission opportunity, the mean value of the information collected
at a slot boundary equals,

V̄ = p
C

∑
`=M+N

v` .

Remark 2.4. We note that the model of this section does not reduce to the model
of Section 2.3 when the sensor always picks up information, that is, for s0 = 0.
Even for s0 = 0, it is still possible that there is no new value of information during
a time slot as there may be no sensing due to a lack of energy. If we additionally
assume that sensing does not take energy (M = 0), both models do correspond.
Indeed, equation (2.20) then implies b̃k = 0, whereas the sets of equations (2.19)
and (2.21) are the same.

2.3.3 Optimal data collection and numerical results
We now investigate the optimal data collection policy for the sensor node at hand.
We assume that there is a cost c associated to data collection so that the average
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Figure 2.5: The mean value of the information V̄p versus the polling probability p for (a)
different values of the battery capacity C and (b) different values of the decay rate α as
indicated.

value after collection equals,

V̄p =−cp+V̄ .

We first illustrate the analysis of the initial model, introduced in Section 2.3.1
by some numerical examples. We then complement these with some numerical
results for the refinements which were discussed in Section 2.3.2 In either case,
we particularly focus on the optimal collection probability p.

Information-agnostic transmissions

We first investigate how the battery capacity and discount factor affect the mean
value of information. To this end, we consider the initial model assuming Poisson
energy harvesting — the energy harvesting distribution is Poisson with mean λ —
and energy discretisation so that M = 1 and N = 4 chunks of energy are required
for sensing and transmitting, respectively.

Figures 2.5(a) and 2.5(b) depict the value of information V̄p in terms of the data
collection rate p. We assume that the cost of collection is half the mean value of
information collected in a slot: c = 1 and S̄ = 2. Figure 2.5(a) fixes the discount
factor to α = 0.9 and shows V̄p for various values of the battery capacity C as
indicated. In contrast, Figure 2.5(b) fixes the battery capacity to C = 32 and shows
V̄p for various values of the discount factor. For both figures, the mean number of
chunks of harvested energy equals λ = 2.
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Figure 2.6: The mean value of the information V̄p versus the polling probability p for
a Poisson (a) and geometric (b) energy harvesting distribution, for different values of the
mean amount of harvested energy λ as indicated.

It can be seen from both figures that the value of information V̄p first increases
for increasing values of the collection probability and then decreases again. This
observation can be explained by noting that for higher values of p the chance of
having insufficient energy increases as more energy is consumed for transmissions.
For high p, it is quite likely that there is insufficient energy to transmit so that the
possible gain of frequent data collection cannot compensate the collection cost.
Further, Figure 2.5(a) shows that it is beneficial to increase the battery size. Having
a battery with more capacity facilitates compensating periods with little energy
harvesting. However, the marginal gain obtained by increasing the battery capacity
quickly disappears. Increasing the discounting factor is equally beneficial as can
be seen from Figure 2.5(b). A higher discounting factor implies that the value
of information decays more slowly so that more information is available during
collection.

We now focus on the effect of the distribution of the harvested energy. To
this end, figures 2.6(a) and 2.6(b) depict the mean value of information versus the
collection probability p for Poisson distributed (Figure 2.6(a)) and geometrically
distributed (Figure 2.6(b)) energy harvesting. Different values for the mean num-
ber λ of harvested chunks in a slot are assumed as indicated. As for the preceding
figures, M = 1 and N = 4 chunks of energy are required for sensing and transmit-
ting, respectively. Moreover, the discounting factor is equal to α = 0.9, the mean
value of sensed information S̄ = 2 is twice the collection cost c = 1, and the battery
can store up to C = 32 chunks of energy.
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Figure 2.7: The optimal collection probability popt (a) and the corresponding value of
information Vopt (b) for different values of α as indicated.

Comparing Figures 2.6(a) and 2.6(b) reveals that the distribution of the har-
vested energy can affect the value of information V̄p as well as the optimal col-
lection probability p. Increasing the harvesting capability of the sensor node (in-
creasing λ ) is initially beneficial, but the marginal gain from a further increase
quickly disappears. Indeed, if there is already sufficient energy, one cannot ex-
pect that a further increase of the harvesting capability considerably improves the
performance of the sensor node.

Finally, we consider the effect of the collection cost on the optimal collection
probability and the associated optimal value of information. Figure 2.7(a) shows
the optimal collection probability p versus the collection cost c for different values
of the discount factor α as depicted. Figure 2.7(b) depicts the value of information
corresponding to this optimal probability versus the collection cost c. Apart from
the discount factor and the collection cost, the parameters are chosen as in Figures
2.5(a) and 2.5(b): the mean value of sensed information equals S̄ = 2, the energy
harvesting distribution is a Poisson distribution with mean 1, M = 1 and N = 4
chunks of energy are required for sensing and transmissions and the battery can
store up to C = 32 of these chunks.

The optimal collection probability quickly decreases for increasing collection
costs. As the collection cost increases, any gain of collecting quickly drops due
to the cost of collecting. Further, if α is higher, it is more beneficial to collect
(see Figure 2.5(b)) so that the optimal collection probability is higher as well. In
addition, the value of information V̄p at the optimal collection probability is higher
for increasing values of α so that it is not only beneficial to collect more, but the
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Figure 2.8: The mean value of information versus the collection probability for (a) s0 = 0.9
and (b) s0 = 0.1 and different values of α as indicated.

net gain of collecting more is higher as well.

Information-aware transmissions

To evaluate the use of the refined model, we now focus on how the absence of
information probability s0 affects the value of information.To make its influence
clear, figures 2.8(a) and 2.8(b) depict the value of information versus the collection
probability, for high and low s0 respectively, and for various values of the discount
factor α as depicted. To allow for a comparison with the model of Section 2
and the results of Section 4.1, we largely adopt the parameters of the latter: the
mean value of sensed information equals S̄ = 2, which is twice the cost c = 1 of
collecting. The energy harvesting distribution is a Poisson distribution with mean
λ =2. In addition, M = 1 and N = 4 chunks of energy are required for sensing and
transmissions and the battery can store up to C = 32 of these chunks.

As S̄ is fixed, a high s0 not only means that most slots there is no information,
but also means that there is considerable information in the slots with information.
That is, the sensing is a bursty process. In contrast, small s0 means that many slots
carry a small amount of information. It is not surprising that these considerable
differences in information arrival patterns translate into different collected values
of information. This is indeed confirmed by comparing Figures 2.8(a) and 2.8(b).
The figures show that burstiness is beneficial. This can be explained by noting that
no energy is lost on sending a limited amount of information. Indeed, for s0 = 0.9
the chance that there is no information is considerable, whereas the value of the
information is considerable whenever there is something to send. Further compar-
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Figure 2.9: The optimal collection probability popt (a) and the value of information Vopt
(b) versus absence of information probability s0 for different values of α as indicated.

ison reveals that the value of information is considerably larger for bursty sensing
compared to non-bursty sensing. Moreover, the optimal collection probability is
only sensitive to changes in the discount factor for bursty sensing.

This observation is also confirmed by Figures 2.9(a) and 2.9(b) which depict
the optimal collection probability and the corresponding value of information ver-
sus the probability s0, respectively. Different values of the discount factor are
assumed as depicted. The same parameters are assumed as in Figures 2.8(a) and
2.8(b), with the exception of s0, which now varies. We see that the optimal collec-
tion probability and the corresponding value of information increases for increas-
ing s0 as explained before. Moreover, the difference between the optimal collec-
tion probabilities for different α is largest for high s0. Somewhat surprising and
opposite to the collection probabilities, the difference between the corresponding
values of information is largest for small s0.

2.4 Correlated energy harvesting
Due to the vast increase in the number of battery powered wireless devices over
the past couple of decades, energy harvesting from natural resources is becoming
more crucial than ever to prolong the lifetime of such devices. The various sources
for energy harvesting (EH) are wind turbines, photovoltaic cells, electrostatic and
piezoelectric devices and electromagnetic devices [66]. However, due to the ran-
dom nature of harvesting sources, the design and modelling of the system require
careful analysis. In particular, depending on the spatial distribution of EH devices,
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Figure 2.10: Markov chain model of energy harvesting

the amount of energy harvested by different devices can be highly correlated. For
example, consider EH devices harvesting energy from tidal motion. The device
located at the tidal crest can generate energy faster than the device located at the
tidal trough. In this case, the time delay in the generation of energy between such
devices is equal to the speed of one wavelength [67].

Similarly, the amount that can be harvested exhibits temporal correlation as
well. For example, if a cloud passes by a sensor’s solar panel, the panel temporarily
outputs less energy. In a typical scenario, the cloud passes by slowly. It is then
the case that if there is a cloud at time k (and the corresponding energy output
reduction), it is more likely that the cloud is still there at time k+ 1. One simple
way to model the temporal correlation in the energy harvesting process is to model
it by a two state Markov chain as depicted in Figure 2.10. The state space of the
Markov chain is {G,B}, where G and B denote the GOOD and BAD harvesting
states, respectively. Let Ek be the underlying harvesting process and if Ek = G,
then we can assume that energy is harvested with a good rate, for example the
amount is Poisson distributed with a high mean. If Ek = B, then there is no energy
harvesting. Such correlation was already accounted for in Section 2.2.4 in the
simplified setting where energy consumption for sensing was not accounted for.

We now introduce time correlation in the energy harvesting process in the more
general framework of Section 2.3. We again show that the model allows for study-
ing the trade-off between the cost of frequent data collection — data collection
is not only costly but also induces increased energy consumption at the SNs —
and timely data delivery. Recall that the modelling assumptions allow for time
correlation in the data sensing process, so that now both the sensing and energy
harvesting processes exhibit time correlation. At the end of the section, we present
various numerical examples that investigate the SN performance in terms of var-
ious system parameters including the polling probability of the mobile sink, the
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battery capacity, the parameters of the harvesting process, etc. In particular, the
numerical section discusses how correlation in the harvesting process affects the
performance of the network.

2.4.1 Mathematical model
We now model the sensor node with the additional complication of time correla-
tion in the energy harvesting process. The basic operation of the node is the same
as in the preceding sections, i.e., sensor data is collected and stored in on-board
memory, and energy chunks are collected and stored in the battery. Whenever the
mobile sink passes by, the data (if any) is transferred to the mobile sink, provided
the sensor node has sufficient energy to transmit the data and there is any data to
transmit. Hence, three interacting random processes — the energy harvesting pro-
cess, the sensor data arrival process and the data collection process — determine
the evolution of the state of the sensor node over time. Since the sensor data ar-
rival and the data collection process are the same as in preceding section, we only
describe the energy harvesting process below.

Energy harvesting process

We introduce a Markov-modulated energy harvesting process, where the modulat-
ing process takes values in the set J = {1, . . . ,J}. Let En ∈J denote the state
of the modulating process during slot n, and let Hn denote the number of chunks
of energy that are harvested in this slot. The energy harvesting process is then
characterised by the following marked state transition probabilities,

θi j(m) = P[Hn = m,En+1 = j|En = i] .

That is, θi j(m) is the transition probability to go from state i to state j while har-
vesting m chunks of energy. For further use, we also define the transition proba-
bilities θ̄

(m)
i j from state i to state j while harvesting at least m chunks,

θ̄i j(m) = P[Hn ≥ m,En+1 = j|En = i] =
∞

∑
`=m

θi j(`) .

The other battery parameters are the same; the battery can store at most C
energy chunks with M chunks required for sensing and N for the transmission.
Sensing has priority over transmissions, meaning that the node senses when there
are M chunks present and transmits when there are M+N energy chunks present,
there is information to send and the mobile sink is in range.

2.4.2 Performance analysis
We subsequently study the evolution of the battery level and the value of informa-
tion. Compared to Section 2.3, there is only a change in the assumptions on the
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energy harvesting process. Therefore, the recursions that describe how the bat-
tery levels, and the value of information changes over time still apply. Recall that
the battery level Bk, the value of information Vk and the indicator Ak adhere the
following recursions,

Bn+1 = min(Bn−M1{Bn≥M}−NTn +Hn,C) ,

Vn+1 = αVn(1−Tn)+Sn1{Bn≥M} ,

An+1 = 1{Sn>0}1{Bn≥M}+(1−1{Sn>0}1{Bn≥M})An(1−Tn) .

The first and second term of An+1 correspond to the case that information was and
was not sensed during the preceding slot, respectively. In the latter case, there is
only information at the sensor node if there was already information at the preced-
ing slot boundary that was not transmitted. Notice that the evolution of An only
depends on the indicator that there is information 1{Sn>0}, and not on the actual
value of Sn. Finally, we again express Tn in terms of An, Bn and Pn as follows,

Tn = An 1{Bn≥M+N}Pn .

Battery level probabilities

We first focus on expressions for the battery level probabilities. To this end, we
note that the process {(Bn,An,En),n ∈N} is a Markov process, and we study its
stationary distribution. Let

b̃ j(k) = lim
n→∞

P[Bn = k,An = 0,En = j]

be the stationary probability that there are k chunks of energy in the battery, while
there is no information at the sensor node (An = 0), and the energy harvesting
process is in state En = j, j ∈J . The stationary battery level probabilities b̂ j(k)
when there is information at the sensor node are defined likewise,

b̂ j(k) = lim
n→∞

P[Bn = k,An = 1,En = j] .

Note that we account for the availability of information as the decision to transmit
depends on the availability of information, which in turn affects the battery level.

Expressing the state probabilities at slot n+ 1 in terms of those at slot n by
conditioning on the values of An,Pn, En and Hn, and then sending n to ∞ yields the
following set of balance equations,

b̃ j(k) =
J

∑
i=1

M−1

∑
`=0

b̃i(`)θi j(k, `)+ s0

J

∑
i=1

C

∑
`=M

b̃i(`)θi j(k, `−M)

+ ps0

J

∑
i=1

C

∑
`=M+N

b̂i(`)θi j(k, `−M−N) , (2.22)

and,
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b̂ j(k) =
J

∑
i=1

M−1

∑
`=0

b̂i(`)θi j(k, `)+
J

∑
i=1

C

∑
`=M

(
b̂i(`)+(1− s0)b̃i(`)

)
θi j(k, `−M)

+ p
J

∑
i=1

C

∑
`=M+N

b̂i(`)((1− s0)θi j(k, `−M−N)−θi j(k, `−M)) , (2.23)

for k = 0,1, . . . ,C with j ∈J . Here, with a slight abuse of notation, we introduced
the following shorthand notation for i, j ∈J and `≤ k,

θi j(k, `) =

{
θ̄i j(k− `) for k =C ,

θi j(k− `) otherwise.

We collect the probabilities b̃ j(k) and b̂ j(k) in the row vectors b̃(k)= [b̃ j(k)]Jj=1

and b̂(k) = [b̂ j(k)]Jj=1 for each k, and introduce the row vector b(k) = [b̃(k), b̂(k)].
The equations above can then be summarised in the following matrix equation,

b(k) =
C

∑
`=0

b(`)B(`,k) , (2.24)

where B(`,k) = [Bi j(`,k)]2i, j=1 with,

B11(`,k) = 1{`<M}A(k, `)+ s01{`≥M}A(k, `−M) ,

B21(`,k) = ps01{`≥M+N}A(k, `−M−N) ,

B12(`,k) = 1{`≥M}(1− s0)A(k, `−M) ,

B22(`,k) = 1{`<M}A(k, `)+1{`≥M}A(k, `−M)

+ p1{`≥M+N} ((1− s0)A(k, `−M−N)−A(k, `−M)) .

In the former expressions, A(k, `) is the J×J matrix with elements θi j(k, `), i, j ∈
J . Finally, let b = [b(k)]Ck=0 and B = [B(`,k)]C`,k=0 so that (2.24) immediately
yields b = bB. The stationary probability vector b is the normalised solution of
this matrix equation.

It is easy to check that B(`,k) is a zero matrix for k < l−M−N. Indeed, the
battery level drops for at most M+N levels during a slot. Hence, B has an upper-
Hessenberg block structure with blocks of size (2J(M+N))× (2J(M+N)). This
block structure can then be exploited to calculate the stationary probability vector
b, for example by using linear level reduction (see e.g. [68]).

Mean value of information

We now study the mean value of information at the sensor node. Noting that An = 0
implies Vn = 0, we obviously have,

E[Vn1{Bn=k,An=0,En= j}] = 0 ,
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for k = 0,1, . . . ,C and j ∈J . Let

v j(k)
.
= lim

n→∞
E[Vn1{Bn=k,An=1,En= j}]

be the mean value information when there is information, when there are k chunks
of energy and the harvesting process is in state j, k = 0,1, . . . ,C and j ∈J . Fur-
thermore, let v(k) = ∑

J
j=1 v j(k) be the mean value information when there is infor-

mation and there are k chunks of energy.
As for the battery level probabilities, we again condition on the values of Bn, An

and Pn, to express the mean E[Vn+11{Bn+1=k,An+1=1,En+1= j}] in terms of the mean
E[Vn1{Bn=k,An=1,En= j}] and the battery level probabilities. After taking the limit
n→ ∞, we find

v j(k) =
J

∑
i=1

C

∑
`=M

(αvi(`)+ S̄ (b̂i(`)+ b̃i(`)))θi j(k, `−M)

+α

J

∑
i=1

M−1

∑
`=0

vi(`)θi j(k, `)+ pS̄
J

∑
i=1

C

∑
`=M+N

b̂i(`)θi j(k, `−M−N)

− p
J

∑
i=1

C

∑
`=M+N

(αvi(`)+ S̄b̂i(`))θi j(k, `−M) , (2.25)

for k ∈ {0,1, . . . ,C}. Collecting the v j(k) for j ∈J in the row vector v(k) =
[v j(k)]Jj=1, we obtain the system of vector equations,

v(k) = α

C

∑
`=0

v(`)V(`,k)+ S̄w(k) , (2.26)

for k ∈ {0,1, . . . ,C} with

V(`,k) = 1{`<M}A(k, `)+1{`≥M}A(k, `−M)− p1{`≥M+N}A(k, `−M) ,

and

w(k) =
C

∑
`=M

(
b̂(`)+ b̃(`)

)
A(k, `−M)

+ p
C

∑
`=M+N

b̂(`)(A(k, `−M−N)−A(k, `−M)) .

As for the battery probabilities, the equations for the mean value of informa-
tion is a set of J(C + 1) equations with as many unknowns and is easily solved
provided C is not prohibitively large. For larger C, one can again exploit the
upper-Hessenberg block structure of the set of equations, the blocks now being
J(M+N)× J(M+N) matrices.
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2.4.3 Cost and profit of collection
Once the mean value of information at the sensor node for the different battery lev-
els is determined by numerically solving the systems of equations in the preceding
subsections, we can determine the cost or profit of data collection. Noting that
data is only collected if there is sufficient energy and the mobile sink passes by,
we find that the profit of the data collection, i.e. the mean value of information of
the sensor data that is actually collected (per time slot), can be expressed in terms
of the vk’s as follows,

V̄ = p
C

∑
k=M+N

J

∑
j=1

v j(k) .

Assuming that there is a fixed cost for every time the mobile sink collects data
from the sensor, the mean cost of collection is linear in p

C̄ = c p

where c is a constant cost, expressed in terms of the value of information. The cost
c can be anything related to the latency or loss of information while sending the
data. Subtracting the cost of collection from the mean value of information that is
collected, we find that profit or the mean value of the data collection equals

V̄p =−c p+V̄ .

Remark 2.5. Recall that the collection cost relates to the trajectory that is taken
by the mobile sink: p is the probability that the sink is available, or the fraction
of time that the sink is in range. If the mobile sink moves continuously, a higher
p means that the mobile sink will visit the sensor node more often, while if the
mobile sink is not constantly moving, increasing p means that the mobile sink
remains idle for less time. In either case there is a cost increase, which we assume
to be proportional to p.

Remark 2.6. While we mainly focus on a single node, it is worth pointing out that
the results for the single sensor node can also be used to find the optimal trajectory
of the mobile sink. By carefully analysing a given trajectory of a mobile sink that
covers a set of sensor nodes, one can find the fraction of time the mobile sink is
in range for every sensor node. Say pk is this fraction for the kth sensor node.
Given pk, the calculations above allow for finding the value of information at the
kth sensor node. It then remains to find the trajectory of the mobile sink which
maximises the sum of the values of information.

2.4.4 Numerical results and discussion
Having established a numerical procedure to calculate the mean value of the data
collection in Section 2.4.2 and of the cost in Section 2.4.3, we now illustrate our
approach by some numerical examples. In particular, we study the mean value
of the data collection V̄p in terms of the collection probability p, as well as the
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optimal collection probability in terms of various system parameters, including the
effect of time correlation in the energy harvesting process. Note that the optimal
collection probability below is only locally optimal. That is, it is the collection
probability that optimises the value of information of the single sensor node under
consideration, while accounting for some collection cost.

For the numerical examples, we assume that the harvesting process is modu-
lated by a Markov process with two states, J = {1,2}. The harvesting process
is inactive in State 1 while the number of energy chunks constitutes a sequence of
independent Poisson distributed random variables with mean λ when the modulat-
ing process is in State 2 with hm = exp(−λ )λ m/m!. As there are only two states,
it suffices to specify the transition probability from the active to the inactive state
θ21 and the transition probability from the inactive to the active state θ12.

The following alternative characterisation of the harvesting process will be
used in the remainder. Let σ be the fraction of time the harvesting process is
in the active state and let κ be the average duration of an active and an inactive
period. The latter is a measure for the time-scale of the energy harvesting pro-
cess, larger κ meaning that the harvesting process alternates more slowly between
states. Simple calculations yield,

σ =
θ21

θ12 +θ21
, κ =

1
θ12

+
1

θ21
, λ

∗ = λ σ =
λ θ21

θ12 +θ21

For a fixed σ , any choice κ ≥max(σ−1,(1−σ)−1) uniquely defines θ12 and θ21.
In particular, for κ = σ−1+(1−σ)−1 we have no time correlation as θ12 = 1−θ21
so that the next state is active or inactive, independently from the current state.

We now define the parameter values used throughout this section. On average
λ = 5 energy chunks are harvested in active slots, unless indicated otherwise. It
takes M = 1 energy chunk to sense the data and N = 4 energy chunks for trans-
mitting the information. The average value of the sensing data is S̄ = 2, while we
assume that during most time slots there is no data: s0 = 0.9. Moreover, we set the
information decay rate equal to α = 0.9 and the maximum capacity of the battery
to C = 16, unless otherwise specified. Finally, the cost to collect the data is c = 1
for all plots.

Figure 2.11 depicts the mean value of information V̄p in terms of the collec-
tion probability p. Energy harvesting is slightly bursty: we assume σ = 0.4 and
κ = 16. Figure 2.11(a) shows the mean value of information for different battery
capacities C as indicated, while the decay rate is fixed to α = 0.9. On the other
hand, Figure 2.11(b) fixes the battery capacity to C = 16 and shows V̄p for different
decay rates as indicated. From both figures, we see that V̄p = V̄ − C̄ is a concave
function of p. This observation can be explained by noting that an increase of
p is beneficial for small p, as the data is collected more often (the increase of
V̄ compensates the additional collection cost C̄). For high p, it is however quite
likely that there is insufficient energy to transmit. Therefore, the possible gain of
frequent data collection cannot compensate the collection cost (the increase of V̄
no longer compensates the additional collection cost C̄). Further, Figure 2.11(a)
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Figure 2.11: The mean value of the data collection V̄p versus the polling probability p for
(a) different values of the battery capacity C and (b) different values of the decay rate α as
indicated.

shows that it is beneficial to increase the battery size. Having a battery with more
capacity facilitates compensating periods with limited energy. Similarly, Figure
2.11(b) indicates that increasing the discounting factor also leads to better perfor-
mance. A higher discounting factor implies that the value of information decays
more slowly so that more information is available for collection. Of course, the
discounting factor models the timeliness of the information and cannot be modi-
fied freely in practice. One may expect that for p = 1, V̄p does not depend on the
discounting factor as data is constantly collected. This is however not the case, as
a lack of energy prevents constant transmissions. Summarising, in selecting the
collection probability p, there is a clear trade-off between the cost of frequent col-
lection C̄, and the collected information V̄ , while more battery capacity and higher
discounting factors both lead to a higher mean value of information V̄p.

We now focus on the effect of varying the length of the active and inactive
harvesting periods. Figure 2.12(a) depicts V̄p versus the polling probability p for
different κ as indicated. Here, we fix the fraction of time the system is active:
σ = 0.4. It is observed that increasing the length of the active and inactive periods
affects V̄p adversely. For high values of κ , the system has longer active periods
followed by longer inactive periods. During long inactive periods, the battery
drains completely as there is no energy harvesting while excess energy during
active periods is lost as the battery capacity is limited. As a result, there will
be less value of information to be collected by the mobile sink. Figure 2.12(b)
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Figure 2.12: The mean value of the data collection V̄p versus the polling probability for
different energy harvesting process (a) and mean value of the data collection V̄p versus
energy harvesting rate λ for different fractions of active time σ as indicated (b).

shows the mean value of the data collection versus the energy harvesting rate for
different values of σ . We fix the data collection probability to p = 0.2 and the
time-scale parameter to κ = 16. It can be clearly seen from the figure that the
increase in harvesting capability improves the system performance. As κ is fixed,
increasing σ means the system has longer active periods during which the battery
level increases on average, and shorter inactive period for which the battery level
decreases on average. Therefore, the chance of having sufficient energy for data
transmissions increases, and therefore also the mean value of information collected
by the mobile sink. However, if there is already sufficient energy for data sensing
and transmissions, no further improvement is seen. In this case, the fixed battery
capacity plays an important role. There is no additional benefit from longer active
periods for high λ , since the battery reaches its maximum capacity quickly and
excess energy chunks are lost. Note that the order of the curves is reversed for
very low energy harvesting rates. This may be explained by the fact that during
longer active periods with less harvesting (large σ ) there is energy for sensing but
not enough energy for transmissions when an opportunity arises. For larger λ ,
smaller σ imply that the harvesting is more concentrated. However not all energy
can be stored as the battery capacity is finite.

To better understand the influence of the time-scale parameter κ , Figure 2.13
shows V̄p versus κ , for fixed σ = 0.4 and various λ as indicated (Figure 2.13(a))
and for fixed λ = 5 and various σ as indicated (Figure 2.13(b)). As in the preced-
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Figure 2.13: The mean value of data collection V̄p versus average duration of active and
inactive process κ for (a) different values of the energy harvesting rate λ and (b) different
fractions of active time σ as indicated.

ing plot, the collection probability is fixed to p = 0.2. Figure 2.13 confirms the
observation that an increase of κ leads to a decrease of V̄p. Even when the har-
vesting capability is considerable, a performance degradation is unavoidable when
harvesting is interrupted for a long time. This effect is mitigated if one increases
the battery capacity, as a fully charged battery with higher capacity can sustain the
operation of the SN for longer times without harvesting.

The time-scale parameter κ also affects the value of the optimal collection
probability popt . Figure 2.14 depicts the value of the optimal collection proba-
bility popt (Figure 2.14(a)) and the corresponding mean value of information V̄opt
(Figure 2.14(b)) versus κ for different values of the discounting factor α as in-
dicated. We set σ = 0.2 and λ = 5. For increasing κ , it is optimal to collect
more if κ is small. In contrast, for higher κ-values, it is optimal to collect less
if κ further increases. While this is not intuitively clear, simple arguments show
that the optimal collection probability increases as long as the average information
at the sensor node exceeds the collection cost. As the average information at the
sensor decreases for increasing κ , the optimal collection probability first increases
and then decreases. Similar arguments explain the difference in decay rate of the
optimal collection probability for different discount factors α . The resulting opti-
mal mean value is easier explained: discounting less means that the information is
longer available at the sensor node, and that more information is collected.

We now investigate how the absence of information probability s0 affects the
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Figure 2.14: The optimal collection probability popt (a) and the corresponding mean value
of the collected information V̄opt (b) vs. the time-scale parameter κ for different α as indi-
cated.

optimal data collection probability and the corresponding value of information. In
Figure 2.15, we vary s0 while S̄ is fixed. Higher s0 means there is less chance that
information arrives in a slot. However, if there is data, the information it carries is
more significant. In other words, the process Sn is more bursty. We again plot the
optimal collection probability popt (Figure 2.15(a)) and the corresponding value
of information V̄opt (Figure 2.15(b)). The harvesting process is characterised by
σ = 0.2 and κ = 16. It is observed from Figure 2.15(a) that the optimal collection
probability increases as the information process becomes bursty. Indeed, for in-
creasing s0, the data should be collected more frequently as one does not want to
miss out on the rare occasions that there is information.

Finally, we analyse the effect of changing M and N on the mean value of data
collection in Figure 2.16. We increase the battery capacity to C = 64 and keep high
energy harvesting rate, λ = 16. This is done to ensure that the node has enough
energy to sense or transmit the information when M and N are high. The values
of the other parameters are σ = 0.6, κ = 8 and p = 0.3. Figure 2.16(a) shows
the mean value of information V̄p versus the number of energy chunks required to
sense the data for different N as indicated. It can be easily seen from the figure that
increasing M affects V̄p adversely. Larger M means that the node requires more
energy to sense new information from the environment. Thus, there will be less
information present at the node as M increases, resulting in less data collection
at the sink. It is also observed from the figure that performance of the system is
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better for small N as expected. This is also confirmed by Figure 2.16(b) where we
observe V̄p decreasing with N. Note that the curves are not entirely smooth. Close
inspection shows that the M values of V̄p, which cause the irregularity are those
values for which the battery capacity C can be expressed as the sum of an integer
multiple of M and an integer multiple of M +N. For these values, a full battery
provides just enough energy for a number of sensing operations and transmissions.
A further increase of N then implies that a full battery no longer provides enough
energy for these operations.

2.5 Summary
In this chapter, we investigated the value of information in hybrid wireless sensor
networks that harvest energy from their environment. We first proposed a basic
analytical model and provided the stability analysis of the value of information
process, only assuming that the value of the sensed information is a stationary
ergodic process. We also calculated the first two moments theoretically under these
assumptions, before numerically illustrating the impact of different parameters on
VoI.

We then investigated various extensions of the basic model. A first extension
comprised the inclusion of energy expenditure for the sensing operation. We stud-
ied this extension in two settings. Initially, we assumed that the sensor nodes
were unable to assess neither the presence nor the value of the information. A
refined model then assumed that sensor nodes were able to assess the presence of
information but not the value of information. For both models, numerical exam-
ples revealed the complex interplay between battery dynamics and the value of
information. For the refined model, we however needed to impose an additional
assumption on the sensing process: while we still allow for stationary sensing, we
do assume that the indicator that there is no information constitutes a sequence of
independent random variables.

Since energy harvesting is expected to be bursty, we then extended our model
to allow for burstiness in the harvesting process. More precisely, we introduced a
Markovian environment process which modulates the energy harvesting process.
As the basic model and its refinements already accounted for temporal correlation
in the sensing process, we could now model correlation in both the harvesting and
sensing processes. As expected, we observed that battery dynamics have an even
more profound impact on the value of information.
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3
A stochastic recursion

model

Every day we make many decisions that have immediate and long-term conse-
quences. So to make the optimal decision, one not only needs to account for
their present impact, but also for their impact on future outcomes. In this chapter,
we describe a sequential decision-making model for an energy-harvesting sensor
node. At specified points in time, the sensor node observes its battery and value
of information state and chooses an action accounting for its environment. The
environment can include a single or a combination of many surrounding objects
such as the node’s location coordinate, the available energy in the battery and the
value of information. The action choice produces two results: the node receives
an immediate reward (or incurs an immediate cost), and the system evolves to a
new state at a subsequent point in time according to a probability distribution that
depends on the action taken. At this subsequent point in time, the node faces a
similar problem, but the state of the system is (possibly) different. The actions
that a sensor node can take, can be simple decision rules like sleep-wake strategies
for transmission to conserve energy or complex commands like a change of trans-
mission power to achieve error-free communications, or to optimise the amount
of information that can be sent. Such complex system dynamics can be modelled
using Markov decision processes (MDPs) in order to achieve the desired objec-
tive. The goal of a node is then to choose the sequence of actions that leads to
the optimal performance with respect to a predefined performance criterion. A
Markov decision process adds actions to the Markovian description of the model,
while retaining the Markov property: the state of the system is such that the future
evolution depends only on the present and not on the past [29].

We particularly aim at designing an optimal transmission policy (which is es-
sentially a set of decision rules describing the action to be taken in each state of
the system) of a sensor node in an EH-WSN. We allow for the temporal non-
availability of the sink by introducing so-called transmission opportunities, which
is a natural assumption when the sink in question is wirelessly connected or even
mobile. From time to time, the sensor nodes gather information to which we assign
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a value. This value degrades over time as the information is waiting for transmis-
sion in the memory of the sensor node. At each transmission opportunity, the
sensor node decides whether to transmit data or not, depending on the amount of
available energy and the value of information (VoI), both of which are assumed
to be discrete values. We investigate the structure of the optimal policy and the
resulting optimal mean value of information transmitted from the sensor node. If
the sensor node decides to transmit, it deletes the information from its memory
and hence the value of information present in the node resets to zero. From a
queueing-theoretical point of view, such behaviour is also found in queues with
disasters, which have been used amongst others for modelling satellite communi-
cation and internet applications [69]. We adopt the policy iteration algorithm to
solve such a large network to obtain the optimal transmission policy.

In many applications, updating the information is very crucial. For example,
temperature and humidity updates from a forest can be very useful to predict the
forest fire which can further help to take necessary measures to control it in reason-
able time. In such cases, the source generates the information with a time-stamp
that is passed through a network to the sink. These time stamps can be used to
measure the freshness of the information. This is a very popular concept in the
wireless sensor networking context and sometimes referred to as age of informa-
tion. We incorporate this structure by introducing the non-additive nature of VoI
i.e., newly sensed information replaces the current information if it has a higher
value. Thus, the node keeps the most updated information and transmits it when-
ever there is an opportunity. With numerical experiments, we analyse the impact
of this structure on the optimal transmission policy. We observe that the optimal
policy is of the threshold type and this threshold is sensitive to different system
parameters. f

The remainder of the chapter is organised as follows. In the next section, we
discuss related literature on Markov decision processes for energy harvesting sen-
sor nodes. We then introduce the Markov decision process for age- and energy-
dependent transmissions in sensor networks in Section 3.2 and discuss some struc-
tural properties of the value function in Section 3.3. Finally, we evaluate the op-
timal decision policies in Section 3.4, prior to providing a summary of the main
results in Section 3.5.

3.1 Background
Optimal scheduling in energy harvesting sensor networks is an active research
topic. We refer to Yick et al. [70] and Lu et al. [71] and the references therein
for a discussion of key issues and developments in WSNs, addressing the differ-
ent challenges including storage capacity, energy replenishment, network services,
deployment, etc. We restrict the discussion below to Markovian models.

Markovian models have been studied by various authors, one of the first con-
tributions being [62] where Susu et al. propose a finite birth-death Markov chain
to model energy harvesting sensor nodes, a birth and death corresponding to en-
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ergy harvesting and energy consumption respectively. The same energy harvesting
process is considered by Jornet and Akyildiz [72], but the authors allow for more
rapid energy consumption, a transmission corresponding to a deterministic jump
downwards. Seyedi and Sikdar [45] propose a Markov model to study the trade-
off between energy consumption and packet error probability. Dong et al. [73]
consider the Bernoulli energy harvesting process to obtain the near-optimal en-
ergy control policy in energy harvesting communication network where Ventura et
al. [74] propose a Markov model that harvests energy from the same source, or a
combination of different sources. Most contributions study a single sensor node
in isolation, notable exceptions being [75,60]. Authors study various properties of
the data retrieval time in EH-WSNs, while minimising the energy consumption for
the sensors. Studying the complete network allows for assessing the probability of
a node failing to detect an event owing to a lack of energy, which is a key design
consideration for body sensor networks.

Some research focuses on energy conservation by controlling the communi-
cation system. For example, Raghunathan et al. [76] study the energy consump-
tion in WSNs and find that the energy cost required for sensing the information
or for computation is negligible compared to the transmission cost. Hence, data
compression can be used to minimise energy consumption and extend the overall
lifetime of the network [77, 11]. As there is also significant energy consumption
when the sensor node is idle, switching off the sensor node can save the battery
and thus extend the lifetime. In such strategies, the WSN node periodically wakes
up to transmit data and then sleeps by powering off to conserve the energy. WSN
technology must efficiently manage the frequency of on- and off-times of the node.
Such a control strategy is studied by Sharma et al. [78] for an energy harvesting
sensor node that periodically transmits data. The authors discuss the existence of
an optimal transmission policy but do not calculate it. Morsi et al. [79] calculate
an on-off transmission policy either assuming a finite or infinite energy buffer. The
same control problem is considered in [80, 81] in a deterministic setting: data ar-
rivals and the amount of harvested energy are known in advance. Policies obtained
from such model can be a benchmark but given the random nature of energy har-
vesting, the results cannot be attained in a random setting. Ozel et al. [82] consider
optimal scheduling for transmissions over a time varying channel. In an offline
setting, the authors show the optimality of an adaptive directional water-filling
algorithm for throughput maximisation whereas they rely on stochastic dynamic
programming to solve for the optimal online policy.

We briefly discuss literature on MDPs in WSNs. Various authors introduce
MDPs for studying optimal transmission policies in wireless sensor networks, see
the recent survey [56] and the references. Fernandez et al. [83] use the term “im-
portance of message” for the value of the message and propose a stochastic ap-
proximation algorithm to find out the optimal transmission policy. The optimal
policy is a threshold policy under reasonable assumptions on battery dynamics.
Lei et al. [44] discuss energy-aware threshold transmission policies by modelling
the energy state transitions by a continuous time Markov chain. Three different
scenarios are considered where batteries are recharged and/or replaced. Transmis-
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sion policies depend on the state of the channel as well as on the value of the
message. Michelusi et al. [46] models energy harvesting as a Markov process
with two states, i.e., a good and a bad state. The authors adapt the transmission
probabilities to the state of the battery, deriving the optimal policy using policy it-
eration. The optimal policy accounts for the data at the sensor node and the amount
of energy at the time of decision making. Some authors further focus on control
policies when the energy harvesting distribution is unknown and the system can
learn from past observations. [84, 85] discuss the optimal power control policies
for EH-WSN by formulating the problem as a partially observable Markov deci-
sion process (POMDP). The authors consider an ARQ-based packet transmission
protocol, their goal being to find the optimal transmit power for each packet trans-
mission.

Various applications involve WSNs with mobile sinks such as agricultural ar-
eas [86], continuous object tracking [87] etc. Mobile sinks are generally used
to reduce the energy consumption [39] or overcome the hot spot effect [36].
Some studies show that the mobile sink can significantly improve the network
lifetime [88,89]. In such WSNs, sensor nodes gather the information from the en-
vironment and transmit their positional information gradually to the sink. The sink
can use this information to adjust its position in the network for shortest path [90]
or maximising the network throughput [91, 92, 93]. Angelopoulos et al. [94] con-
siders a WSN with a mobile sink and moving nodes where the significance of the
local information is measured with the help of ranking function which degrades
over time. Thus, information at the node is replaced by new updated information.
Data replacement is also used to train the networks with a specific application that
detects abnormal activities like intruders in a restricted environment. Li et al. [95]
compares different techniques to replace the missing data in WSNs.

3.2 Mathematical Model
We focus on a single sensor node with energy harvesting capability in a sensor
network where data is collected by a mobile sink as depicted in Figure 3.1. The
sensor has an on-board battery for storing harvested energy as well as the capa-
bility for storing sensed information. We assume that time is discrete. That is,
time is divided into fixed length intervals (slots) and transmissions from the sen-
sor node are synchronised with respect to slot boundaries. Note that the current
model differs from the models in the previous chapter in terms of the mathematical
framework under consideration, as well as in terms of its applications. Unlike the
models in the previous chapter, we now use the controlled framework to model the
WSN and also assume that the VoI is non-additive in nature.

The dynamics of the sensor node are governed by three independent stochas-
tic processes. The first process describes how energy is harvested. Assuming
that energy can be discretised into chunks of energy, let Hn denote the number
of energy chunks or energy units harvested during the kth slot. The sequence
{Hk,k ∈ N} constitutes a sequence of independent Bernoulli random variables.
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Figure 3.1: WSN Model

Let pe denote the probability that a chunk of energy arrives during a slot. The
second process describes the value (importance) of the information that is sensed
during a slot. Let Dn denote the value of information sensed during the kth slot.
We express the value of information as a discrete number of units. The process
{Dn,n ∈N} is a sequence of independent and identically distributed non-negative
discrete random variables. The sensed information can have a value of at most
J units, P[Dn > J] = 0, and we denote the common probability mass function of
the Dn’s by d j = P[Dn = j], j = 0, . . . ,J. For further use, we also introduce the
corresponding distribution function d̄ j = P[Dn ≤ j] = ∑ j′≤ j d j′ . The third process
describes when the sensor node can pass on its information to the mobile sink. Let
Tn be the indicator that there is a transmission opportunity at the kth slot boundary.
The sequence {Tn,n∈N} constitutes a sequence of independent Bernoulli random
variables, pt denoting the probability that there is a transmission opportunity at a
slot boundary.

We can now describe the sensor node dynamics in terms of these random vari-
ables. Let Bn be the battery level (in terms of energy chunks) at the nth slot bound-
ary. We assume that a single chunk of energy is required to transmit information
to the mobile sink and that the on-board battery can store C chunks of energy at
most. Energy chunks are lost when the battery capacity is exceeded. In view of
these assumptions, we find that the battery level at the (n+1)st slot boundary can
be expressed as,

Bn+1 = min(Bn +Hn−Un,C) .

Here Un is the indicator that there is a transmission at the kth slot boundary. This
random variable depends on the availability of the mobile sink Tn, on the battery
level Bn as well as on the value of the information Vk as discussed below. In
particular, transmissions are not possible when there is no energy, which means
that Bn = 0 implies Un = 0.

The evolution of the value of information Vn is the combination of an infor-
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mation loss process and an information replacement process. To capture the loss
of information over time, we assume that the value of information decreases by
one information unit per slot. In addition, we assume that the information at the
sensor node is replaced by newly sensed information whenever the value of newly
sensed information units exceeds the value of information at the sensor node. Fi-
nally, whenever the information is passed on to the mobile sink, the information is
deleted at the sensor node. In view of these assumptions, we can express the value
of information at the (n+1)st slot boundary as follows,

Vn+1 =

{
Dn+1 for Un = 1 ,
max(Dn+1,(Vn−1)) for Un = 0 .

(3.1)

Here Un is again the indicator that there is a transmission at the nth slot boundary.
When there is no transmission opportunity, Tn = 0, there obviously is no trans-

mission, hence Un = 0. When there is a transmission opportunity, Tn = 1, the
decision on transmitting depends on the current value of information, as well as on
the battery level. Thus we can write Un mathematically as,

Un =

{
0 for Bn = 0or Tn = 0 ,
π(Bn,Vn,Tn) otherwise.

Where π is the transmission policy that indicates the decision taken by the node
at time slot n. As there is only energy consumption when there is a transmission,
it can be beneficial to postpone transmissions when there is limited value of infor-
mation at the sensor node. Therefore, we study the optimal transmission policy by
modelling the sensor node as a Markov decision process (MDP).

3.2.1 Markov decision process framework
In order to define the MDP, we must specify its state space, action set, transition
probabilities and rewards. We explain each of the components in detail below.

(a) State Space: In view of the modelling assumptions above, the state of the
sensor node at the nth slot boundary is described by the battery level Bn and
the value of information Vn. These discrete random variables are positive
and bounded by C (battery capacity) and J (maximum of the sensed value of
information), respectively. In addition, as the decision to transmit or defer
transmission depends on the availability of a transmission opportunity, we
additionally track Tn as well.

Summarising, the state is described by the vector (Bn,Vn,Tn) ∈S , B×
V ×T , where,

- B = {0,1,2, · · · ,C} is the set of battery states,

- V = {0,1,2, · · · ,J} is the set of the value of information states.

- T = {0,1} is the set of the transmission opportunity states.
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(b) Action Set: There are at most two possible actions: transmitting (action
1) or not transmitting (action 0). The sensor node cannot transmit in the
absence of energy (Bn = 0) or in the absence of a transmission opportunity
(Tn = 0), hence for s∈S0 =B×V ×{0}∪{0}×V ×T , the only possible
action is not to transmit: the action set is a singleton As = {0} for s ∈S0.
For s ∈S1 = S \S0, there is a transmission opportunity as well as energy
such that the action set includes both possible actions: As = {0,1} for s ∈
S1.

For further use, let π : S → {0,1} denote a policy of the sensor node, that
is a mapping from the state space to the action space {0,1}. A policy π is
admissible if π(s) ∈As for all s ∈S .

(c) Transition Probabilities: Let q(s′|s) = q((i′, j′,k′)|(i, j,k)) represent the
transition probability that state s′ = (i′, j′,k′) is visited from state s = (i, j,k)
for s ∈ S0. We here suppress the action from the notation as for s ∈ S0
only action 0 is available. Note first that the transition probabilities of the
transmission opportunity process are given by

po(k′) =

{
1− pt for k′ = 0 ,
pt for k′ = 1 ,

which can also be written as po(k′) = pk′
t (1− pt)

1−k′ . Recalling that the
entries of the state vector correspond to the battery level, the value of in-
formation and the indicator of the transmission opportunity respectively, we
find,

q((i′, j′,k′)|(i, j,k)) =



d j′ pe po(k′) for i′ = i+1 and j′ ≥ j ,
d̄ j−1 pe po(k′) for i′ = i+1 and j′ = j−1 ,
d j′ p̄e po(k′) for i′ = i <C and j′ ≥ j ,
d̄ j−1 p̄e po(k′) for i′ = i <C and j′ = j−1
d j′ po(k′) for i′ = i =C and j′ ≥ j ,
d̄ j−1 po(k′) for i′ = i =C and j′ = j−1 ,
0 otherwise,

(3.2)
for s ∈S0 and s′ ∈S .

For s ∈ S1, let p(s′|s,a) = p((i′, j′,k′)|(i, j,k),a) represent the transition
probability that state s′ = (i′, j′,k′) is visited from state s = (i, j,k) when
action a ∈ {0,1} is chosen. For a = 0, the evolution of the state is similar to
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the evolution when there is no transmission opportunity. Hence, we have,

p((i′, j′,k′)|(i, j,k),0) =



d j′ pe po(k′) for i′ = i+1 and j′ ≥ j ,
d̄ j−1 pe po(k′) for i′ = i+1 and j′ = j−1 ,
d j′ p̄e po(k′) for i′ = i <C and j′ ≥ j ,
d̄ j−1 p̄e po(k′) for i′ = i <C and j′ = j−1
d j′ po(k′) for i′ = i =C and j′ ≥ j ,
d̄ j−1 po(k′) for i′ = i =C and j′ = j−1 ,
0 otherwise,

(3.3)
for s ∈S1 and s′ ∈S . Finally, for a = 1, we find,

p((i′, j′,k′)|(i, j,k),1) =


d j′ pe po(k′) for i′ = i ,
d j′ p̄e po(k′) for i′ = i−1 ,
0 otherwise,

(3.4)

for s ∈S1 and s′ ∈S .

(d) Reward: We define the immediate reward in state s ∈ S as the value of
information that is transmitted to the mobile sink. That is, the reward in
state s ∈S0 is zero. For s = (i, j,k) ∈S1 the reward equals j if a = 1 while
there is no reward for a = 0. Let Rπ(s) be the immediate reward in state
s = (i, j,k) for policy π , we then have,

Rπ(i, j,k) =

{
0 for π((i, j,k)) = 0
j for π((i, j,k)) = 1 .

The immediate reward only depends on the state and the action.

3.2.2 Policy evaluation
We focus on the infinite horizon control problem, assuming that a stationary policy
is applied. Let vπ(s) be the uniformly discounted value-to-go from state s under
policy π ,

vπ(s) = vπ(i, j,k) = E

[
∞

∑
n=0

α
nRπ(Bn,Vn,Tn)

∣∣∣∣∣B0 = i,V0 = j,T0 = k

]
,

where α is a discounting factor. Further, let v∗(s) be the optimal value-to-go from
state s,

v∗(s) = max
π

vπ(s) ,

where the maximum is taken over all admissible policies π . The optimal value-
to-go and optimal policy can be found by solving the Bellman equations, which
read,

v∗(s) = ∑
s′∈S

αq(s′|s)v∗(s′)



3.2 Mathematical Model 73

for s ∈S0, and,

v∗(s) = max

(
j+α ∑

s′∈S
p(s′|s,1)v∗(s′), ∑

s′∈S
p(s′|s,a = 0)αv∗(s′)

)

for s = (i, j,k) ∈S1.
To solve the Bellman equations, we rely on policy iteration [96]. To this end,

starting from an initial policy π0, we iteratively improve the policy. In each itera-
tion n = 0,1, . . . we first solve the system of equations,

vπn(s) =

{
∑s′∈S q(s′|s)αvπn(s

′) for s ∈S0 ,

jπn(s)+α ∑s′∈S p(s′|s,πn(s))vπn(s
′) for s ∈S1 .

(3.5)

We can then adjust the policy in the policy improvement step,

πn+1(s) = argmaxπ

(
jπ(s)+α ∑

s′∈S
p(s′|s,π(s))vπn(s

′)

)
.

In view of the above, we have πn+1(s) = 0 for s ∈S0 and

πn+1(s) = 1

{
j+α ∑

s′∈S
p(s′|s,1)vπn(s

′)> α ∑
s′∈S

p(s′|s,0)vπn(s
′)

}
(3.6)

for s ∈S1, where 1{·} is the indicator function.

3.2.3 Quasi birth death structure
The major computational effort in solving the MDP problem is the evaluation of
(3.5). Note however that – regardless of the policy – the transitions of the battery
level are skip-free in both directions: the battery level either remains the same or
can only go up or down one level during a slot. This in turn means that the matrix
corresponding to the system of equations (3.5) has a tridiagonal block structure or
quasi-birth-death (QBD) structure, blocks grouping transitions from battery level
i to battery level i′. As the battery level is skip free, the blocks are non-zero only
for i′ ∈ {i−1, i, i+1} (hence the matrix is block-tridiagonal).

The block structure allows for efficiently solving the system of equations by
linear level reduction [97]. To this end, let vπ(i,k) be the column vector with
elements vπ(i, j,k) for j = 0, . . . ,J− 1. From equation (3.5), we then find that
these vectors adhere,

vπ(i,0) = α p̄t p̄eAvπ(i,0)+α pt p̄eAvπ(i,1)
+α p̄t peAvπ(i+1,0)+α pt peAvπ(i+1,1) , (3.7)

for k = 0 and for i = 0, . . . ,C−1, while for k = 0 and i =C we have,

vπ(C,0) = α p̄tAvπ(C,0)+α ptAvπ(C,1) . (3.8)
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Similarly, for k = 1, we find,

vπ(0,1) = α p̄t p̄eAvπ(0,0)+α pt p̄eAvπ(0,1)
+α p̄t peAvπ(1,0)+α pt peAvπ(1,1) , (3.9)

vπ(i,1) = Π(i)θ +αΠ(i)p̄t p̄eBvπ(i−1,0)+αΠ(i)pt p̄eBvπ(i−1,1)
+αΠ(i)p̄t peBvπ(i,0)+αΠ(i)pt peBvπ(i,1)+αΠ̄(i)p̄e p̄tAvπ(i,0)
+αΠ̄(i)p̄e ptAvπ(i,1)+αΠ̄(i)pe p̄tAvπ(i+1,0)
+αΠ̄(i)pe ptAvπ(i+1,1) , (3.10)

vπ(i,1) = Π(i)θ +αΠ(i)p̄t p̄eBvπ(i−1,0)+αΠ(i)pt p̄eBvπ(i−1,1)
+αΠ(i)p̄t peBvπ(i,0)+αΠ(i)pt peBvπ(i,1)+αΠ̄(i)p̄e p̄tAvπ(i,0)
+αΠ̄(i)p̄e ptAvπ(i,1)+αΠ̄(i)pe p̄tAvπ(i+1,0)
+αΠ̄(i)pe ptAvπ(i+1,1) (3.11)

for i = 1, . . . ,C−1 and finally for i =C, we obtain,

vπ(C,1) = Π(i)θ +αΠ(i)p̄t p̄eBvπ(C−1,0)+αΠ(i)pt p̄eBvπ(C−1,1)
+αΠ(i)p̄t peBvπ(C,0)+αΠ(i)pt peBvπ(C,1)
+αΠ̄(i)p̄tAvπ(C,0)+αΠ̄(i)ptAvπ(C,1) , (3.12)

where θ = [0,1,2, . . . ,J]′ is a column vector with J+1 entries, with Π(i) the (J+
1)× (J+1) diagonal matrix with diagonal entries π(i, j,1) ( j = 0, . . . ,J−1), with
Π̄(i) the (J+1)× (J+1) diagonal matrix with diagonal entries 1−π(i, j,1) ( j =
0, . . . ,J − 1), and where the (J + 1)× (J + 1) matrices A and B are defined as
follows,

A=



d0 d1 d2 d3 · · · dJ
d̄0 d1 d2 d3 · · · dJ
0 d̄1 d2 d3 · · · dJ
0 0 d̄2 d3 · · · dJ
...

...
...

...
. . .

...
0 0 0 0 · · · dJ


, B =


d0 d1 d2 d3 · · · dJ
d0 d1 d2 d3 · · · dJ
d0 d1 d2 d3 · · · dJ
...

...
...

...
. . .

...
d0 d1 d2 d3 · · · dJ

 .

We further introduce the column vectors vπ(i) = [vπ(i,0)′,vπ(i,1)′]′. From
equations (3.7) and (3.9), we find,

vπ(0) = α p̄e

[
p̄tA ptA
p̄tA ptA

]
vπ(0)+α pe

[
p̄tA ptA
p̄tA ptA

]
vπ(1) . (3.13)

Analogously, equations (3.7) and (3.10) yield,

vπ(i) =
[

0
Π(i)θ

]
+α p̄e

[
0 0

p̄tΠ(i)B ptΠ(i)B

]
vπ(i−1)−α p̄e[

0 0
Π(i)p̄tA Π(i)ptA

]
vπ(i)+α pe

[
0 0

Π(i)p̄tB Π(i)ptB

]
vπ(i)
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+α p̄e

[
p̄tA ptA
p̄tA ptA

]
vπ(i)+α pe

[
p̄tA ptA

Π̄(i)p̄tA Π̄(i)ptA

]
vπ(i+1) , (3.14)

whereas equations (3.8) and (3.12) lead to,

vπ(C) =

[
0

Π(C)θ

]
+α p̄e

[
0 0

p̄tΠ(C)B ptΠ(C)B

]
vπ(C−1)

+α pe

[
0 0

Π(C)p̄tB Π(C)ptB

]
vπ(C)+α

[
p̄tA ptA

Π̄(C)p̄tA Π̄(i)ptA

]
vπ(C) .

(3.15)

The former set of matrices confirm the QBD structure of the system of equations,
as vπ(i) is expressed in terms of vπ(i−1), vπ(i) and vπ(i+1) for all i.

3.2.4 Linear level reduction
As mentioned above, the structural property of the system of equations allows for
solving the system of equations efficiently by linear level reduction [97]. Let the
2(J + 1)× 2(J + 1) matrices F0 and G0, and the 2(M + 1) column vector h0 be
defined as,

F0 =

(
I−α p̄e

[
p̄tA ptA
p̄tA ptA

])−1

,

G0 =F0α pe

[
p̄tA ptA
p̄tA ptA

]
,

h0 = [0,0, . . . ,0]′ . (3.16)

Here I is the 2(J + 1)× 2(J + 1) identity matrix. Hence, we have vπ(0) =
G0vπ(1)+h0. For 0 < i <C, we again have vπ(i) = Givπ(i+1)+hi where

Gi = α peFi

[
p̄tA ptA

Π̄(i)p̄tA Π̄(i)ptA

]
and,

hi =Fi

([
0

Π(i)θ

]
+α p̄e

[
0 0

p̄tΠ(i)B ptΠ(i)B

]
hi−1

)
(3.17)

with,

Fi =

(
I−α pe

[
0 0

Π(i)p̄tB Π(i)ptB

]
−α p̄e

[
p̄tA ptA
p̄tA ptA

]
+α p̄e

[
0 0

Π(i)p̄tA Π(i)ptA

]
−α p̄e

[
0 0

p̄tΠ(i)B ptΠ(i)B

]
Gi−1

)−1

.

Finally, for battery level C, we have,
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vπ(C) =

(
I−α p̄e

[
0 0

p̄tΠ(C)B ptΠ(C)B

]
GC−1

−α pe

[
0 0

Π(C)p̄tB Π(C)ptB

]
−α

[
p̄tA ptA

Π̄(C)p̄tA Π̄(i)ptA

])−1

([
0

Π(C)θ

]
+α p̄e

[
0 0

Π(C)p̄tB Π(C)ptB

]
hC−1

)
. (3.18)

We find vπ(C) by this last equation, and can then recursively calculate all vπ(i) as
we have vπ(i) = Givπ(i+1)+hi for i <C.

3.2.5 Summary and computational complexity
Summarising, we obtain the optimal policy π using the following algorithm.

1. Start with an initial policy π0. As we have π0(s) = 0 for s ∈S0, we only
need to choose an action for all s ∈S1. Set n = 0.

2. Given π = πn, we calculate vπ(i) for i = 0, . . . ,C as follows:

(a) Calculate F0, G0 and h0 in accordance with equation (3.16).

(b) Calculate Fi, Gi and hi for i= 1, . . . ,C−1 in accordance with equation
(3.17).

(c) Calculate vπ(C) using equation (3.18).

(d) Recursively calculate vπ(i) for i =C−1, . . . ,0 using vπ(i) = Givπ(i+
1)+hi.

Finally, set vπn(i) = vπ(i) for i = 0, . . . ,C.

3. We can now update the policy. For each s ∈S0, set πn+1(s) = 0. For each
s ∈S1 calculate πn+1(s) in accordance with equation (3.6).

4. If πn+1 = πn, return πn, if not, set n← n+1 and return to 2.

As policy iteration ensures that the policy improves in every step, the number
of iterations is bounded and the algorithm is guaranteed to converge in a finite
number of iterations [29]. Each iteration requires the solution of the system of
linear equations, which has complexity O(CJ3), see [97] for a general discussion
on QBDs or [98] for a discussion on QBDs in the context of solving MDPs.

3.3 Properties of value function
In this section, we discuss some properties of the value function. These properties
are proved theoretically by the standard approach of mathematical induction. At
first, we assume that the problem is a finite horizon problem with n stages and we
prove the property by induction. Then, by sending n to infinity to complete the
proof. For ease of notation, we suppress the policy in the notation of v(s).
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Theorem 3.1. v(s) is a non-decreasing function of the energy as well as of the
value of information for s ∈S1.

Proof. We will use induction to prove this theorem. With a slight abuse of nota-
tion, let v(s;n) be the optimal value function when the decision horizon consists of
n stages. Then, we can write the value function as,

v(s;n+1) = max

(
j+α ∑

s′∈S
p(s′|s,a = 1)v(s′;n), ∑

s′∈S
p(s′|s,a = 0)αv(s′;n)

)
.

For t = 0, v(i, j,k;1) = j for i > 0. Thus, the hypothesis is true for t = 0 as
v(i, j,k;1)− v(i−1, j,k;1) = 0 for i > 0. Let’s assume that hypothesis is true for
t, then

v(i, j,k;n+1) =

max

(
j+α po(k′)

( J

∑
j′=0

d′j
(

pe v(i, j′,k′;n)+ p̄e v(i−1, j′,k′;n)
))

,

α po(k′)
(

pe

J

∑
j′= j

d j′v(i+1, j′,k′;n)+ p̄e

J

∑
j′= j

d j′v(i, j′,k′;n)

+ ped̄ j−1v(i+1, j−1,k′;n)+ p̄ed̄ j−1v(i, j−1,k′;n)
))

.

Note that each argument in the max function is a weighted sum of non-decreasing
functions. So, each argument is a non-decreasing function as well. Thus,
v(i, j,k;n) is a non-decreasing function in terms of the energy since the maximum
of two non-decreasing function is a non-decreasing function. Taking the limit for t
going to infinity, we obtain the desired monotonicity of the value function in terms
of the energy.

Similarly, for n = 0, v(i,0,k;1) = 0 and v(i, j,k;1) = j for j > 0. Thus, the
hypothesis is true for n = 0 as v(i, j,k;1)− v(i, j−1,k;1) = 1 for j > 0. Note that
v(i, j,k;1) = 0 for j < 0 by convention. If the hypothesis is true for n, then by
the same set of arguments as above, we can show that v(s) is a non-decreasing
function of the value of information.

Theorem 3.2. For s ∈S1, the value function is bounded in energy as well as in
value of information. That is,

v(i+1, j,k)− v(i, j,k)≤ 1 and v(i, j+1,k)− v(i, j,k)≤ 1.

Proof. We again use induction to prove the statement. Recall that v(s;n) is the
optimal value function when the decision horizon has t stages,

v(s;n+1) = max

(
j+α ∑

s′∈S
p(s′|s,a = 1)v(s′;n), ∑

s′∈S
p(s′|s,a = 0)αv(s′;n)

)
.
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Let us verify the hypothesis for n = 0: v(i, j+1,k;1)− v(i, j,k;1) = j+1− j = 1 ≤
( j+1) and v(i+1, j,k;1)− v(i, j,k;1) = j− j = 0≤ 1. Thus, the hypothesis is true
for n = 0. Now assume that the hypothesis is true for n. For further use, we define
va(s;n) as the value function when action a is chosen in state s and define Dvaa′ to
be the difference between va(s;n) and va′(s′;n) for a, a′ ∈ {0,1}. In the first part of
the proof, we show that the value function is bounded in terms of energy and in the
later part, we prove the boundedness in terms of the VoI. Four different sub-cases
exists depending on the optimal action chosen when the battery level is (i+1) and
i. We now explore each sub-case and show that the difference is bounded by 1.

Case 1: In the first case, we assume that action 1 is chosen when the battery level
is (i+1) as well as when the battery level is i:

Dv11 = v1(i+1, j,k;n+1)− v1(i, j,k;n+1)

= ∑
s′∈S

p(s′|(i+1, j,k),a = 1)αv(s′;n)− ∑
s′∈S

p(s′|(i, j,k),a = 1)αv(s′;n)

= j+α po(k′)
(

pe

J

∑
j′=0

d j′v(i+1, j′,k′;n)+ p̄e

J

∑
j′=0

d j′v(i, j′,k′;n)
)

− j+α po(k′)
(

pe

J

∑
j′=0

d j′v(i, j′,k′;n)+ p̄e

J

∑
j′=0

d j′v(i−1, j′,k′;n)
)

= α po(k′)
(

pe

J

∑
j′=0

d j′(v(i+1, j′,k′;n)− v(i, j′,k′;n))

+ p̄e

J

∑
j′=0

d j′
(

v(i, j′,k′;n)− v(i−1, j′,k′;n)
))

≤ α po(k′)(pe 1+ p̄e 1)≤ 1 .

Case 2: In the second case, action 0 is chosen when the battery level is (i+1) as
well as when the battery level is i:

Dv00 = v0(i+1, j,k;n+1)− v0(i, j,k;n+1)

= ∑
s′∈S

p(s′|(i+1, j,k),a = 0)αv(s′;n)− ∑
s′∈S

p(s′|(i, j,k),a = 0)αv(s′;n)

= α po(k′)
(

pe

J

∑
j′= j

d j′v(i+2, j′,k′;n)+ p̄e

J

∑
j′= j

d j′v(i+1, j′,k′;n)

+ ped̄ j−1v(i+2, j−1,k′;n)+ p̄ed̄ j−1v(i+1, j−1,k′;n)
)

−α po(k′)
(

pe

J

∑
j′= j

d j′v(i+1, j′,k′;n)+ p̄e

J

∑
j′= j

d j′v(i, j′,k′;n)

+ ped̄ j−1v(i+1, j−1,k′;n)+ p̄ed̄ j−1v(i, j−1,k′;n)
)
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≤ α po(k′)
(

pe

J

∑
j′= j

d j′ 1+ p̄e

J

∑
j′= j

d j′ 1+ ped̄ j−1 1+ p̄ed̄ j−1 1
)
≤ 1 .

Case 3: In the third case, action 0 is chosen when the battery level is (i+1) and
action 1 is chosen when the battery level is i. We need the boundedness of the
value function in terms of the VoI at n to show that the difference in the value
function is bounded in this case:

Dv01 = v0(i+1, j,k;n+1)− v1(i, j,k;n+1)

= ∑
s′∈S

p(s′|(i+1, j,k),a = 0)αv(s′;n)− ∑
s′∈S

p(s′|(i, j,k),a = 1)αv(s′;n)

=−α po(k′)
(

pe

J

∑
j′= j

d j′v(i+1, j′,k′;n)+ p̄e

J

∑
j′= j

d j′v(i, j′,k′;n)

+ ped̄ j−1v(i+1, j−1,k′;n)+ p̄ed̄ j−1v(i, j−1,k′;n)
)

− j−α po(k′)
(

pe

J

∑
j′=0

d j′v(i+1, j′,k′;n)+ p̄e

J

∑
j′=0

d j′v(i, j′,k′;n)
)

=− j+α po(k′)
(

pe

j−1

∑
j′=0

d j′
(

v(i+1, j−1,k′;n)− v(i+1, j′,k′;n)
)

+ p̄e

j−1

∑
j′=0

d j′
(

v(i, j−1,k′;n)− v(i, j′,k′;n)
))

≤− j+α po(k′)
(

pe

j−1

∑
j′=0

d j′( j′)+ p̄e

j−1

∑
j′=0

d j′( j′)
)

≤− j+α po(k′)( j−1)≤ 1 .

Case 4: In the final case, action 1 is chosen when the battery level is (i+1) and
action 0 is chosen when the battery level is i:

Dv10 = v1(i+1, j,k;n)− v0(i, j,k;n)

= v1(i+1, j,k;n)− v1(i, j,k;n)+ v1(i, j,k;n)− v0(i, j,k;n)

≤ v1(i+1, j,k;n)− v1(i, j,k;n)≤ 1 .

Note that the first inequality is due to the fact that v1(i, j,k;n) < v0(i, j,k;n)
since action 0 is the optimal action in (i, j,k). For all the four sub-cases, we find
that value function is bounded in terms of the energy available in the system at
time stage n. By letting n go to infinity, we complete the first part of the proof.
We now prove that the value function is also bounded in terms of the VoI in the
system. There are again four different sub-cases here depending on the optimal
action chosen when the VoI is j and ( j+1).
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Case 1: In the first case, we assume that action 1 is chosen when the VoI is
( j+1) and j:

Dv11 = v1(i, j+1,k;n+1)− v1(i, j,k;n+1)

= ( j+1)+ ∑
s′∈S

p(s′|(i, j+1,k),a = 1)αv(s′;n)

− j− ∑
s′∈S

p(s′|(i, j,k),a = 1)αv(s′;n)

= 1+α po(k′)
(

pe

J

∑
j′=0

d j′v(i, j′,k′;n)+ p̄e

J

∑
j′=0

d j′v(i−1, j′,k′;)

− pe

J

∑
j′=0

d j′v(i, j′,k′;n)+ p̄e

J

∑
j′=0

d j′v(i−1, j′,k′;n)
)

= 1

Case 2: In the second case, action 0 is chosen when the VoI is ( j+1) as well as
when the VoI is j:

Dv00 = v0(i, j+1,k;n+1)− v0(i, j,k;n+1)

= ∑
s′∈S

p(s′|(i, j+1,k),a = 0)αv(s′, t)− ∑
s′∈S

p(s′|(i, j,k),a = 0)αv(s′, t)

= α po(k′)
(

pe

J

∑
j′= j+1

d j′v(i+1, j′,k′;n)+ p̄e

J

∑
j′= j+1

d j′v(i, j′,k′;n)

+ ped̄ jv(i+1, j,k′;n)+ p̄ed̄ jv(i, j,k′;n)
)

−α po(k′)
(

pe

J

∑
j′= j

d j′v(i+1, j′,k′;n)+ p̄e

J

∑
j′= j

d j′v(i, j′,k′;n)

+ ped̄ j−1v(i+1, j−1,k′;n)+ p̄ed̄ j−1v(i, j−1,k′;n)
)

= α po(k′)
(

ped̄ j−1v(i+1, j,k′;n)+ p̄ed̄ j−1v(i, j,k′;n)

− ped̄ j−1v(i+1, j−1,k′;n)− p̄e)d̄ j−1v(i, j−1,k′;n)
)

≤ α po(k′)
(

ped̄ j−11+ p̄ed̄ j−11
)
≤ α po(k′)d̄ j−11≤ 1

Case 3: In the third case, action 1 is chosen when the VoI is ( j+ 1) and action
0 is chosen when the VoI is j. We need the boundedness of the value function in
terms of the energy at n− 1 to show that the difference in the value function is
bounded in this case:

Dv01 = v0(i, j+1,k;n+1)− v1(i, j,k;n+1)

= ∑
s′∈S

p(s′|(i, j+1,k),a = 0)αv(s′;n)



3.4 Numerical examples and discussion 81

− j− ∑
s′∈S

p(s′|(i, j,k),a = 0)αv(s′;n)

= α po(k′)
(

pe

J

∑
j′= j+1

d j′v(i+1, j′,k′;n)+ p̄e

J

∑
j′= j+1

d j′v(i, j′,k′;n)

+ ped̄ jv(i+1, j,k′;n)+ p̄ed̄ jv(i, j,k′;n)
)

− j−α po(k′)
(

pe

J

∑
j′=0

d j′v(i, j′,k′;n)+ p̄e

J

∑
j′=0

d j′v(i−1, j′,k′;n)
)

=− j+α po(k′)
(

pe

J

∑
j′=0

d j′
(

v(i+1, j′,k′;n)− v(i, j′,k′;n)
)

+ p̄e ∑
j′

d j′
(

v(i, j′,k′;n)− v(i−1, j′,k′;n)
)

+ pe

j

∑
j′=0

d j′
(

v(i+1, j,k′;n)− v(i+1, j′,k′;n)
)

+ p̄e

j

∑
j′=0

d j′(v(i, j,k′, t)− v(i, j′,k′, t)
))

≤− j+α po(k′)(1+ j)≤ 1

Case 4: In the final case, action 1 is chosen when the VoI is ( j+1) and action 0
is chosen when the VoI is j:

Dv10 = v1(i, j+1,k;n)− v1(i, j,k;n)+ v1(i, j,k;n)− v0(i, j,k;n)

≤ v1(i, j+1,k;n)− v1(i, j,k;n)≤ 1

Again note that the first inequality is due to the fact that v1(i, j,k;n) <
v0(i, j,k;n) since action 0 is the optimal action in state (i, j,k). For all four sub-
cases, we find that the value function is bounded in terms of the VoI in the system
at time stage t. By letting n go to infinity, we complete the second part of the
proof.

3.4 Numerical examples and discussion
We now investigate the structure of the optimal policy with respect to the different
system parameters. To study the optimal policy for different transmission oppor-
tunity probabilities pt , we fix the maximum capacity of the battery to C = 100
energy chunks and the VoI is at most J = 100 information units, the distribution
being,

di = p(1− p)i ,

for 0 < i≤ J with p = 0.1 and d0 = 1−∑
J
k=1 dk.
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Figure 3.2: Optimal policy (a) for varying Transmission opportunity pt (b) Varying har-
vesting energy probability pe as indicated.

The optimal policy obtained is a deterministic threshold policy. As the sys-
tem has only one action available when there is no transmission opportunity, we
analyse the policy for the reduced state space S1. The optimal threshold is two
dimensional, meaning that for a fixed VoI we always transmit beyond a certain
battery level and that for a fixed battery level we always transmit beyond a certain
number of information units.

Figures 3.2(a) and 3.2(b) depict the threshold for the VoI as a function of
the battery state for a fixed discounting factor α = 0.9. Figure 3.2(a) fixes the
probability of an energy arrival pe = 0.1 and shows the threshold for various trans-
mission opportunity probabilities as indicated. Figure 3.2(b) fixes the probability
of a transmission opportunity pt = 0.9 and shows the threshold for different energy
arrival probabilities as indicated.

It can be seen from both figures that the threshold decreases for increasing
battery levels. This is not unexpected. When only little energy is available, the
decision to transmit affects future transmissions more if there is but a little energy
so that one only transmits if there is a lot of information. If more energy available,
the effect on future transmissions is smaller. Moreover, an additional increase will
then hardly influence the threshold.

Figure 3.2(a) further reveals that the threshold increases for increasing values
of pt . If there are many transmission opportunities, the chance to send more data
units later on increases as the next transmission opportunity is not far away in time.
It is also observed that the threshold for higher transmission opportunity probabil-
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Figure 3.3: (a) Optimal policy for a varying discounting factor and (b) reward at the optimal
policy as indicated.

ities can be equal to the threshold at lower transmission opportunity probabilities
but cannot be less. In addition, Figure 3.2(b) shows that boosting the energy
harvesting capability yields lower thresholds. Higher pe implies that availability
of energy at future transmission opportunities is more likely so that one can send
even when there is less data. If the battery has enough energy, a further increase
in harvesting capability cannot improve the optimal reward and thus the threshold
does not vary significantly.

Figure 3.3(a) shows the VoI threshold versus the battery level for different
discounting factors as indicated. We fix the transmission opportunity probability
pt = 0.9 and energy arrival probability pe = 0.1, while all the other parameters are
kept the same. A higher discounting factor means that more importance is given
to the future rewards. That is, when the discounting factor is high, the system
is more likely to conserve the energy for messages that may arrive in the future
with a higher VoI which implies that the threshold for sending the VoI is higher
as well. Further notice that the threshold for low discounting factors can equal the
threshold for a higher discounting factor but cannot exceed that threshold. Figure
3.3(b) shows the reward v∗(i, j,1) for the optimal policy versus the battery level
i for different values of the value of information j as indicated. We retain the
parameters of Figure 3.3(a), and additionally fix the discounting factor to α = 0.9.
We observe that for a fixed VoI, the optimal reward is a non-decreasing function of
the battery level. This behaviour of the value function has been already confirmed
by the theoretical analysis in Section 3.3. Results not depicted here show that if we
fix the battery level, the optimal expected reward is non-decreasing for different
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(b) Geometric

Figure 3.4: Optimal policy for (a) Poisson (b) geometric VoI distribution for different
values of mean (λ ) of data arrival as indicated.

VoI as well.
We now focus on the effects of the distribution of the Value of Information

on the optimal policy. To this end, Figure 3.4(a) and 3.4(b) depict the threshold
for (truncated) Poisson and (truncated) geometrically distributed VoI, respectively.
Different values for the mean number of information units (λ ) are assumed as
indicated. We assume that the battery can store up to C = 50 chunks and that the
VoI is bounded by J = 50. Moreover, the discounting factor is equal to α = 0.9,
the transmission opportunity probability is assumed to be pt = 0.9 and the energy
arrival probability is fixed to pe = 0.1. Comparing Figure 3.4(a) and 3.4(b) reveals
that the distribution of the VoI affects the threshold policy significantly. This is not
unexpected, as the chance to replace the current VoI with a better VoI depends on
the distribution, and not only on its mean.

Optimal data collection

To conclude, we study the optimal collection probability pt , assuming that (i) the
sensor node applies the optimal policy and (ii) there is a cost related to data col-
lection.

To this end, we calculate the mean value of information collected per time
slot as a function of pt . For every value of pt , we first find the optimal policy in
accordance with Section 3. Given this policy, we obtain the Markov chain for the
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optimally controlled sensor node. We have the transition probabilities,

τ(s′|s) =


∑

s′∈S
q(s′|s) for s ∈S0 ,

∑
s′∈S

p(s′|s,π∗(s)) for s ∈S1 ,
(3.19)

with q(s′|s) and p(s′|s) as defined in equations (3.2) - (3.4). Let ψ(s) be the sta-
tionary probability of being in state s. That is, ψ(s) is the normalised solution of
the system of equations,

ψ(s′) = ∑
s∈S

τ(s′|s)ψ(s) ,

for s′ ∈S . Note that the system of equations above is again a QBD. Hence, we
can again rely on linear level reduction to calculate these probabilities in O(CJ3),
see Latouche and Ramaswami [97].

Once we have found ψ(s), the mean reward per time slot can be expressed as,

V̄ = ∑
s=(i, j,k)∈S

ψ(s) jπ(s) .

We now investigate the optimal data collection probability for the sensor node
at hand, similarly as in Chapter 2 for the uncontrolled sensor node. We assume
that there is a cost c associated to data collection so that the average value after
collection equals,

V̄p =−cpt +V̄ . (3.20)

Note that we hereby assume that the cost can be expressed in terms of information
units.

We can now study the impact of transmission opportunity probability on the
average VoI collected from a sensor node operating under its optimal policy. We fix
the battery capacity to 50 chunks and the range of VoI is 1 to 50 i.e., C = 50,J = 50.

Figure 3.5(a) fixes the energy arrival probability to 0.4 and plots V̄p for dif-
ferent discounting factors whereas Figure 3.5(b) fixes the discounting factor to
0.4 and shows the average VoI collected from the node for different energy arrival
probabilities. The cost of collection is assumed to be 2 i.e., c = 2. We can ob-
serve clearly that V̄p increases for increasing transmission opportunities and then
decreases again. This can be explained by the fact that by increasing pt one first
increases the value of data one can collect. However, once pt is sufficiently high,
hardly any additional value can be collected by further increasing pt . In contrast
the collection cost does increase so that the overall value decreases.

The small jumps in the figures are present due to a change of the optimal policy
at particular transmission opportunity probabilities. As a consequence, the curve
representing V̄p is not concave due to these jumps and multiple optimal transmis-
sion opportunity probabilities may exist for which V̄p attains its maximum value.
It is also observed that the optimal transmission opportunity is more sensitive to
changes in pe than to changes in the discounting factor.
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Figure 3.5: Value of information collected from node for (a) varying discounting factor and
(b) varying energy harvesting probability

3.5 Summary
We proposed a two-queue Markov model for a wireless sensor node. The non-
additive nature of the Value of Information plays an important role in decision
making. We formulated the problem as Markov decision process and found the
exact solution by policy iteration. Numerical results show that the optimal trans-
mission policy is a threshold policy. Further observations show that the threshold
for the value of the information is most sensitive to the battery level when there
is but few energy: the node transmits more selectively when there is less energy.
We also studied the behaviour of the optimal reward and mean value of informa-
tion collected from a node under the optimal policy. Here, we found the pervasive
structural property that the optimal reward is non-decreasing in terms of the battery
level as well as in terms of the VoI.



4
Large-scale wireless sensor
networks with interacting

nodes

WSNs have a variety of mechanisms according to which nodes coordinate with
each other to transfer information from where it is sensed towards the sink where it
is processed. Most of these mechanisms are multi-hop mechanisms, that is, mech-
anisms that rely on nodes relaying information towards the sink. Such mechanisms
have many advantages including redundancy, scalability and a larger coverage. In-
deed, each sensor node has the potential to act as a relay node and if some node in
the network fails to operate at some time, the information can be routed through
an alternate path. Recall that gathering and transmitting the information make up
most of a node’s power consumption in WSNs. Hence, with multihop mecha-
nisms, a large portion of the battery power is expended in relaying information to
other sensor nodes. As many WSNs are battery-powered, it is important to ensure
that the network lifetime (the time the network can operate autonomously until
the batteries or the sensor nodes themselves need to be replaced) is sufficiently
long. Thus, the optimal transmission policies and efficient routing schemes are
crucial in the design and modelling of WSNs. See [99] for the detailed discussion
on different routing schemes in WSNs. These authors also highlight the different
advantages and performance issues of each scheme.

From a modelling perspective, the main challenge for assessing such networks
lies with the interaction between the nodes. If interaction is the key determinant
of the performance of the sensor network, then nodes cannot be studied in isola-
tion. Over the past few years, there has been a lot of work in modelling WSNs by
controlled stochastic processes. A popular approach is the dynamic programming
framework, which provides multiple advantages over its alternatives such as opti-
mal resource utilisation, balanced design of different objectives including efficient
energy utilisation and optimal data collection. However, the method requires to
store the “value function” for each state which often leads to high memory utilisa-
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tion. Moreover, large sizes of the state space cause a marked increase in complex-
ity of the dynamic programming equations, or equivalently, a marked increase in
the computational resources that are needed to obtain the exact solution. Hence,
many attempts have been made to solve large stochastic control problems through
various approximation techniques [100]. For example, De Farias et al [101] study
linear approximations to large scale stochastic control problems while Chen et
al. [102] approximate dynamic programming through fluid and diffusion models.
Le Boudec et al. [103] use a set of deterministic equations also referred to as a
mean-field approach. These techniques provide a powerful approach to handle
the high complexity in large scale WSNs [104]. Also some other recent works
such as [105, 106] handle the high complexity by analysing the performance of
communication protocols and end-to-end delay in WSNs with mean-field approx-
imations. Moreover, Gast et al [107] discuss the mean-field approximation for
generic Markov decision processes and show that the approximation converges al-
most surely as the number of nodes tends to infinity. These authors also provide
several examples and show that the optimal control of the mean-field system is the
same as the limit of the optimal control of the original problem. This property
then implies that the optimal control in the limit is a good approximation for the
optimal control in the pre-limit.

In this chapter, we focus on the optimal transmission policy for a sensor net-
work with a large number of sensor nodes. In particular, we focus on maximis-
ing the VoI available for collection by a mobile sink, while keeping the energy
consumption at minimum. Various energy problems in large scale networks have
been already investigated, see for example [108, 109], which use game theory and
mean-field games. The authors provide a solution by solving a coupled system
of Fokker-Planck-Kolmogorov (FPK) equations and Hamiltonian-Jacobi-Bellman
(HJB) equations. However, the numerical solution is highly complex and does not
consider the impact of the quality of information on the transmission decisions.
We therefore define a stochastic model for WSNs where each node in the network
can be in a finite number of information states, such that the combined states of all
nodes make up the state space for the Markov description of the complete network.
We then formulate the optimisation problem that offers a systematic approach to
obtain energy-aware transmission policies. However, as mentioned earlier, such
problems prove to be very difficult to solve as the number of nodes in the network
increases. To overcome these issues, we adopt a mean-field approximation and
convert the problem into a deterministic control problem. We use Pontryagin’s
minimum principle to get the solution for the resulting HJB equation. The main
challenge we face is that these equations are fully coupled and we have more than
one control variable. Moreover, the constraints on the state and control variables
make the problem more difficult. In order to handle these challenges, we first
characterise the optimal control and show that the solution always exists on the
boundary. Then we remove the constraints on the state variables by showing that
they are always satisfied. Lastly, in the numerical section we consider the specific
case of a network with three control variables and provide the full characterisation
of the optimal transmission policy. It is worth mentioning that the optimal policy
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in this case is a threshold-type policy and hence is easy to implement in practice.
The remainder of this chapter is organised as follows. The next Section 4.1

introduces the stochastic model and its mean-field approximation. In Section 4.2,
we focus on some numerical examples. Finally, we conclude and summarise our
results in Section 4.3.

4.1 Model Description
We consider a network with N interacting sensor nodes, each node being equipped
with on-board memory to store sensor information. The sensor is aware of the
value that the information brings to decision making, which is expressed in terms
of the Value of Information (VoI). We assume that the VoI is an integer value
between 0 and J, where 0 corresponds to the absence of information, and J to
the maximum VoI. The sensor data is periodically collected by a mobile sink that
randomly polls sensor nodes. Therefore, data collection by the sink is optimal if
the nodes keep as much VoI as possible in the network.

We model the network by a multi-dimensional Markov process, where the state
of the Markov process is completely described by the VoI at the nodes. The VoI at
the nodes changes according to the following three different processes:

• The VoI decreases if there is no new information from the environment. The
VoI decreases by one unit with rate `N

0 , independently for each sensor node.

• The VoI increases if there is new information from the environment with a
value higher than the current VoI at the node. For each sensor node, new
sensing data with VoI j arrives with rate `N

j , j ∈ {1, . . . ,J}.

• The VoI changes if two nodes in the network meet each other. Two nodes
meet with rate γN . When this is the case, there are two different scenarios:

– If both nodes decide to send their information, then the information
is lost due to a collision and no exchange is possible. Similarly, if
both nodes decide to receive at the same time, there is no information
transfer.

– If one sends and another receives, then data is sent. However, the
exchange of data only affects the VoI of the receiving node if the sender
has a higher VoI than the receiver.

A node decides to send its information depending on the corresponding VoI.
If the VoI is j, a node will send with probability η j, j ∈ {1, . . . ,J}.

Hence, the evolution of the VoI at a particular node is the combination of an
information loss process and an information replacement process. The information
loss process causes each node to depreciate the value of information over time.
Likewise, the information replacement process models the appearance of newly
sensed or relayed information, and the already available information gets replaced
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whenever the value of newly sensed or relayed information exceeds the old VoI at
the sensor node. Note that this means the VoI process operates in a non-additive
way: when new more valuable information arrives at a node, the resulting VoI of
the node is the value of the arriving information, and not the sum of the values of
the old and the new information or anything of the kind.

4.1.1 Markov model

We first characterise the Markovian network model in terms of time-shifted Pois-
son processes. This characterisation then facilitates studying the mean-field limit
in the next subsection. Let XN

n (t) denote the value of the information (VoI) at the
nth node at time t. The VoI in the network at time t is then described by the vector
XN(t) = (XN

1 (t),XN
2 (t), . . . ,XN

N (t)). In view of the assumptions above, the future
evolution of the VoI in the network does not depend on the past VoI, given the
present VoI, and hence the process XN(t) constitutes a Markov process.

We can now introduce the occupation process MN(t) = [MN
j (t)]

J
j=0 in terms of

the VoI process XN(t). The jth element of MN(t) counts the number of nodes that
carry VoI j at time t,

MN
j (t) =

N

∑
n=1

1{XN
n (t)= j} ,

for j ∈ {0,1, . . . ,J}. As we do not distinguish between sensor nodes, our assump-
tions on the sensor network also imply that MN(t) constitutes a Markov process as
well. In particular, if the process is in state MN(t) = m = [m j]

J
j=0, the state of the

occupation process changes according to the following rates:

• The VoI at any node drops with rate `N
0 , and hence the VoI at nodes with VoI

j drops with rate `N
0 m j for j ∈ {1, . . . ,J}. As there is one more node with VoI

j−1 and one less with VoI j after the drop, the new state is m− e j + e j−1,
with e j = [1{i= j}]

J
i=0.

• New information with value i arrives at each and every node with rate `N
i ,

for i∈ {1, . . . ,J}. Hence the VoI at nodes with VoI j changes with rate `N
i m j

for j ∈ {0, . . . , i−1}. As there is one more node with VoI i and one less with
VoI j after the arrival, the new state is m− e j + ei.

• Finally, nodes meet with rate γN , and hence a random (tagged) node with VoI
j meets another node with rate γNm jN−1. This other node then carries VoI
i > j with probability mi(N−1)−1, and the VoI of the tagged node changes
to i provided that the tagged node does not send (with probability 1−η j)
and the other node does send (with probability ηi). The new state is then
m− e j + ei.

The former description of the transition rates then allows for expressing MN
j (t)

in terms of Poisson processes. Let D j, Ai, j and Qi, j denote independent unit-rate
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Poisson processes, for i, j ∈ {0, . . . ,J}. We then express MN
j (t) as follows,

MN
0 (t) = D1

(
`N

0

∫ t

0
MN

j+1(u)du
)
−

J

∑
i=1

A0,i

(
`N

i

∫ t

0
MN

0 (u)du
)

−
J

∑
i=1

Q0,i

(
γ

N
ηi(1−η0)

∫ t

0

MN
0 (u)
N

MN
i (u)

N−1
du
)

MN
j (t) = D j+1

(
`N

0

∫ t

0
MN

j+1(u)du
)
−D j

(
`N

0

∫ t

0
MN

j (u)du
)

+
j−1

∑
i=1

Ai, j

(
`N

j

∫ t

0
MN

i (u)du
)
−

J

∑
i= j+1

A j,i

(
`N

i

∫ t

0
MN

j (u)du
)

−
J

∑
i= j+1

Q j,i

(
γ

N
ηi(1−η j)

∫ t

0

MN
j (u)

N
MN

i (u)
N−1

du

)

MN
J (t) =−D j

(
`N

0

∫ t

0
MN

J (u)du
)
+

J−1

∑
i=1

Ai, j

(
`N

J

∫ t

0
MN

i (u)du
)
, (4.1)

for j = 1, . . . ,J−1. The process D j counts the number of times the VoI drops from
level j to j−1 (over all nodes), the process Ai, j counts the transitions from level i
to level j, due to arriving sensor information. Finally, the process Q j,i counts the
transitions from level j to level i due to an exchange of information.

4.1.2 Mean-field limit
Define the scaled process mN

j (t) = MN
j (Nt)N−1, where we scale the parameters as

follows
`N

j =
` j

N
, γ

N = γ .

With this scaling, the total rate of sensor information in the network and the contact
rate remain constant. Evaluating (4.1) in Nt and dividing by N, yields the following
after some manipulations,

mN
0 (t) =

1
N

D1

(
N`0

∫ t

0
mN

1 (u)du
)
−

J

∑
i=1

1
N

A0,i

(
N`i

∫ t

0
mN

0 (u)du
)

−
J

∑
i=1

1
N

Q0,i

(
Nγ

N
N−1

ηi(1−η0)
∫ t

0
mN

0 (u)m
N
i (u)du

)
,

mN
j (t) =

1
N

D j+1

(
N`0

∫ t

0
mN

j+1(u)du
)
− 1

N
D j

(
N`0

∫ t

0
mN

j (u)du
)

+
j−1

∑
i=1

1
N

Ai, j

(
N` j

∫ t

0
mN

i (u)du
)
−

J

∑
i= j+1

1
N

A j,i

(
N`i

∫ t

0
mN

j (u)du
)

−
J

∑
i= j+1

1
N

Q j,i

(
Nγ

N
N−1

ηi(1−η j)
∫ t

0
mN

j (u)m
N
i (u)du

)
,
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mN
J (t) =−

1
N

D j

(
N`0

∫ t

0
mN

j (u)du
)
+

J−1

∑
i=1

1
N

Ai, j

(
N` j

∫ t

0
mN

i (u)du
)
. (4.2)

Now, for j ∈ {0,1, . . . ,J}, assume that mN
j (0) converges to a deterministic limit

m j,0 for N→∞, almost surely. Then, let m j(t) be the unique solution of the system
of differential equations,

m′0(t) = `0m j+1(t)−
J

∑
i= j+1

`im j(t)−
J

∑
i= j+1

γηi(1−η j)mi(t)m j(t) , (4.3)

m′j(t) = `0m j+1(t)− `0m j(t)+ ` j

j−1

∑
i=1

mi(t)−
J

∑
i= j+1

`im j(t) (4.4)

−
J

∑
i= j+1

γηi(1−η j)mi(t)m j(t) ,

m′J(t) =−`0m j(t)+ ` j

J−1

∑
i=1

mi(t) , (4.5)

with initial condition m j(0) = m j,0.
Integrating both sides of (4.5) and subtracting it from (4.2) yields,

mN
j (t)−m j(t) = dN

j+1(t)−dN
j (t)+

j−1

∑
i=1

aN
i, j(t)−

J

∑
i= j+1

aN
j,i(t)−

J

∑
i= j+1

qN
j,i(t) ,

for j = 1, . . . ,J−1 with

dN
j (t) = N−1D j

(
N`0

∫ t

0
mN

j (u)du
)
− `0

∫ t

0
mN

j (u)du

aN
i, j(t) = N−1Ai, j

(
N` j

∫ t

0
mN

i (u)du
)
− ` j

∫ t

0
mN

i (u)du

qN
j,i(t) = N−1Q j,i

(
Nγ

N
N−1

ηi(1−η j)
∫ t

0
mN

j (u)m
N
i (u)du

)
− γηi(1−η j)

∫ t

0
mN

j (u)m
N
i (u)du .

Hence, the difference between mN
j (t) and m j(t) in the interval [0,T ] is bounded by,

sup
t∈[0,T ]

|mN
j (t)−m j(t)| ≤ sup

t∈[0,T ]
|dN

j+1(t)|+ sup
t∈[0,T ]

|dN
j (t)|+

j−1

∑
i=1

sup
t∈[0,T ]

|aN
i, j(t)|

+
J

∑
i= j+1

sup
t∈[0,T ]

|aN
j,i(t)|+

J

∑
i= j+1

sup
t∈[0,T ]

|qN
j,i(t)| .

Moreover, the terms on the right-hand side converge to 0 almost surely by
the functional strong law of large numbers for Poisson processes such that
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supt∈[0,T ] |mN
j (t)−m j(t)| → 0 for N→ ∞. Indeed, we have for dN

j (t),

lim
N→∞

sup
t∈[0,T ]

|dN
j (t)|= lim

N→∞
sup

t∈[0,T ]

∣∣∣∣ 1
N

D j

(
N`0

∫ t

0
mN

j (u)du
)
− `0

∫ t

0
mN

j (u)du
∣∣∣∣

≤ lim
N→∞

sup
t∈[0,`0T ]

∣∣∣∣ 1
N

D j(Nt)− t
∣∣∣∣= 0 ,

where the first inequality follows from the bound,

`0

∫ t

0
mN

j (u)du≤ `0t .

The proofs for the other terms and for the cases j = 0 and j = J are entirely similar
and therefore omitted. Thus, we have shown that the probability of observing
a significant difference between any single trajectory of the Markov process and
the solution of the ODE goes to zero as N grows to infinity. We refer to the set
of ordinary differential equations 4.5 as the limit ODE and this set provides an
accurate approximation of the mean occupancy vector m(t) when the number of
nodes in the network are finite but sufficiently large.

4.1.3 The HJB equation and optimal control
The aim is to keep the VoI as high as possible while keeping the exchange of
information to a minimum. Therefore, we define the following cost function,

U =
∫ T

0

J

∑
j=0

(cη j(t)− r j)m j(t)dt , (4.6)

where, ri is the reward for transmitting i VoI and c is a constant cost incurred if
the node decides to transmit the information. Here η j(t) is the control, that is, the
probability to transmit at time t and VoI level j. As η j(t) is probability, we impose,

0≤ η j(t)≤ 1 . (4.7)

Moreover, as there is no reward for transmitting zero VoI, it is natural to assume
that r0 is zero.

Recall the m j(t) denotes the fraction of nodes carrying VoI j, and hence we
have,

0≤ m j(t)≤ 1 ,
J

∑
j=1

m j(t)≤ 1 .
(4.8)

These constraints will be imposed for now, but will follow from the remaining
calculations.

We now focus on obtaining the closed-loop optimal control using the HJB
equations based on Bellman’s optimality principle. This principle states that re-
gardless of previous decisions (controls), the remaining decisions must constitute
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the optimal policy. This simply means that any part of the optimal trajectory is
optimal. We provide the HJB equations for the system at hand and obtain the con-
trol as a function of the state variables. To this point, we introduce the following
Hamiltonian of the system,

H(m,η ,λ ) = ∑
j
(cη j− r j)m j +∑

j
λ j

(
m j+1 `0 + ` j

j−1

∑
i=0

mi

−m j

(
`0 +

J

∑
i= j+1

`i

)
−∑

i> j
γ mi m j (1−η j)ηi

)
, (4.9)

where λ j is Lagrangian multiplier for the constraint m′j and where we suppress
the time-parameter t from the notation for convenience. Note that the functions
λ j are also called the co-state variables and they relate to the state variable as
λ ′ = −∂H/∂m. The solution (m∗,η∗,λ ∗) corresponding to the optimal control,
then satisfies the HJB equations, i.e.,

H(m∗(t),η∗(t),λ ∗(t)) = 0 . (4.10)

Given (m∗,η∗,λ ∗), the scalar cost is,

U∗ =
∫ T

0

J

∑
j=0

(cη
∗
j (t)− r j)m∗j(t)dt .

In the expressions above, we can assume without loss of generality that the optimal
control at VoI level 0 is 0 as there is no reward of sending data that carries no VoI.
Therefore, we do not include index 0 in the optimal control vector η∗ = [η∗j ]

J
j=1.

Likewise, as we have ∑m j = 1, we define the optimal state trajectory vector as
m∗ = [m∗j ]

J−1
j=0 .

We are interested in finding the optimal control for any initial state vector
[m j,0]

J
j=0. In general, the equation (4.10) is a non-linear partial differential equa-

tion and obtaining its solution can prove to be challenging. We use Pontryagin’s
minimum principle to find the optimal control. With a slight abuse of notation,
suppose η∗ = (η∗1 ,η

∗
2 , · · · ,η∗J ) is the optimal control over the interval [t,T ] and

m∗ = (m∗0,m
∗
2, · · · ,m∗J−1) is the optimal state at time t. Formally, Pontryagin’s

minimum principle states the following three conditions for optimality.

1. Hamiltonian: The optimal state trajectory m∗(t), optimal control η∗(t)
and corresponding co-state variables λ ∗(t) must minimise the Hamiltonian
H such that,

H(m∗,η∗,λ ∗)≤ H(m∗,η ,λ ∗) ,

for any η = [η1, . . . ,ηJ ] satisfying (4.7).

2. State and co-state Equations:

m′i = Hλi(m,η ,λ ) ,
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λ
′
i =−Hmi(m,η ,λ ) .

where Hλi (Hmi ) is the derivative of the Hamiltonian with respect to λi (mi).

3. Terminal Condition: for all time t ∈ [0,T ] and for all permissible control
inputs η , H(T ) = 0.

We find the critical point by differentiating the Hamiltonian with respect to the
controls and equating to zero, i.e., ∂H/∂η = 0. This yields a system of linear
equations so can be written in matrix form as Aη∗ = b, where the coefficient
matrix A = (ai j) can be expressed as,

ai j =


λi m j+1 i > j ,
λ j m j i < j ,
0 i = j ,

(4.11)

for i, j ∈ {1,2, · · · ,J} and b = (bi) with,

bi = bi−1 +λi−1 mi−1 , (4.12)

for i ∈ {2,3, · · · ,J} and with b1 =−c+λ0 m0.

Proposition 4.1. Let η∗ to be the optimal solution that minimises the total cost of
the transmission in the network given by function (4.6) with 0≤ η∗j ≤ 1. Then, the
optimal solution η∗ always lies on the boundary of [0,1]J .

Proof. We consider the last two equations of the system given in (4.11) and (4.12),

J−1

∑
j=1

λ j m j η
∗
j = bJ−1 +λJ−1 mJ−1 (4.13)

and,
J−2

∑
j=1

λ j m j η
∗
j +λJ−1 mJ η

∗
J = bJ−1 (4.14)

Subtracting (4.13) from (4.14),

λJ−1 mJ−1 η
∗
J−1−λJ−1 mJ η

∗
J = λJ−1 mJ−1 .

or, equivalently,

η
∗
J−1 = 1+

(
mJ

mJ−1

)
η
∗
J . (4.15)

It can easily be seen from the relation above that for any η∗J ∈ (0,1], the critical
point will lie outside the feasible region. Since, the relation between η∗J or η∗J−1
can only be satisfied at the extreme values, it is sufficient to conclude that there is
no critical point inside the feasible region and the optimal solution exists on the
boundary.
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The above proposition states that the optimal control lies on the boundary and
therefore we have to evaluate each boundary point in order to obtain the optimal
transmission policy. This may simplify the analysis but we still have constraints
on the state variables, which should be handled by means of an additional analysis
[110]. However, when we analyse the ODE of state variables for any control η , the
state constraints in (4.7) are automatically satisfied throughout the finite interval
[0,T ]. Thus, we can ignore the state constraints and the optimisation problem can
be solved as an unconstrained optimisation problem.

Proposition 4.2. For any η ∈ [0,1]J , the state functions m1, m2, · · ·mJ : [0,T ]→
RJ that satisfy the state equations and initial conditions, always satisfy the con-
straints in (4.8).

Proof. To prove this proposition, we look into the direction field of the state func-
tion and show that the state constraints m1, · · · ,mJ ≥ 0, are always satisfied. From
equation (4.5), it is easy to see that m′j = m j+1 `0 + ` j ∑

j−1
i=0 mi when m j = 0. Note

that the rates ` j ≥ 0, for all j ∈ {1, . . . ,J}. Thus, for any feasible control η , the
state function m′j is positive at the boundary m j = 0 meaning all the state variables
would be non-negative throughout the time horizon.

Now consider ∑
J−1
j=0 m′j,

J−1

∑
j=0

m′j =
J−1

∑
j=0

(
m j+1 `0 + ` j

j−1

∑
i=0

mi−m j

(
`0 +

J

∑
i= j+1

`i

)
−∑

i> j
γ mi m j (1−η j)ηi

)

=−`0m0 + `0mJ +
J−2

∑
i=0

mi

J−1

∑
j=i+1

` j−
J−1

∑
i=0

mi

J−1

∑
j=i+1

` j

−
J−1

∑
j=0

J

∑
i= j+1

γ mi m j (1−η j)ηi

=−`0m0 + `0mJ−mJ−1`J−
J−1

∑
j=0

J

∑
i= j+1

γ mi m j (1−η j)ηi

=−`0m0−mJ−1`J−
J−1

∑
j=0

J

∑
i= j+1

γ mi m j (1−η j)ηi ,

where mJ = 1−∑
J−1
j=0 m j = 0, and where we already know that all m j are non-

negative. Thus, ∑
J−1
j=0 m j ≤ 1. This constraint is stronger than the individual upper

bound on the state variable m j ≤ 1 and therefore, we can say that the state function
always satisfies the constraints in (4.7).
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4.1.4 Three State System
In this section, we focus on a system with three levels of VoI and analyse the be-
haviour of the optimal transmission policy. We assume that the information com-
ing to the sensor node can be divided into two categories; regular information (VoI
= 1) and high importance information (VoI = 2). When there is no information, the
information state of the node is represented by VoI = 0. There are N sensor nodes
in the network, and hence the state space of the Markov model is {0,1,2}N . In
practice, whether the controller can achieve the aim of keeping the maximum VoI
depends on the optimal transmission policies. Recall that there is a basic trade-off
between cost of transmission and the VoI in the network. We define the optimi-
sation problem for the three state system formally as follows. Find the control
(η∗1 ,η

∗
2 ), with

0≤ η
∗
1 ,η

∗
2 ≤ 1 ,

such that,

min
η

U =
∫ T

0

2

∑
j=0

(cη j(t)− r j)m j(t)dt , (4.16)

subject to,

m′j = m j+1`0 + ` j

j−1

∑
i=0

mi−m j

(
`0 +

2

∑
i= j+1

`i

)
−

2

∑
i= j+1

mi ,m j(1−η j)ηi ,

for j = 0,1.
From proposition (4.1) and (4.2), we can ignore the constraints on controls

and state variables of the optimisation problem and use Pontryagin’s minimum
principle for unconstrained problems in order to get the optimality conditions. We
already know that the optimal control lies on the boundary and we have to evaluate
each boundary point in order to obtain the optimal transmission policy. We further
analyse the cost function at each boundary point and find an upper bound on the
optimal transmission policy. We now investigate the structure of the Hamiltonian
function and observe a special property of the transmission policy. It also helps to
identify any redundant policies, to reduce the computational complexity.

Proposition 4.3. Let η∗ := (η∗1 ,η
∗
2 ) be the optimal control that minimises the

total cost of the transmission in the network given by (4.16) with 0 ≤ η∗1 ,η
∗
2 ≤ 1.

Then, the solution is of bang-bang1 form. Moreover, the optimal policy follows a
threshold-type structure.

Proof. We define the Hamiltonian of the system as,

H(m,η ,λ ) =
2

∑
j=0

(cη j− r j)m j

1In optimal control theory, sometimes a control is restricted to be between a lower and an upper
bound. If the solution (the optimal control) switches from one extreme to other then that control is
referred to as a bang-bang solution. It never takes the value in between the bounds.
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+λ1

(
m1 `0−m0

(
`0 +

2

∑
i=1

`i

)
−m0 m1 η1−m0 m2 η2

)
+λ2

(
m2 `0 + `1m0−m1(`0 + `2)−m1 m2 (1−η1)η2

)
. (4.17)

From proposition (4.1), we already know that the critical point lies outside the
feasible region. To minimise the Hamiltonian, we have to evaluate expression in
(4.17) at each boundary point. Note that the Hamiltonian in (4.17) has only one
term of degree 2, which is m1 m2 (1−η1)η2. Thus at any boundary, if one of the
optimal controls is fixed, then the Hamiltonian H is linear in terms of the other
control. As a result, the minimum can again occur at the extreme points. In other
words, the optimal policy is of bang-bang form; that is, it possesses four possible
values and can switch abruptly between them.

We now show that the Hamiltonian at (η1 = 1,η2 = 0) can not be minimum.
Let H̃ be the Hamiltonian at (η1 = 0,η2 = 0) as,

H̃ =
2

∑
j=0
−r j m j +λ1

(
m1 `0−m0

(
`0 +

2

∑
i=1

`i

))
+λ2

(
m2 `0 + `1m0−m1(`0 + `2)

)
.

Now we define the Hamiltonian at other three corner points in terms of H̃ as,

Hη1η2(m,η ,λ ) =


H̃ + cm2−λ1 (m0 m2)−λ2 (m1 m2) , η1 = 0, η2 = 1;
H̃ +m1 (c−λ1 m0) , η1 = 1, η2 = 0;
H̃ +(c−λ1 m0)(m1 +m2) , η1 = 1, η2 = 1 .

It is easy to see from the expression above that H̃ <H10 if (c−λ1 m0)> 0, and also
that H11 = H10 +m2(c−λ1 m0). Thus, H11 < H10 if (c−λ1 m0) < 0. Therefore,
the optimal transmission policy switches between (0,0), (0,1) and (1,1). At any
time instance, there exists no j such that η∗j+1 < η∗j . In other words, our system
satisfies a threshold policy.

4.2 Numerical Examples and Discussion

In this section, we numerically study the optimal behaviour of the state and con-
trol variables for a system with three VoI levels. We assume that the rewards for
transmitting the VoI are r2 = 2, r1 = 1 and r0 = 0. We fix the cost of transmission
to c = 1 and plot the solution for the transient analysis in Figure 4.1(a) and Figure
4.1(b). We make the natural assumption that the rate of loss of information is less
than that of the arrival rate of new information. Moreover, the information with
high VoI arrives less frequently as compared to the information with low VoI. In
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(a) m1(0) = 0.15, m0(0) = 0.55
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(b) m1(0) = 0.1, m0(0) = 0.9

Figure 4.1: Transient analysis: Evaluation of the optimal controllers and the according
state trajectories as function of time t

particular, we set `1 = 0.6, `2 = 0.3 and `0 = 0.2. We already know that the so-
lution in the transient case is of bang-bang type, which is also seen in the figure.

The solution depends on the initial values of state (mi(0)) and co-state variables
(λi(0)). We set the time horizon for the system to T = 10. Figure 4.1 depicts
the trajectory of the number of nodes carrying particular VoIs. Depending on the
trajectory, we observe a change in the optimal transmission policy. Moreover, state
trajectories vary with respect to the initial conditions which may lead to different
optimal transmission policies. We fix the initial state of to m0(0) = 0.55, m1(0) =
0.15 in Figure 4.1(a) and plot the state trajectories. For convenience, we denote
the optimal policy with (η∗1 ,η

∗
2 ). Note that the optimal control η∗0 is always zero

and thus we avoid it from the notation of optimal policy. It is observed from the
figure that the optimal control policy is initially (0,0) and later switches to (0,1).
This is due to the switching condition described in Proposition 4.3. We can see
from the Figure 4.1(b) that different initial conditions, m0(0) = 0.9, m1(0) = 0.1,
lead to different optimal transmission policies which switch from (0,0) to (1,1).
Initially, there are a lot of nodes in the network without any VoI and therefore
the optimal control is zero, i.e. allowing no exchange of information. Thus, the
network defers the transmission decision until there is sufficient information from
the environment. At a certain time, the control switches abruptly and allows the
exchange of information. The number of nodes containing higher VoI then grows
rapidly. Moreover, as we assumed that the rate of loss of information is less than
the rate of new VoI coming to the system, we see that the state trajectory of nodes
carrying no VoI is decreasing throughout time.

We now observe the behaviour of the state vector when there is already a suf-
ficient VoI in the network. We modify the transition rates to `2 = 0.1, `1 = 0.2
and `0 = 0.3. The reward and cost of transmission are kept the same as above.
Figure 4.2(a) depicts the optimal control and the optimal state with initial condi-
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Figure 4.2: Transient analysis: Evaluation of the optimal controls and the according state
trajectories as function of time t

tions m0(0) = 0.05, m1(0) = 0.15. In other words, we assume that the network
already contains considerable VoI (m2(0) = 0.8). It is easy to see that the optimal
transmission policy changes two times that is, (0,0)→ (0,1)→ (1,1). Note that,
the rate of loss of information in this example is higher than the arrival rate of new
information. Thus, in the first region, when there is no exchange of information, it
is expected that the VoI in a node frequently degrades. As a result, the trajectory
of m2 is decreasing. However, once the network allows the exchange of informa-
tion, the optimal trajectory depends on the trade-off between reward and cost of
transmission. Figure 4.2(b) depicts the optimal control and the optimal state vector
when the network already has many nodes with VoI m0(0) = 0.05, m0(0) = 0.95.
In this case, the optimal control switches only once from (0,0) to (1,1).

Figure 4.3 depicts the optimal control as a function of the rate the information
degrades (a) and as a function of the arrival rate of new VoI. For consistency, we
retain all the parameter of Figure 4.1(b). We observe the optimal policy at a par-
ticular time instance t = 6. It is interesting to see in Figure 4.3(a) that the optimal
control η∗1 switch from 0 to 1 as `0 increases. Thus, the system tries to compen-
sate for the loss of information by increasing VoI through an exchange process.
However, η∗1 again drops to zero if `0 is too high. There is a fixed cost associated
with each transmission and the higher `0 means VoI degrades quickly. Thus, the
possible gain of increasing VoI through exchange process no longer compensates
the frequent transmission cost. In such cases, the optimal strategy throughout the
finite time horizon is not to allow any transmissions. Figure 4.3(b) fixes the rate
of loss of information `0 = 0.2 and vary `1. The number of nodes in the network
containing regular information increases with `1. Note that the optimal control η∗1
switches only once when rate `1 is above the certain value. We can further confirm
from the Figure 4.1(b) that the optimal controls η∗1 and η∗2 are 1 at time t = 6 with
rates `1 = 0.6 and `0 = 0.2.

Figure4.4 depicts more general behaviour of the optimal transmission policy
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Figure 4.5: Comparison of mean-field limit and simulations

with respect to the different transition rates. Figure 4.4(a) shows the effect the
degradation rate of the information has on the optimal transmission policy. The
control switches from (0,0) to (1,1) at a time t that depends on the rate `0. The
different shaded regions in the figures describe the respective optimal policies. A
similar analysis for `1 is shown in fig.4.4(b).

Finally, we verify the mean-field approximation by means of stochastic simu-
lation. To compare the result of simulations with the mean-field limits, we keep
the parameters same as in Figure 4.1. The time for the simulation model is scaled
appropriately with system size i.e., 1/N. We further assume that the number of
nodes in the network is N = 1000.

Figure 4.5 compares the trajectories of the state variables m0 and m1 of the
mean-field approximation and as generated by stochastic simulation. We compare
the trajectories for different transmission policies. Figure 4.5(a) depicts the result
for optimal policy (1,1) whereas Figure 4.5(b) shows the comparison when the
network does not allow any exchange of information i.e., (0,0). Initially, all the
nodes in the network are assumed to have zero value of information. As time
increases, the nodes get more information either from the environment or from
the interaction with their neighbouring nodes. Thus, m0 starts decreasing before
stabilising at a different time according to different optimal policies as shown in
the figure. Since the rate of loss of information is very low, it is expected that the
network has more nodes containing regular or high importance information over
time. It can be readily seen from both figures that the mean-field approximation
gives an accurate approximation for the evolution of both m0 and m1.
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4.3 Summary
We model a WSN with a large number of nodes by a mean-field approximation.
We consider the quality of information by introducing VoI and show that it plays an
important role in transmission decisions. Furthermore, we have studied the system
with three levels of information in full detail and analyse its transient behaviour.
The optimal transmission policy in such a network is of bang-bang type and also
follows a threshold structure. Such policy is very easy to implement in practice for
large WSNs. In the numerical section, we study the impact of different parameters
on the optimal policy. Finally, we validate our mean-field approximation through
stochastic simulations by comparing the performance of the simulated system to
the mean-field limit.
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5
Underwater wireless sensor

networks

Underwater sensor networks are different from their terrestrial counterparts in
many aspects, including size, cost, deployment and memory. Moreover, the slow
propagation speed of signals in an underwater environment leads to challenging
performance evaluation problems. In this chapter, we propose a stochastic model
to evaluate the performance of the depth based routing protocol, which is a pop-
ular location-free routing protocol for underwater sensor networks. Compared to
simulation studies of underwater sensor networks from literature, our performance
evaluation study can calculate various important performance metrics faster and
thereby offer considerable support during the design of such networks.

Over the last two decades, underwater applications like seabed management,
sea-mine detection, environmental monitoring, etc. have motivated the adoption of
Underwater Wireless Sensor Networks (UWSNs) as a communication infrastruc-
ture. As a consequence, many research effort has been devoted to study their per-
formance and derive guidelines for their design. In contrast to most terrestrial wire-
less networks, UWSNs widely adopt acoustic communication as its intrinsic prop-
erties like low signal interference and large transmission coverage make it suitable
for the underwater environment. Like their terrestrial counterparts, UWSNs adopt
multi-hop routing protocols that aim at delivering the harvested data packets to
on-surface sink nodes. The design of these routing protocols must account for
the energy consumption of the network — battery replacement is considered un-
feasible or prohibitively expensive — as well as for common performance indices
like the expected end-to-end delay, the packet delivery probability and the network
throughput.

Among routing protocols for UWSNs, an important role is played by
localisation-free protocols [111]. These assume that nodes only know their depth
(and potentially that of their neighbours) when taking routing decisions. Such pro-
tocols are mostly adopted for networks with high node mobility, channel fading
etc. as they are capable of finding new routes for each transmission. While such
protocols provide a high network resilience, this may come at the expense of con-
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siderable energy consumption caused by redundant packet transmissions and the
hidden terminal problem. Therefore, it is crucial that the parameters of the proto-
col are configured to balance the various performance indices. For a given cost,
the optimal configuration achieves the best trade-off between energy consumption,
mean end-to-end delay, throughput, delivery probability, etc.

One of the most widely used localisation-free routing protocols is Depth Based
Routing (DBR) [112]. It uses the depth information of nodes to build a route from
the source sensor node to the on-surface sink. The nodes estimate their depth by
on-board pressure sensors and add this information to any packet they send out,
so that all receivers can calculate the depth difference between themselves and the
transmitter. DBR adopts a receiver-based forwarding scheme in which the poten-
tial forwarders are chosen on the basis of the depth difference between the sender
and the receiver. In order to reduce redundant transmissions, DBR introduces the
concept of a packet holding time, i.e., a time that a potential forwarder waits before
sending the packet. The holding time is inversely proportional to the depth differ-
ence between sender and receiver. For a given transmission range, this mechanism
enables the protocol to cover the longest distance towards the surface at each for-
warding step, as receivers further away from the surface wait longer and then drop
the packet if they overhear the communication of the nodes closer to the surface.
The optimal configuration of DBR depends on a set of parameters, among which
a pivotal importance is played by the choice of the transmission power and the
holding time. Specifically, the transmission power determines the distance over
which the packet can be received correctly, which in turn affects the number of
hops needed to reach the sink, the overall energy consumption, the packet delivery
probability and the end-to-end delay. In general, there is a trade-off between long
and short distance transmissions, i.e., too many hops to the destination lead to high
end-to-end delays while too few require a high transmission power that consumes
the nodes’ batteries too fast.

We study this trade-off by proposing and analysing a numerically tractable
stochastic model that can capture the dynamics of DBR. We further show that one
can efficiently calculate the main performance metrics including the mean end-
to-end delay, the delivery probability and the expected energy consumption. In
comparison to simulation, these performance measures can be calculated much
faster, which in turn allows for speeding up the optimising procedure to find the
optimal configuration of the UWSN. With respect to previous work that addresses
the problem of assessing DBR performance, this is the first analytical model taking
into account node deployment and mobility, as well as the intrinsic properties of
acoustic transmissions including the path loss and the bit error rate. The model
is validated by comparing its results with the estimates obtained by resorting to
stochastic simulations.

The remainder of this chapter is organised as follows. In Section 5.1, we relate
the contribution of this chapter to the literature by discussing related work. Section
5.2 then presents the stochastic model and the numerical algorithm to efficiently
calculate the key performance measures of the model. We illustrate our approach
by some numerical examples in Section 5.3, before summarising our findings in
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Section 5.4.

5.1 Related work
In the last decade, the performance analysis of UWSNs and their optimisation and
control have drawn the attention of many researchers (see, e.g., [113]), simulation
rather than analytical models being the primary tool to study performance. In
general, simulation models can be very accurate, however, obtaining performance
metrics is often time consuming and their adoption for optimisation purposes can
be very expensive. Among the analytical models, Guan et al. [114] examine the
spatial and temporal uncertainty of the underwater acoustic channel and develop
a statistical model that is used to propose a novel distributed MAC scheme with
an optimised transmission strategy. Pignieri et al. [115] propose an analytic model
for channels in underwater networks. In these papers, neither the computation of
the mean end-to-end delay and energy consumption nor the impact of the routing
protocols on the networks performance is considered.

The energy consumption is higher in UWSNs due to longer distances that need
to be crossed and due to complex signal processing (see, e.g., [116, 117, 118] for
some works that improve the energy consumption at the physical and MAC lay-
ers). Since the communication speed is equal to the speed of sound, the propa-
gation delay is also much higher than the speed in the terrestrial networks. De
Souze et al. [119] propose a model to analyse the energy consumption in multi-
hop UWSNs. Some works study stochastic scheduling of data transmissions to
deal with network latency while accounting for energy consumption. Among
these, Marinakis et al. [120] formulate the channel access problem in terms of
directed graphs and provide a heuristic to obtain the minimum latency. However,
the acoustic absorption (as in Thorp’s experimental formula [121]) and routing
protocols in the computation of the transmission loss are abstracted out. Similarly,
Li et al. [122] develop a new routing protocol based on a Markov model used to
optimise the trade-off between the packet delivery probability and the energy con-
sumption. While the authors provide an energy-aware routing path selection, the
unreliability of the links and the impact of node mobility on data transmissions
are ignored. The optimality of opportunistic protocols in UWSNs is considered
in [123].

In UWSNs, full localisation schemes are difficult to implement since nodes
consume considerable energy to access the localisation services. Yu et al. [124]
propose a Weighting Depth and Forwarding Area Division DBR routing protocol
that accounts for the depth difference of two hops: not only the depth difference of
the current hop but also the depth difference of the next expected hop. It achieves
an improved packet delivery ratio as it tackles the issue of coverage holes during
transmission towards the sink. More recent work from Rehman et al. [125] pro-
poses an energy efficient cooperative opportunistic routing protocol that improves
the network lifetime by applying fuzzy logic for relay node selection towards the
network sink. Chao et al. [126] minimise the expected number of transmissions for
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successful delivery of a packet to the sink. In [127], the authors proposed a novel
routing scheme called Channel Aware routing protocol (CARP) in which reliable
communication between the hops is preferred on the basis of the transmission his-
tory of the nodes. Shadow zones in the network are also identified and network
throughput is increased. Xie et al. [128] propose a Segmented data transport pro-
tocol (SDRT), which mainly employs block-by-block packet transmission. They
combine FEC and ARQ to formulate their hybrid approach along with improving
the channel utilisation. Some other works [129, 130] exploit extra capabilities of
a node, e.g., the ability to move autonomously in order to minimise the energy
consumption in the deployed sensor network.

5.2 DBR and its Stochastic Model
In this section, we present DBR and introduce a stochastic model to assess its
performance. In contrast to previous work that relies on simulation, we provide
an algorithm to efficiently calculate various performance indices, including the
distribution of the number of hops it takes to send from a point other than the
bottom of the network to a surface node, the level dependent energy consumption
and the mean end-to-end delay. As the model accounts for the impact of node
deployment and the high transmission loss of the acoustic channel, it can be used
to understand the behaviour of DBR at the network level. We now describe the
mechanism of DBR in detail.

5.2.1 Depth based routing
DBR [112] is a packet forwarding protocol for UWSNs that uses depth information
to relay information from underwater sensors to data sinks at the surface. In DBR,
every node has a pressure sensor that enables the node to estimate its depth, while
the nodes are in general unaware of their exact 3D position.

The key determinant that decides which node will forward the information is
the depth difference between the sender and the receiving node. More precisely,
when a node transmits a packet, it includes its own depth information in the header.
Among the (possible multiple) nodes that correctly receive the packet, the next
forwarder is decided by two mechanisms. First, a depth threshold is installed.
This is the minimum depth difference that allows a receiver node to become an
eligible forwarder. Secondly, with the aim of maximising the distance covered by
one hop, a depth-difference dependent holding time is introduced. That is, every
packet to be forwarded is kept at the receiver node for a time interval that decreases
linearly with the depth difference between the sender (as indicated in the packet
header) and itself. In this way, nodes closer to the surface have shorter holding
times and actually forward the packet if they correctly receive the packet. Once
a node overhears a re-transmission of a packet that is stored in its priority queue,
it removes this packet and cancels its holding time in order to prevent redundant
transmissions.
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Notation Definition
U Total number of deployed nodes in the network
L Total number of depth levels in the network for a node
∆d Total depth of the network
∆w Total width of the network
M Number of horizontal positions on a particular level for a node
S Horizontal position of the source node at the bottom level of the

network
T Horizontal position of the sink node at the top level of the net-

work
(i, j) Location of a node with position j at level i in the network
b j Probability that the node occupies position j at a particular level

in the network
di′ j′

i j Euclidean distance between nodes at locations (i, j) and (i′, j′)
Tr Transmission Range of a node
Ni j Set of nodes within the transmission range of node at (i, j)
pm(d) Probability that the packet is successfully delivered over distance

d

Pi′ j′
i j Acceptance probability of a packet from location (i, j) to (i′, j′)

hk(i, j) Probability that packet is accepted at (i, j) in k-hops
DP(i, j; i′, j′) Propagation delay when the packet is sent from (i, j) to (i′, j′)
DH(i, j; i′, j′) Holding time when the packet is sent from (i, j) to (i′, j′)
wk

i j Mean delay of k-hop communication to reach (i, j)
ck

i j(i
′, j′) Mean energy consumption at position (i′, j′) from (i, j) in k-hop

communication

Table 5.1: List of Notations used in the model

In accordance with [112], the holding time DH for a certain depth difference d
can be expressed as follows,

DH(d) =
(

2τ

δ

)
(Tr−d) ,

where Tr is the maximal transmission range of a node, τ is the maximum propa-
gation delay of one hop, i.e., τ = Tr/v0 where v0 denotes the sound propagation
speed in water, and δ is a scaling factor that is chosen in order to achieve optimal
performance of the network and to minimise the hidden terminal problem. We
choose δ = Tr/4 in the remainder in accordance with literature [112].

5.2.2 Node location model
For the sake of readability, we present a model for DBR in a two-dimensional
environment. The extension to 3 dimensions is straightforward and summarised in
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Figure 5.1: Methodology of DBR

Section 5.2.7.

We consider an UWSN with U nodes. The target or sink node is located at the
surface level whereas the source node is located at the bottom. While assuming
fixed positions for source and sink, we allow for movement of the nodes that relay
the information. In particular, we divide the total depth difference ∆D between
source and sink into L+ 1 depth levels, level 0 being the level of the source and
level L being the level of the sink. One node is present at each depth level, we
have U = L+ 1, which randomly moves in the horizontal direction. Figure 5.1
demonstrates the methodology for DBR.

The nodes can move, but remain at a fixed depth level. To simplify the analysis,
we divide the range ∆W in which the nodes move horizontally into M slots with
the same length, and assume that the node is always located at one of the M + 1
slot boundaries (which we label from 0 to M). The horizontal position of the node
at each level is assumed to be an independent random variable. Let b j denote
the probability that the node is in horizontal position j. We here assume that
the distribution of the horizontal position of the node is independent of the level
( j ∈ {0,1, . . . ,M}). In the remainder, the notation “node (i, j)” refers to the node
at level i and horizontal position j. For ease of reference, we enlist the major
notations of the model in Table 5.1.
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5.2.3 Delivery probability of a node
We consider the underwater acoustic channel that is described in [131]. The path
loss A(d, f ) of the acoustic channel over a Euclidean distance d for a signal having
frequency f can be expressed as,

A(d, f ) = dsa( f )d .

The path loss A(d, f ) is expressed in decibels referenced to 1 micro-Pascal (dB re
1 µPa) where d is expressed in km and f in kHz [132]. The spreading factor s
describes the geometry of the propagation; a spreading factor s = 2 corresponds
to spherical spreading while a spreading factor s = 1 corresponds to cylindrical
spreading. Finally, the absorption coefficient a( f ) depends on the frequency and
is expressed in dB/km using Thorp’s experimental formula, see [121].

We can then express the average Signal-to-Noise ratio (SNR) over the distance
d in terms of the path loss,

Γ(d) =
eb

N0 A(d, f )
=

eb

N0 ds a( f )d .

Here, eb and N0 are constants that represent the average transmission energy per
bit and noise power density of the additive white Gaussian noise channel. We
assume binary phase shift keying modulation which is widely used in acoustic
modems [133]. In accordance with [134], the bit error probability over distance d
can then be expressed as,

qe(d) =
1
2

(
1−
√

Γ(d)
1+Γ(d)

)
.

For a data packet with m bits, the probability that the packet is successfully deliv-
ered over a distance d therefore equals,

pm(d) = (1−qe(d))m .

For ease of notation, we introduce notation for the Euclidean distance between
nodes. Let di′ j′

i j represent the distance between nodes (i, j) and (i′, j′),

di′ j′
i j =

√(
∆D

L

)2

(i− i′)2 +

(
∆W

M

)2

( j− j′)2 .

In addition, let Ni j = {(i′, j′) : di′ j′
i j ≤ Tr} be the set of nodes within transmission

range of node (i, j).
In DBR, a packet is accepted by a node at position (i′, j′) if (i) node (i′, j′)

is in the transmission range of the sender node (i, j), (ii) node (i′, j′) successfully
receives the packet and (iii) all the nodes located in Ni j that are above (i′, j′) do not



112 Underwater wireless sensor networks

accept the packet. Let Pi′ j′
i j denote the probability that a data packet is successfully

received at (i′, j′) when sent from (i, j), we then have,

Pi′ j′
i j = b j′ pm

(
di′ j′

i j

) L

∏
`=i′+1

(1−Q(`; i, j)) ,

for (i′, j′)∈Ni j and where Q(`; i, j) is the probability that the packet is successfully
delivered at level `,

Q(`; i, j) =
M

∑
k=0

bk pm

(
d`k

i j

)
1{(`,k)∈Ni j} .

Here 1{·} denotes the indicator function which equals 1 if its argument is true, and
0 if its argument is false. In other words, the sum above only includes nodes within
the transmission range of the node at position (i, j).

5.2.4 Analysis of k-hop communication
We now focus on the number of hops needed for the data to be successfully de-
livered from source to sink. We first calculate the probability that any node in the
network accepts the data packet from the source in one hop. Clearly nodes situ-
ated at an immediate upper level of the source will have zero probability to receive
the data in one or more hops, as only direct communication is possible. Let S be
the horizontal position of the source at the bottom level and T be the horizontal
position of the sink at the surface level of the network. Let hk(i, j) represent the
probability that the data is accepted by node (i, j) in k hops. The one-hop proba-
bility can be written as,

h1(i, j) =
i−1

∑
i′=1

M

∑
j′=1

Pi j
i′ j′ P

i′ j′
0S .

Note that the terms in the sum are only non-zero for (i′, j′) ∈ N0S∪Ni j.
Similarly, the delivery probability in two hops can be written as:

h2(i, j) =
i−1

∑
i′=1

M

∑
j′=1

Pi j
i′ j′ h1(i′, j′) ,

while the delivery probability of k hop communication can be written by induction
as,

hk(i, j) =
i−1

∑
i′=1

M

∑
j′=1

Pi j
i′ j′ hk−1(i′, j′) .

Given the values hk(i, j), we can now easily express the delivery probability
at the sink. Indeed, the packet reaches the sink if it is delivered in any number of
hops,

h̄ =
L

∑
k=0

hk(L,T ) .
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For these calculations as well as for the delay and energy consumption calcu-
lations below, we implicitly make the simplifying assumption that the position of
the nodes at the different levels is independent from hop to hop. This is indeed
an approximation: the acceptance at a certain level depends on the position of the
nodes at higher levels, as it is more probable to accept at a level if nodes at higher
levels are at a larger horizontal distance from the transmitter. While we retain the
position of the node that accepted the packet, we resample the positions of the
nodes at higher levels. We will verify by simulation that this simplification does
not void our results in Section 5.3.

5.2.5 Computation of the mean end-to-end delay
The propagation speed of the acoustic signal in water is v0 = 1500m/s which
is much lower than that of terrestrial radio-frequency based signals. Thus, the
propagation delay is significant in UWSN and can have a considerable impact on
the performance of the system. Apart from the propagation delay, we also need
to account for the effect of holding times which depend on the depth difference
between sending and receiving nodes. Let DP(i, j; i′, j′) and DH(i, j; i′, j′) denote
the propagation and holding time delays when the packet is sent from (i, j) to
(i′, j′), then,

DP(i, j; i′, j′) =
di′ j′

i j

v0
,

and,

DH(i, j; i′, j′) =
2τ

δ

(
Tr−

∆D

L
(i′− i)

)
,

for i′> i and (i′, j′) 6=(L,T ). Furthermore, DH(i, j;L,T )= 0, as there is no holding
time at the sink.

In order to find the mean delay, each possible path of the network needs to be
explored. To this end, let Wi, j denote the waiting time for a packet to reach (i, j)
and let Hi, j denote the number of hops it takes. We now calculate the mean delays
wk

i j, given that it takes k hops to reach (i, j),

wk
i j = E

[
Wi, j1{Hi, j=k}

]
.

We again use a recursive scheme, similar to that for the delay calculations, for
calculating the acceptance probability for the data packets in k hops. To start, we
find the delay for one hop communication,

w1
i j =

i−1

∑
i′=1

M

∑
j′=0

(
DH(0,S; i′, j′)+DP(0,S; i′, j′)

+DH(i′, j′; i, j)+DP(i, j; i′, j′)
)

Pi′ j′
0S Pi j

i′ j′ .
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To calculate wk
i j for k > 1, we condition on the position of the last hop. That is, to

reach (i, j) in k hops, we need to reach some (i′, j′) in k−1 hops, and then reach
(i, j) by direct communication. The waiting time is then the sum of the waiting
time to reach (i′, j′) and the transmission and holding times to reach (i, j) from
(i′, j′),

wk
i j =

i−1

∑
i′=1

M

∑
j′=0

(
wk−1

i′ j′ +DH(i′, j′; i, j)hk−1(i′, j′)

+DP(i′, j′; i, j)hk−1(i′, j′)
)

Pi j
i′ j′ .

Finally, we can calculate the mean end-to-end waiting time, conditional on the
packet reaching the sink, by summing over the number of hops that it takes to
reach (L,T ), and by dividing by the probability that the packet reaches the sink,

W̄ =
1
h̄

L

∑
k=0

wk
LT .

5.2.6 Energy consumption
In order to study the expected energy consumption in the network, we recursively
calculate the energy consumption for all node positions in the network to transmit
to a particular node in a fixed number of hops. More precisely, let Ci j(i′, j′) denote
the energy consumption in position (i′, j′) for transmitting from the source to node
(i, j) and let Hi. j denote the number of hops to transmit to node (i, j) as before, we
then study the mean energy consumption given the number of hops,

ck
i j(i
′, j′) = E

[
Ci j(i′, j′)1{Hi, j=k}

]
.

Note that ck
i j(i
′, j′) = 0 for i≤ i′ since nodes above (i, j) cannot forward to (i, j).

To start with one hop communication, we have

c1
i j(i
′, j′) = γ Pi j

i′ j′ P
i′ j′
0S .

Here γ denotes the amount of energy a single transmission takes. That is,
Ci j(i′, j′) = γ if the single forwarding hop is in position (i′, j′) and Ci j(i′, j′) = 0 if
this is not the case.

We further calculate the values ck
i j(i
′, j′) for k > 0 recursively. There is energy

consumption at position (i′, j′) if it is reached in k− 1 hops, followed by direct
communication, or if (i′, j′) is part of a (k− 1)-hop path to some intermediate
node (above level i′), from which (i, j) is reached. We have,

ck
i j(i
′, j′) = γ hk(i′, j′)Pi j

i′ j′ +
i−1

∑
`=i′+1

M

∑
m=0

ck−1
`m (i′, j′)Pi j

`m .
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We can finally calculate the energy consumption at each level in the network,
by summing over the number of hops to reach the destination, and by summing
over the different positions at the same level,

c(i) =
L

∑
k=0

M

∑
m=0

ck
LT (i,m) .

5.2.7 Extension to 3 dimensions
We briefly discuss how the model can be extended to 3 dimensions (3D). We still
consider an UWSN with L+1 nodes with sink at the surface and source at the bot-
tom. While assuming fixed positions for source and sink, we allow for movement
of the nodes that relay the information. In particular, we divide the total depth
difference ∆D between source and sink into L+ 1 depth levels, level 0 being the
level of the source and level L being the level of the sink.

At each horizontal level, the node can be in M positions. As the horizontal
level is a plane, there are e.g. M positions on a square grid, or M discrete posi-
tions evenly distributed on a disk. The distance calculations are the key difference
between the 2D and 3D model. For ease of notation, we introduce a common coor-
dinate system on all levels, and let (x( j),y( j)) denote the (horizontal) coordinates
of position j. The distance between node j on level i and node j′ on level i′ can
then be expressed as follows,

di′ j′
i j =

√(
∆D

L

)2

(i− i′)2 +(x( j)− x( j′))2 +(y( j)− y( j′))2 .

Given this modification of the distance calculations, the remainder of the calcula-
tions remain valid. Note however that the summations in Sections 5.2.3 till 5.2.6
now run over all positions in a horizontal plane.

5.3 Numerical Results
In this section, we numerically study different performance measures of the model
at hand. We assume that the total depth of the network is ∆D = 500m with L = 50
depth levels. Note that there is only one sensor node at each depth level meaning
there are 50 nodes in the network. We keep the values of the numerical parameters
in line with the values in [112]: we set s = 2, v0 = 1500m/s, δ = Tr/4 and τ =
Tr/v0. Finally, we assume data packets of 50 bytes. These parameter values are
used in all plots.

5.3.1 Delivery probabilities
We first investigate the delivery probabilities for direct communication. The source
is fixed at bottom level of the network at horizontal position S. We assume that
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Figure 5.2: Delivery probability for direct transmission from source to sink (a) for different
horizontal positions of the destination and (b) for different levels of destination

each node can move horizontally to M = 50 locations over a range of ∆W = 500m,
each horizontal position being equally likely. We further choose the transmission
energy such that eb/N0 = 57dB, and assume that the transmission range is only
bounded by transmission errors (Tr = ∞).

Figure 5.2(a) shows the delivery probability by a direct transmission from the
source to a node at level 10 vs. the horizontal position of this node for different
source positions S as indicated. As expected, the maximal delivery probability
is obtained when source and destination are aligned, as this corresponds to the
shortest distance between these nodes.

Figure 5.2(b) shows the same delivery probability, but we now fix the horizon-
tal position of the destination node at 10 and vary its depth level. Again, different
source positions S are assumed as indicated. There is an outspoken optimal depth
level: at first the delivery probability is small as it is likely that the packet will be
delivered to higher nodes. The delivery probability therefore first increases with
the depth level. However, if the depth level is already high, the chance to success-
fully transmit is low. Hence, the delivery probability decreases with increasing
depth levels.

For the remaining plots, we assume that the node can move into M = 15 slots
spanning a range ∆W = 150m. We set the transmission range to one-fifth of the
total range of the network i.e., Tr = ∆D/5 = 100m and fix the horizontal position
of the source and sink: S = T = 10.

We now focus on the number of hops needed for the data to be delivered at
the sink. Note that the number of hops cannot exceed the number of depth levels
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Figure 5.3: Delivery probability (a) for different total number of depth levels and (b) for
different eb/N0

as no downward transmissions are allowed in DBR. Figure 5.3(a) and Fig 5.3(b)
depict the probability mass function of the number of hops needed to deliver the
packet from source to sink. In 5.3(a), we depict the probability mass function for
networks with different levels L. In 5.3(a), we depict the probability mass function
for different transmission powers eb/N0.

From the figures, we can observe that the delivery probability is zero for the
first 4 hops, which is not surprising as the transmission range is 100m. Moreover,
most of the probability mass is between 5 and 9 hops, which is again in line with
the transmission range. Finally, it is seen that end-to-end communication with
fewer hops is more likely if there are more nodes (i.e., by increasing L, see Figure
5.3(a)), or if the transmission power increases (see Figure 5.3(b)).

5.3.2 Mean end-to-end delay

Figure 5.4 depicts the mean delay conditioned on the number of hops required for
the data to reach the sink. Figure 5.4(a) fixes eb/N0 to 57dB and shows the mean
delay for different numbers of depth levels L between the source and the sink.
On the other hand Figure 5.4(b) fixes the number of depth levels to L = 50 and
varies the transmission power as indicated. It is readily seen that the conditional
end-to-end delay grows almost linearly with the number of hops, and is largely
insensitive to changes in transmission power and the number of depth levels. This
is not entirely unexpected as the end-to-end delay is largely dominated by the
holding times at the nodes.
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Figure 5.4: Mean Delay (a) for different total number of depth levels and (b) for different
eb/N0
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Figure 5.5: Total delivery probability and mean end-to-end delay
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Figure 5.6: Mean Delay and Energy consumption

In Figure 5.5, we depict the delivery probability at the sink and the correspond-
ing mean end-to-end delay (conditional on the packet reaching the sink). We again
set the total depth to ∆D = 500m and vary the number of depth levels. As we fix
the total depth, increasing the number of levels means that the depth difference
between adjacent levels decreases. Figure 5.5(a) depicts the delivery probability at
the sink vs. the number of depth levels for different eb/N0 as indicated. It can be
seen from the figure that the total delivery probability in general increases when the
number of depth levels increases. This is expected as we add additional sensors,
making it less likely that the packet is lost. The curve is not monotone increasing
though, which can be explained by the interplay between the depth levels and the
fixed transmission range Tr. Figure 5.5(b) shows that the mean end-to-end delay
decreases when the total number of depth levels increases. Note that the total depth
of the network is fixed. As the depth difference between adjacent levels decreases,
it is expected that the mean end-to-end delay decreases as well. Moreover, while
the delivery probability increases with eb/N0, it has the opposite effect on the mean
end-to-end delay.

In Figure 5.6(a), we study the effect of the scaling parameter δ on the mean
delay. The parameter δ is key for the holding times. Larger δ implies shorter hold-
ing times at each intermediate node and thus reduces the mean delay. Figure 5.6(a)
depicts the mean end-to-end delay, conditional on the number of hops. As previ-
ously noted, the end-to-end delay grows approximately linearly with the number
of hops. It can now clearly be seen that the slope of the conditional end-to-end
delay depends on δ .
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Figure 5.7: Comparison of stochastic model and Monte-Carlo simulation for hops distri-
bution and Mean delay

5.3.3 Energy consumption

Finally, Figure 5.6(b) depicts the energy consumption at the different depth levels
of the network. We assume that the amount of energy for one transmission is γ = 1,
so that the plot depicts the mean number of times the nodes at each level participate
in the transmission. Ideally, one aims for uniform energy expenditure so that the
life time of all nodes is approximately equal. It is however clear from the figure that
the energy consumption at levels close to both source and sink is higher, compared
to the energy consumption by nodes in the middle of the network. This suggests
that it is beneficial to increase the density of the nodes near sink and source.

5.3.4 Model validation by simulation

We now evaluate the performance of the model through simulations and compare
its time complexity with the stochastic model.

Recall that the analytical model made the following simplifying assumption.
The position of the nodes above a transmitting node, is assumed independent of
their positions during preceding transmissions. In reality, these positions may
largely remain the same, and therefore we need to verify that this assumption does
not compromise the accuracy of our results. To this end, we compare our results
with results obtained by Monte Carlo simulation, where it is assumed that the po-
sitions of the nodes do not change throughout the multi-hop transmission of the
packet.
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Figure 5.8: Comparison of stochastic model and Monte-Carlo simulation for Total delivery
probability and Mean end-to-end delay

In particular, the details of the simulation study are as follows. We consider K
replications of a multi-hop transmission from source to sink. For each replication,
we first randomly draw the positions of the nodes at all levels. We then calculate
the performance measures using the analytical model of Section 4, for the given
fixed node positions. As the positions of the nodes are fixed, the calculations of
Section 4 are exact. Each replication yielding values for the various performance
measures, we finally calculate the sample averages, and corresponding confidence
intervals for these performance measures.

Analytic and simulation results are numerically compared in Figs. 5.7 and 5.8.
We keep the same size of the network: a depth of 500 m and a width of 150 m.
The number of available positions that a node can take at a particular depth level
are fixed to M = 15 in accordance with the stochastic model. We sample K = 1000
times, which is sufficient to obtain a confidence 95% confidence interval of±0.5%
the sample mean. Although the source and sink can be randomly located at bottom
and surface level of the network respectively, we place them both at a position 10
for consistency in the experiment. All the other network parameters are similar to
those in the stochastic model.

Figure 5.7(a) depicts the comparison of the number of hops distribution where
Figure 5.7(b) shows the comparison of the mean delay for different number of de-
ployed nodes in the network. Furthermore, Figure 5.8(a) depicts the total delivery
probability and Figure 5.8(b) shows the mean end-to-end delay for both models.
It can be seen from the figure that the difference between the results obtained by
simulation and analytically is negligible.
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To compare the efficiency of the analytical model and the simulation model,
we compare their time complexity. For the stochastic model, most of the time
is spent on the calculation of the delivery probability and hops distributions. In
the worst case scenario, the time complexity of the stochastic model is O(L3M2),
where L is the number of depth levels in the network and M is the number of
positions that a node can take horizontally. For the simulation study, we only
sample the positions of the nodes, and then calculate the performance measures
by the analytic approach to reduce the variance of the Monte-Carlo simulation.
This technique is referred to as variance reduction by conditioning, see e.g. [135].
Hence, the time complexity of a single iteration is O(L3), which corresponds to the
complexity of the stochastic model with M = 1 (as the nodes are at a fixed position
in each iteration). For moderate M, the number of samples K that are needed
in the Monte Carlo simulations considerably exceeds M2, which implies that the
stochastic model can calculate the various performance measures faster, even after
applying the variance reduction technique (which also relies on the model).

5.4 Summary
We propose a numerically tractable stochastic model for the performance eval-
uation of DBR. In particular, we consider four performance metrics: the hop-
distribution, the packet delivery probability, the expected energy consumption and
the expected end-to-end delay. The model is validated by comparing the aver-
age performance indices obtained by its analysis with the estimates obtained by a
stochastic simulation. By a numerical example, we illustrate that our model can
be used to assess the impact of various network configuration parameters (e.g., the
transmission power and the scaling factor δ defined by DBR) on these indices.
Our analysis showed that the number of hops in the route can dramatically affect
the performance of the protocol. The proposed model can be further used for opti-
misation purposes given the limited computational effort required, in comparison
to underwater sensor network simulations.
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Conclusion

In this dissertation, we investigated the performance of wireless sensor networks
through various stochastic models. In order to formulate stochastic models, we
first identified the most important processes that determine the performance of
the WSN and properly quantified the uncertainties in these processes. We solve
these models by adapting probabilistic techniques and gain important insights into
the design and performance of the network. In certain instances, we exploited the
special structure of some processes in order to obtain a solution more quickly. Such
theoretical analyses often lead to interesting properties of the optimal solution. To
conclude this dissertation, we now summarise our contributions below.

Chapter 2 contains a basic model for a sensor node in isolation, followed by
a series of extensions and refinements, which relaxed some of the initial assump-
tions on the sensing and energy harvesting processes. The value of information
(VoI) for all the models in that chapter were additive in nature. We provided re-
cursive equations for the battery and VoI dynamics in a sensor node. The set of
recursions allowed us to determine the first two moments of the value of informa-
tion that is collected by a mobile sink. We showed that there exists a stationary
ergodic process representing the battery and VoI. Moreover, we also proved the
convergence of the battery and VoI processes, irrespective of the initial conditions.
We closed the discussion on the basic model by providing an extensive numeri-
cal study in order to understand the behaviour of the collected VoI with respect to
different system parameters. The immediate extension of the model was inspired
by the assumption of energy utilisation for sensing the information. We extended
the assumptions of the basic model by allowing that the node ability is aware of
the presence or absence of information and compared the results with the previ-
ous model. We also extended this model by incorporating time correlation in the
energy harvesting process. This is achieved by formulating the harvesting process
as N-state Markov modulated process. We provided the equations for different
performance measure of the generalised model and numerically analysed the net-
work for the interrupted Poisson process which is nothing but a two-state Markov
modulated process. We clearly observed that correlation has a considerable impact
on the performance of the node. In particular, we observed that longer active and
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inactive periods of energy harvesting adversely affects the mean value of informa-
tion collected by the mobile sink. Also, if the harvesting process is bursty, i.e.,
harvesting is concentrated in a few time slots followed by a large number of inac-
tive slots, then the mobile sink collects less VoI. In all these models, we allowed
for temporal unavailability of the mobile sink by introducing a transmission op-
portunity process, i.e., the sink is in range of the sensor node in particular time slot
with a fixed probability. The numerical study depicts that the mean VoI is a con-
cave function of this transmission opportunity. This is a very strong insight from
the perspective of a network designer. It can be used to find the optimal trajectory
of the mobile sink maximising the sum of the values of information collected by
the sink.

Chapters 3 and 4 then investigated how to optimally control WSNs. In contrast
to Chapter 2, we assumed that the VoI process is a combination of an information
loss process and an information replacement process. In particular, information
gets replaced if newly sensed information has a higher VoI than the current infor-
mation and it decreases by one unit if no new information arrives. This is a popular
assumption when the age of information is more important than its amount. Chap-
ter 3 presented a stochastic recursion for a sensor node in isolation. We formulated
the performance problem within the framework of discrete-time infinite-horizon
Markov decision processes, and solved it by a standard policy iteration algorithm.
We however exploited the special quasi-birth-death structure of the transition ma-
trix of the Markov decision process to facilitate its solution. The numerical results
showed that the optimal transmission policy is a threshold policy in terms of both
the battery level and the VoI, which is highly sensitive to the battery level.

In general, WSNs contain a large number of interacting nodes, each node being
in some state, such that the states of all nodes combined make up the state space of
a Markov chain. We considered interaction among nodes in Chapter 4. The sensor
nodes in the network can obtain a new value, either directly from the environment
or from interaction with other nodes in the network which hold a higher VoI. The
exchange of information through interaction causes considerable energy expendi-
ture from the nodes. Solving such a network becomes practically impossible due
to the curse of dimensionality. We therefore formulated the mean-field limit of
the Markov model at hand which, heavily reduced the computational effort needed
to obtain the optimal control of the network. In the mean-field limit, the opti-
misation problem was reduced to a continuous-time deterministic optimal control
problem. We proved the convergence of the mean-field model theoretically and
obtained the optimal transmission policy by solving Hamiltonian-Jacobi-Bellman
equations. We also provided a detailed analysis on the structure of optimal policy
as well as some numerical results.

Lastly, we considered underwater wireless sensor networks in Chapter 5. In
particular, we addressed the performance evaluation of multi-hop underwater com-
munication by developing a stochastic model for the depth-based routing protocol
in UWSNs. We mainly calculated three performance measures: the number-of-
hops distribution, the mean end-to-end delay and the energy consumption in the
network. The numerical analysis of these performance indices exhibited powerful
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insights on node deployment under water. For example, the energy consumption
near the sink is higher meaning more nodes should be deployed closer to sink. We
also validated our results through stochastic simulations.

Finally, we mention some possible future research directions. While the mod-
els in Chapter 2 considered a sensor node in isolation, we already mentioned that
these could be used to evaluate mobile sink routing. Given a certain path, the mo-
bile sink will be in range for some part of the trajectory and out of range for the
remainder of the path. For the models in Chapter 2, sink availability was assumed
independent from slot to slot. This assumption may already offer a good approx-
imation for the amount of information that can be collected by the mobile sink.
The model can however also be refined to capture the sink availability process
more accurately. The mean-field limit of Chapter 4 studies the VoI information
process in a WSN without energy harvesting. The methodology may also extend
to EH-WSN. Then the state of each node not only includes the VoI, but also the
battery state, and communication is not possible if there is no energy.
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