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Anomalous domain wall condensation in a modified Ising chain
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We construct a one-dimensional local spin Hamiltonian with an intrinsically nonlocal, and therefore anoma-
lous, global Z2 symmetry. The model is closely related to the quantum Ising model in a transverse magnetic field,
and contains a parameter that can be tuned to spontaneously break the nonlocal Z2 symmetry. The Hamiltonian
is constructed to capture the unconventional properties of the domain walls in the symmetry-broken phase.
Using uniform matrix product states, we obtain the phase diagram that results from condensing the domain
walls. We find that the complete phase diagram includes a gapless phase that is separated from the ordered
ferromagnetic phase by a Berezinskii-Kosterlitz-Thouless transition, and from the ordered antiferromagnetic
phase by a first-order phase transition.
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I. INTRODUCTION

Spontaneous symmetry breaking in quantum many-body
systems can be characterized by the nonzero expectation value
of an order parameter. In symmetry-broken systems, there
exists a basis such that each ground state is uniquely character-
ized by its uniform and nonzero value for the order parameter.
For certain symmetry-breaking patterns and in certain spatial
dimensions, it is possible to consider states where the order
parameter is nonuniform and contains a topological defect
[1,2], such as, for example, a domain wall in one dimension or
a vortex in two dimensions. Because such topological defects
are stable and cannot be created by local operators, it is
possible that they bind fractional quantum numbers associated
with unbroken global symmetries. In fact, many examples of
systems where this occurs are known. Among the earliest ex-
amples are the Jackiw-Rebbi [3] or the Su-Schrieffer-Heeger
model [4], where domain walls bind half-integer U(1) charge,
and the spin-1/2 soliton in quantum spin chains [5].

The binding of fractional quantum numbers to topological
defects is closely related to Lieb-Schultz-Mattis-Oshikawa-
Hastings (LSMOH) theorems [6–8], which forbid the exis-
tence of short-range entangled phases that do not break any
microscopic on-site and spatial symmetries. In the original
LSMOH theorems, the relevant on-site symmetry was U(1)
or SU(2), and the spatial symmetry was simply lattice trans-
lation symmetry. However, by now, LSMOH theorems exist
for many other on-site and spatial symmetries [9–13]. An
intuitive way to understand the connection between LSMOH
theorems and fractionalization of topological defects is to
imagine a system in a symmetry-broken phase, such that
condensation of topological defects drives it to a disordered
phase. If the defects carry fractional quantum numbers, this
condensation transition cannot result in a short-range entan-
gled, featureless state. An interesting example is the spin-1/2
Heisenberg antiferromagnet on the square lattice. Because this
model has half-odd integer spin per unit cell, the LSMOH
theorem forbids a short-range entangled symmetric ground
state. If we assume the ground state is a valence-bond solid

(VBS), topological defects in the Z4 valued order parameter
carry spin-1/2 [14]. In the Néel phase, spin-wave excitations
in topological sectors with an odd skyrmion number carry mo-
menta around (0, π ) or (π, 0) [15]. Condensing the skyrmions
therefore leads to the fourfold ground-state degeneracy of
the VBS phase [16,17]. These observations also lie at the
basis for the original theory of deconfined quantum criticality
[18], which was proposed to describe a Landau-forbidden
continuous phase transition between the Néel and VBS orders.
Recently, a 1D Hamiltonian with a LSMOH constraint was
constructed such that in the VBS phase the domain walls
bind a nontrivial projective representation of Z2 × Z2 [19].
The authors of Ref. [19] argued that condensing these domain
walls results in a deconfined quantum critical point in the
phase diagram, separating two different symmetry-broken
phases.

Another context in which fractionalized quantum numbers
and/or unconventional zero modes bind to topological de-
fects, is at the boundary of symmetry-protected topological
(SPT) phases [20–24]. One of the most notable examples is
the time-reversal symmetric superconducting boundary state
of the 3D topological insulator, where a vortex traps a Majo-
rana mode [25]. In the nontrivial 3D bosonic SPT phase with
U(1) × ZT

2 symmetry, where ZT
2 is time-reversal symmetry,

boundary vortices bind a Kramers pair in their core [26]. In
Ref. [27], the authors showed that for certain 2D SPT phases
with Zn × Zm symmetry, boundary domain walls associated
with broken Zn symmetry carry fractional charge under Zm,
and vice versa. When the symmetry group is Zn × Zm × Zp,
there exist 2D bosonic SPT phases such that a boundary
domain wall of Zn binds a nontrivial projective representation
of Zm × Zp [27].

It was recognized early on that the physics of deconfined
quantum critical points and the boundaries of SPT phases
are closely related [26]. More recently, systems where a
LSMOH theorem applies were interpreted as the boundary of
a SPT phase with both on-site and spatial symmetries [28,29].
All these systems also share the property that a topological
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theta term or Wess-Zumino-Witten term is essential to ob-
tain the correct nonlinear sigma model effective-field theory
[15,29–32]. The physical meaning of such terms is exactly
that they provide the topological defects with the correct
properties such as fractional quantum numbers. By now, a
deeper unified language for the physics of LSMOH theorems,
SPT surface states, and deconfined quantum critical points
has emerged in terms of ’t Hooft anomalies [33–39]. For UV
lattice models, a ’t Hooft anomaly simply means that a global
symmetry is realized in an intrinsically nonlocal way [23,34].
In the context of LSMOH theorems, ’t Hooft anomalies can
occur because of the non-on-site nature of the spatial sym-
metries. In the context of SPT phases, a local symmetry in
the bulk can effectively act as a nonlocal symmetry on the
low-energy boundary or surface modes. The common wisdom
is that when a nonlocal symmetry with nontrivial ’t Hooft
anomaly gets spontaneously broken, topological defects in the
corresponding order parameter will acquire unconventional
properties such as fractional quantum numbers. However, it
is important to note that fractionalization is not the only
unconventional property of defects that can occur when a
nonlocal symmetry gets broken. Another possibility is that
the defects have nontrivial statistics [40]. For example, on
the boundary of a 3D bosonic topological insulator with
U(1) � ZT

2 symmetry, the vortices become fermions [26,41].
In this paper, we consider a 1D model with a Z2’t Hooft

anomaly where similar phenomena occur. In particular, we
construct a spin Hamiltonian for which, in the symmetry-
broken phase, the domain walls between the two vacua behave
as semions in a sense that we specify below. It can be inter-
preted as the edge Hamiltonian of a 2D bosonic SPT phase
corresponding to the nontrivial element of H3(Z2,U (1)) =
Z2 [23,24,42]. The Hamiltonian is closely related to the
1D quantum Ising model in transverse magnetic field, and
contains a parameter that we can tune to condense the domain
walls. We show that this model indeed has a nonlocal Z2

symmetry that can be written in matrix product operator
(MPO) form. We find that the Hamiltonian we construct
has close connections to anyon chains [43,44] and that—
-not surprisingly—its symmetry is of the CZX type [23].
Upon condensing the “semionic” domain walls, there occurs
a Berezinskii-Kosterlitz-Thouless (BKT) transition [45,46] to
a Luttinger liquid phase [47] with an emergent U(1) × U(1)
symmetry. The Luttinger liquid description of the gapless
regime agrees with the Chern-Simons description of 2D SPT
phases [48]. We numerically study the entire phase diagram
with uniform matrix product states and also find a first-order
transition, making the phase diagram very similar to that of
the XXZ model. We expect our model to capture the generic
boundary phase diagram of the nontrivial 2D bosonic Z2 SPT
phase. In Ref. [49], the authors constructed gapped boundaries
of SPT phases using symmetry extensions. However, we did
not find a natural way to incorporate these symmetry exten-
sions in our minimal effective model for the domain walls.

II. “SEMIONIC” DOMAIN WALLS

We imagine a situation where the Z2 symmetry of a
2D nontrivial bosonic SPT is spontaneously broken on the

boundary. We also assume that the symmetry-breaking-
induced gap is much smaller than the bulk gap. In this case,
the low-energy degrees of freedom will be the domain walls
on the boundary and the dynamics will be effectively 1D. In
this section, we discuss the imprint of the Z2’t Hooft anomaly
on the boundary symmetry-breaking phase.

Based on the group cohomology classification of bosonic
SPT phases [24], a natural guess for the property of the bound-
ary domain walls that distinguishes them from conventional
Ising domain walls is that they have unusual fusion rules. In
particular, if we consider three domain walls localized in some
region, pairwise annihilating the first two or pairwise annihi-
lating the last two gives a relative minus sign. Schematically,

(1, 2)3 = −1(2, 3) , (1)

where we numbered the domain walls and the brackets denote
a pairwise annihilation process. That this is indeed the correct
property of the anomalous domain walls can be verified by the
tensor network constructions of 2D SPT phases [23,50]. The
intuition behind these unusual fusion rules is now, analogous
to Haldane’s argument for the gaplessness of the spin-1/2
chain [15,51,52], that in a path integral representation these
minus signs will lead to destructive interference which pre-
vents the disordered phase from having short-range correla-
tions.

Let us elaborate on why Eq. (1) implies that the domain
walls can be interpreted as semionic quasiparticles. For this,
we consider a state with 2N domain walls. We order the
domain walls and pair them up in neighboring pairs, i.e., we
represent the state as

(1, 2)(3, 4) . . . (2N − 1, 2N ) , (2)

where now we interpret the brackets as indicating that these
domain wall pairs were created together from the vacuum.
This choice of pairing is arbitrary and merely serves as
a reference configuration. Let us now create an additional
domain wall pair. There are two possibilities to do this. The
first is that we create the pair between two other pairs, such
that the state, e.g., becomes

(1, 2)(3, 4)(1′, 2′)(5, 6) . . . (2N − 1, 2N ) , (3)

where we denote the newly created pair with primes. This
state can simply be relabeled to obtain the reference state with
2N + 2 domain walls:

(1, 2)(3, 4)(1′, 2′)(5, 6) . . . (N − 1, N )

→ (1, 2)(3, 4)(5, 6)(7, 8) . . . (2N + 1, 2N + 2) . (4)

The second possibility is that we create the pair in between
two domain walls that were paired up in the reference state. In
that case, we obtain, for example,

(1, 2)(3, 4)(5(1′, 2′)6) . . . (2N − 1, 2N ) . (5)

Now applying rule Eq. (1) implies that this state is equal to

(1, 2)(3, 4)(5(1′, 2′)6) . . . (2N − 1 , 2N )

→ −(1, 2)(3, 4)(5, 6)(7, 8) . . . (2N + 1, 2N + 2) . (6)
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So, we see that the creation of a pair of domain walls at
position x gives a minus sign if the number of domain walls to
the left of x is odd, while we get no minus sign if the number
of domain walls to the left of x is even. This implies that
the creation operator for a single domain wall at site x would
produce a factor of ±i if the number of domain walls to the
left is odd, which agrees with the findings of Ref. [53]. This
justifies the term semionic, which refers to “half-fermion”
statistics.

III. EFFECTIVE MODEL

A. The Hamiltonian

In this section, we construct a 1D effective Hamiltonian
that captures the semionic nature of the domain walls de-
scribed above. As a first step, we recall the Kramers-Wannier
self-duality mapping of the 1D quantum Ising model in a
transverse magnetic field. If we call the original Ising spins
the σ spins, then we can introduce τ spins living in between
the Ising spins, which represent domain walls. We use the
convention that a τ spin is zero if its two neighboring σ spins
are equal and is one when its neighboring spins are different.
The Ising Hamiltonian can be written either in terms of the
original σ spins, or in terms of the domain walls represented
by τ spins:

H =
∑

i

−Jσ z
i σ z

i+1 + Bσ x
i ,

↔ H ′ =
∑

i

−Jτ z
i+1/2 + Bτ x

i−1/2τ
x
i+1/2 . (7)

Here τ i represent the Pauli matrices, but acting on the domain-
wall states. The σ spins are taken to live on the integer-
valued lattice sites, while the τ spins live on the half-integer
lattice sites. Under this duality, the ferromagnetic interaction
of the σ spins maps to a chemical potential for the τ domain
walls, while the magnetic field maps to a hopping and pair
creation term for the domain walls. This is easily understood,
since increasing the ferromagnetic interacting suppresses the
existence of domain walls while the magnetic field will flip σ

spins and cause domain walls to be created and move around.
So, H ′ represents the dynamics of domain walls, which can
condense (by lowering their chemical potential) and give rise
to a disordered phase.

To construct a Hamiltonian that has semionic domain
walls, we first keep both the σ and τ spins. Since now our
Hilbert space consists of both the σ and τ spins simultane-
ously, we need a term that enforces the τ spins to represent
domain walls of the σ spins. This is easily done with a Z2

Gauss-law term:

HGauss = −g
∑

i

σ z
i τ z

i+1/2σ
z
i+1 . (8)

The Gauss constraint term commutes with all terms that we
will add to the Hamiltonian later on; so, by taking g > 0
large enough, the low-energy states will live in the subspace
where the τ spins represent domain walls of the σ spins.
This subspace characterized by σ z

i τ z
i+1/2σ

z
i+1 = 1 has a nice

graphical representation. If we represent the σ spins as hor-
izontal links and the τ spins as vertical links, such that we

−

(a)

(b)

FIG. 1. (a) Graphical representation of the state
|01̃11̃00̃01̃10̃10̃11̃0〉, where j̃ denote the τ spins and j denote
the σ spins. (b) Action of the Hamiltonian term HDyn on states in the
subspace satisfying σ z

i τ z
i+1/2σ

z
i+1 = 1.

obtain a 1D lattice that is a sequence of coordination number
three vertices, then the low-energy subspace is in one-to-one
correspondence with all coverings of this lattice with strings
that end on the vertical links. The precise correspondence is
that a zero state represents the absence of a string, and the
one state represents the presence of a string. We illustrate this
graphical representation in Fig. 1(a).

The chemical potential term for the domain walls is the
same as in the Ising model:

Hμ = −μ
∑

i

τ z
i+1/2 . (9)

As a final term, we need an analog of the domain-wall
hopping/pair creation term τ x

i−1/2τ
x
i+1/2 of the transverse field

Ising model. Denoting the domain-wall states with {|0̃〉 , |1̃〉}
and the σ -spin states with {|0〉 , |1〉}, we define the term HDyn

by its action on any subsequent τ -σ -τ triplet as

|1̃01̃〉 ↔ −|0̃10̃〉, (10)

|1̃11̃〉 ↔ |0̃00̃〉, (11)

|0̃01̃〉 ↔ |1̃10̃〉, (12)

|1̃00̃〉 ↔ |0̃11̃〉 , (13)

and HDyn is zero on any state that violates the Gauss term.
We give a graphical representation of the action of HDyn in
Fig. 1(b). The only difference between HDyn and the con-
ventional Ising model term τ x

i−1/2τ
x
i+1/2 is the minus sign in

Eq. (10). This term represents the creation of a domain-wall
pair when there are an odd number of domain walls to the left
of it. Equation (11) also represents a pair creation/annihilation
process, but with an even number of domain walls to the left.
The easiest way to see this is to look at Fig. 1(b), and to realize
that the σ spins encode the parity of the number of τ spins to
the left of it. Equations (12) and (13) represent domain-wall
hopping.
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We now take the Hamiltonian H to be the sum of all
preceding terms:

H = HGauss + Hμ + HDyn . (14)

We claim that this Hamiltonian captures the universal low-
energy physics at the boundary of the nontrivial 2D bosonic
Z2 SPT phase. In the next section, we first discuss the global
Z2 symmetry of this Hamiltonian. In Sec. V, we numerically
study the phase diagram of H as a function of μ and show that
this model indeed does not have a gapped, disordered phase,
which is the hallmark of the edge physics of a nontrivial 2D
SPT phase. At this point, we also want to mention that for μ =
0, our Hamiltonian H is very closely related to the anyonic
chains that have previously been constructed in the literature
[43,44]. Specifically, our model at μ = 0 can be obtained
by constructing an anyon chain with the F symbols of the
SU(2)1 modular category. However, there is one important
difference compared to the usual anyonic-chain construction.
In Refs. [43,44], the vertical links, corresponding to our
domain wall or τ degrees of freedom, are fixed while here they
are allowed to fluctuate. We will see below that the connection
with the SU(2)1 anyon chain at μ = 0 fits nicely with the
phase diagram we obtain numerically.

B. Z2 symmetry

Although the Hamiltonian in Eq. (14) is very closely
related to the transverse Ising model, it does not have the same
Z2 symmetry

⊗
i σ

x
i . However, H does have a low-energy Z2

symmetry. To expose it, we focus on states in the Hilbert space
that do not violate the Gauss term, i.e., we only consider states
that satisfy σ z

i τ z
i+1/2σ

z
i+1 = 1. We now claim that the relevant

Z2 symmetry is given by

(−1)#strings
⊗

i

σ x
i , (15)

i.e., it flips all the σ spins and adds a minus sign when the
number of strings is odd. Note that we can add the minus
sign before or after flipping all the σ spins, since this does
not change the number of strings. Because the minus sign
commutes with the product of σ x, it is clear that this symmetry
squares to the identity.

The sign (−1)#strings appears to be a very nonlocal operator.
However, we can encode it via local operators by noting
that counting the number of strings is equivalent to counting
the number of right-hand endpoints of strings. A right-hand
endpoint of a string can be detected locally, and we can assign
a minus sign to it using a diagonal matrix for every τ spin and
the σ spin to the left of it. We then let the operator add a minus
sign when both these spins are one, which indeed corresponds
to the situation where a string comes from the left and ends on
that τ spin. Concretely, if we define

CZi = |00̃〉〈00̃| + |10̃〉〈10̃| + |01̃〉〈01̃| − |11̃〉〈11̃| (16)

to act on σ -spin i and τ -spin i + 1/2, then the symmetry can
be written as a product of local matrices as

⊗
i

CZi

⊗
i

σ x
i . (17)

HDyn −

HDyn −−

Symm Symm

FIG. 2. Graphical illustration of the commutation relation be-
tween the Z2 symmetry in Eq. (17) and HDyn. Both paths in the
diagram (first HDyn, then the symmetry, and vice versa) commute.

Using the graphical representation one can easily check that
this operator commutes with HDyn, as we illustrate in Fig. 2.
The operator Eq. (17) also trivially commutes with Hμ.

There are a few important points we need to clarify about
the Z2 symmetry. The operators

⊗
i CZi and

⊗
i σ

x
i do not

commute. As a result, the operator in Eq. (17) does not square
to the identity and does not truly represent a Z2 symmetry.
It is only when we project into the low-energy subspace
satisfying the Gauss constraint σ z

i τ z
i+1/2σ

z
i+1 = 1 that it acts

as in Eq. (15), and is a true Z2 symmetry. If we take the
tensor product of local matrices in Eq. (17) and project it into
the subspace satisfying the Gauss term, then we end up with
a nonlocal MPO representation of the Z2 symmetry. So, the
correct statement is that the Hamiltonian we are considering
has a Z2 MPO symmetry in its low-energy subspace satisfying
the Gauss term.

C. Simplified Hamiltonian

The Hamiltonian in Eq. (14) has the clearest physical inter-
pretation in terms of the dual domain-wall variables we used
in the previous sections. However, we can also reformulate
it using only the original σ spins. In these variables, the
Hamiltonian Eq. (14) becomes

H =
∑

i

CZi−1,i+1σ
x
i − μσ z

i σ z
i+1 , (18)

where we introduced the notation CZi j , which is the same
matrix as defined in Eq. (16), but now acting on the σ spins
labeled by i and j. Since we have omitted the domain walls,
we no longer need the Gauss term in the Hamiltonian. In terms
of the σ spins, the Z2 symmetry becomes⊗

i

σ x
i

⊗
i

CZi,i+1σ
z
i . (19)

One can check that this operator, which is now manifestly
a MPO, indeed squares to the identity and commutes with
the Hamiltonian Eq. (18). Because this MPO corresponds to
the nontrivial element in H3(Z, U(1)), the Hamiltonian in
Eq. (18) cannot have a unique, short-range entangled ground
state [23].

IV. CONDENSATION OF DOMAIN WALLS: FIELD
THEORY ANALYSIS

Before discussing our numerical results in the next section,
we first turn to a low-energy field theory analysis. Given that
gapless boundary modes of 2D bosonic symmetry-protected
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phases are known to have a Luttinger liquid description [48],
we expect that if our model has a gapless regime it will flow
to this effective field theory in the IR. Here we follow the
conventional notation (with units such that u = 1) [54], and
write the Luttinger liquid or compact free-boson action as

L0 = 1

2πK
(∂μφ)2 . (20)

The compactification radius of φ is taken to be π . We define
the dual field θ (x) via the relation ∂xθ = ∂tφ/K . Canonical
quantization implies that the boson fields φ and θ satisfy the
commutation relation

[φ(x), ∂yθ (y)] = iπδ(x − y) . (21)

From the canonical commutation relation, it follows that
the operator which shifts φ by a constant α is given by
exp [−i α

π

∫
dx ∂xθ (x)]. The compactification condition on φ

implies that this operator should be the identity operator
when α = π , which implies that θ is also compact with
compactification radius 2π . We can write the Luttinger liquid
Hamiltonian as

H = 1

2π

∫
dx

(
K (∂xθ )2 + 1

K
(∂xφ)2

)
. (22)

From this Hamiltonian, we recognize the R-duality 2φ ↔ θ ,
K ↔ 1/4K of the free-boson Conformal Field Theory (CFT).

As was shown in previous works [42,48,55], in the non-
trivial SPT phase the global Z2 symmetry acts on the fields as

φ → φ + π

2
, θ → θ + π . (23)

From this symmetry action, we see that there exist no Z2

symmetric terms of the form cos(2mφ) or cos(mθ ) with m ∈
Z that we can add to the Luttinger liquid Lagrangian to create
a gap, and at the same time obtain a unique, symmetric ground
state. This is the fingerprint of the ’t Hooft anomaly, which
excludes the existence of a gapped, disordered phase.

The global symmetry operator which implements the shifts
in Eqs. (23) is given by exp (−i

∫
dx[ 1

2∂xθ (x) + ∂xφ(x)]). It
follows that the operator which creates a domain wall at
position x is given by [53]

D̂†(x) = e−i( 1
2 θ (x)+φ(x)). (24)

At this point, we import a result from our numerical simu-
lations presented in the next section. As detailed below, we
find that the translation symmetry of the lattice Hamiltonian
acts an internal Z3 symmetry in the low-energy Luttinger
liquid description. Specifically, our numerics show that under
a translation by one lattice site, the domain-wall creation op-
erator D̂† picks up a phase ei2π/3. This is to be compared with
the Luttinger liquid description of the XXZ spin chain, where
translation symmetry acts as an internal Z2 symmetry in the
effective field theory. The Z3 symmetry action on the domain-
wall creation operator does not allow us to unambiguously
determine its action on the boson fields φ and θ . However,
we do not expect the Z3 symmetry to be anomalous because
the gapped ferromagnetic phase of our lattice Hamiltonian is
translationally invariant. So, we can without loss of generality

take the internal Z3 symmetry to act as [48]

φ → φ , θ → θ − 4π

3
. (25)

The scaling dimension of cos(mφ) is m2K
4 , while the scaling

dimension of cos(mθ ) is given by m2

4K . The most RG-relevant
perturbations of the Luttinger liquid respecting all symme-
tries are therefore given by cos(4φ) and cos(6θ ). So in the
parameter range 1/2 < K < 9/2, the Luttinger liquid has no
symmetry respecting relevant perturbations. The cos(4φ) term
is irrelevant for K > 1/2, while it is relevant for K < 1/2.
So, at K = 1/2, which is the self-dual point of the free-boson
CFT, there is a BKT transition to a gapped phase where the
φ field gets pinned to one of the minima of the cos(4φ)
term. This gapped phase spontaneously breaks the global Z2

symmetry, but preserves translation symmetry. We therefore
identify it with the ferromagnetic phase of our microscopic
Hamiltonian [Eq. (18)] obtained for large μ > 0. From the
perspective of the ferromagnetic phase, the BKT transition
into the Luttinger liquid phase results from the condensation
of Z2 domain walls. As noted above, the Hamiltonian in
Eq. (18) constructed to describe this domain-wall condensa-
tion takes the form of an SU(2)1 anyon chain when μ = 0.
Therefore, it is natural to expect that the BKT transition
in this model will occur at μ = 0, since the self-dual point
of the free-boson CFT is equivalent to the SU(2)1 Wess-
Zumino-Witten CFT. We will confirm this in the next section
containing our numerical results.

The sine-Gordon Lagrangian L0 + gcos(4φ) of course
also describes the original BKT transition in the 2D classical
XY model [56] or 1D quantum XXZ Hamiltonian. However,
there is one important distinction compared to the present
discussion. In the XY model, there is a microscopic U(1)
symmetry on both sides of the BKT transition, which in
the field theory language is associated with the charge Q =∫

dx ∂xφ, i.e., the winding of the boson field. In the Luttinger
liquid phase, there is an additional emergent U(1) symme-
try, with charge Q̃ = ∫

dx ∂tφ. In the semionic domain-wall
Hamiltonian, both U(1) symmetries are emergent and only
present in the Luttinger liquid phase. This distinction does not
appear in the field theory description, however, which captures
the behavior around the Luttinger liquid fixed point. Once
the cosine term becomes relevant, the theory will flow to a
gapped fixed point, where the U(1) symmetry ceases to have
any physical meaning.

V. NUMERICAL RESULTS

In this section, we explore the phase diagram of our effec-
tive model numerically, and confirm the theoretical consider-
ations above. Our simulations were performed using tangent-
space methods for uniform matrix product states (MPS) [57];
in particular, we use the VUMPS algorithm [58] for finding
variational MPS approximations for the ground state of the
Hamiltonian, and apply the quasiparticle excitation ansatz
[59] for computing the low-lying excited states. Because the
framework of uniform MPS works directly in the thermody-
namic limit, we do not experience any finite-size errors, and
the only refinement parameter is the MPS bond dimension.
For simplicity, we simulate the model using the reduced form
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FIG. 3. The phase diagram of the Hamiltonian [Eq. (14)] as
obtained by uniform MPS simulations. Both the ferromagnetic (FM)
and antiferromagnetic (AFM) phases can be understood in the limit
of large |μ| by the relation to the standard transverse-field Ising
model. The semionic nature of the domain-wall hopping and cre-
ation introduces a gapless Luttinger liquid (LL) phase in between;
the transitions are of the BKT type (LL → FM) and first-order
(LL → AFM).

of the Hamiltonian in Eq. (18). In Fig. 3, we summarize the
phase diagram that we have obtained by our simulations.

We start in the ferromagnetic phase (μ > 0). In the limit
of large μ, we recover the standard ferromagnetic transverse-
field Ising model, for which the order parameter 〈σ z

i 〉 signals
the Z2 symmetry breaking. For the Ising model, a variational
MPS simulation generically yields one of the two states
with maximal symmetry breaking; moreover, since these
two ground states are connected by the symmetry operation⊗

i σ
x
i , these two ground states have exactly the same entan-

glement structure. For the nonlocal MPO symmetry [Eq. (19)]
in our model, this is no longer the case as we always find the
same MPS |ψMPS〉 as a variational optimum at a given bond
dimension. The second ground state is found by acting with
the MPO on the first, which increases the bond dimension.
Correspondingly, the entanglement spectra of the two ground
states are different and, in particular, the bipartite entangle-
ment entropy of |ψMPS〉 is smaller. As MPS ground-state ap-
proximations induce a bias towards low-entanglement states,
this explains why we find only one variationally optimal
ground state at a given bond dimension. To characterize the
Z2 symmetry breaking in our simulations, we compute the
quantity λ = 〈ψMPS| O |ψMPS〉1/N , where O is the MPO oper-
ator in Eq. (19) and N is the diverging system size; in uniform
MPS simulations this “overlap per site” is easily computed
directly in the thermodynamic limit. From the inset of Fig. 4,
we clearly see that the Z2 symmetry is spontaneously broken
in the ferromagnetic phase, but that the symmetry breaking
vanishes as μ = 0 is approached.

In a system where different ground states are related
through an MPO symmetry, the elementary excitations have
a topological nature, in the sense that they are created by a
local operator with an MPO string attached [60]. Here, the
MPO string serves as the generalization of the Jordan-Wigner
string in the Ising model. The MPS quasiparticle ansatz is
straightforwardly generalized to the case of MPO strings [60],
and we can compute the excitation energy within the non-
trivial topological sector for every value of the momentum.
In Fig. 4, we plot the spectrum for different values of μ.
Interestingly, the absolute minimum of the dispersion relation
continuously shifts from momentum p = π in the Ising limit
to p = 2π

3 at the critical point where the gap closes. This
tells us that the domain-wall creation operator in a long-
wavelength continuum theory for the gapless phase picks up a
phase ei2π/3 under translation. So, in an effective field theory
description, translation symmetry will act as an internal Z3

symmetry. In the previous section, we used this result in our

FIG. 4. The excitation energy as a function of momentum in the
topological (domain wall) sector for five values of μ (the spectrum is
reflection symmetric for p → −p). Energies were obtained with the
MPS quasiparticle ansatz with an MPO string and bond dimensions
up to D = 100. We observe that the minimum of the dispersion
relation (indicated with the larger symbol) shifts as μ varies, where
the gap closes at momentum ±2π/3 as μ = 0 is approached. In the
inset, we provide the value of λ = 〈ψMPS| O |ψMPS〉1/N as a function
of μ (for system size N → ∞), and we indicate the five points for
which we have computed the spectrum.

Luttinger liquid analysis. Next to the gap closing at p = 2π
3 ,

we also find additional local minima close to momentum zero
and 2π

3 that correspond to the lower edges of the three- and
five-particle continuum, respectively (note that two-kink and
four-kink states do not show up in the topological sector).

From the excitation spectra in the topological sector (kink
sector), we learn that the kink gap closes around μ = 0,
resulting in the condensation of kink-antikink pairs. Because
of the nontrivial fusion properties of these kinks, the result
cannot be an isolated critical point. Rather, the model enters
a gapless phase for μ � 0. The central charge in this phase
can be determined from MPS simulations through the scaling
of the entanglement entropy as a function of the effective
correlation length in the MPS ground-state approximations
(a technique known as finite-entanglement scaling [61,62]).
In Fig. 5, we clearly show that the central charge is c = 1
throughout the gapless phase. The phase transition from this
U(1) phase into the gapped phase for μ > 0 is expected to
be of the BKT type, which we can confirm from the behavior
of the correlation length as the critical point is approached
in the gapped phase. The correlation length is a quantity
that converges slowly with the bond dimension, so we apply
extrapolation techniques [63] for finding the correct value of
the correlation length at each value of μ > 0. In Fig. 6, we
observe that the correlation length diverges exponentially as
log ξ ∝ (μ − μc)−1/2 and find a value for the critical point
that is close to μc = 0.

For large negative μ, we expect to recover the properties
of the antiferromagnetic Ising model, for which the order
parameter is the staggered magnetization 〈(−1)iσ z

i 〉. In Fig. 7
one can see that the staggered magnetization clearly signals
the phase transition into the gapless phase around μ = −0.9,
where it drops discontinuously to zero. This suggests that
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FIG. 5. The bipartite entanglement entropy S as a function of the
correlation length ξ for variational MPS ground states at different
values of μ in the critical region and varying bond dimensions. In the
gapless phase, we consistently find a scaling S = c

6 log ξ + S0 with
values of c around 1, where S0 is a nonuniversal (i.e., μ-dependent)
constant related to the UV scale of the problem. To collapse the data
for different values of μ, we have subtracted S0. Fitting a single line
through all data points, we find c ≈ 1.02 (blue line), in very good
agreement with the effective Luttinger-liquid theory.

the transition is first order, which is confirmed by plotting
the behavior of the correlation length as a function of the
bond dimension in our MPS simulations (inset of Fig. 7).
We observe that the correlation length remains finite upon
approaching the transition from the antiferromagnetic side.
In fact, even arbitrarily close to the first-order transition, the
correlation length in the antiferromagnetic phase remains of
order one.

FIG. 6. The correlation length ξ as a function of μ as the BKT
transition is approached; the values for the correlation length were
extrapolated from MPS simulations up to bond dimension D = 70.
We have fitted (blue line) these values to the form log ξ ∝ (μ −
μc )−1/2; we find a value of about μc ≈ −0.05, which is consistent
with the expected value of μc = 0 given the relatively small bond
dimensions used in our simulations.

FIG. 7. The staggered magnetization ms = 〈(−1)iσ z
i 〉 as a func-

tion of μ; the discontinuous jump clearly signals a first-order tran-
sition. As a further confirmation, in the inset we plot the effective
correlation lengths as a function of the MPS bond dimension D for
different values of μ around the transition (the markers indicate the
chosen values); in the critical region the correlation length grows
indefinitely, whereas in the gapped region it remains clearly finite.

VI. DISCUSSION

1D Hamiltonians with an anomalous Z2 MPO symmetry
have previously been studied in the literature [23,64–66], but
to the best of our knowledge these models do not contain a pa-
rameter that enables a spontaneous breaking of the anomalous
symmetry, and are therefore not based on a physical picture of
the unconventional domain-wall fusion properties. Reference
[27] did construct microscopic models to study domain walls
on the boundaries of SPT states, but only those with fractional
quantum numbers or nontrivial projective representations.
The modified Ising chain is expected to be closely related
to strange correlator partition functions obtained from the
nontrivial bosonic Z2 SPT phase, as studied previously in
Refs. [67–70]. These strange correlator partition functions
have a natural interpretation as loop models [67,68], which
makes them tractable for certain analytical calculations. How-
ever, there is no unique strange correlator partition function,
and different partition functions can give rise to very different
critical behavior. Given the simplicity and associated physical
picture of the modified Ising chain, we expect it to be a
faithful effective model for the boundary of the nontrivial Z2

SPT. It would therefore be interesting to understand whether
the modified Ising chain can be mapped to other (integrable)
models known in the literature. Because of its simplicity, it
might also be worth it to see if it can be realized in cold atom
experiments.

The phase diagram we obtain for the modified Ising chain
is very similar to that of the spin-1/2 XXZ model. Upon vary-
ing the chemical potential for the domain walls, we find three
phases: a ferromagnetic phase, a Luttinger liquid regime, and
an antiferromagnetic phase. The ferromagnetic phase is sep-
arated from the Luttinger liquid by a BKT transition and the
antiferromagnetic phase is separated from the Luttinger liquid
by a first-order transition. In the antiferromagnetic regime,
the correlation length in our model stays order of order one,
even close to the first-order transition into the Luttinger liquid.
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This behavior is again very similar to the XXZ spin chain,
where the correlation length is exactly zero in this regime.
Interestingly, the XXZ Hamiltonian also has a “perturbative”
anomaly that is closely related to the ’t Hooft anomaly of
our model [33,37,38]. The perturbative anomaly in the XXZ
model is associated to translation symmetry, which acts on the
low-energy modes as an effective Z2 symmetry. This anomaly
is the same as the chiral anomaly of the 1D Dirac fermion [36],
and the g ↔ −g anomaly of the SU(2)1 Wess-Zumino-Witten
CFT [38,71]. It is also the same anomaly as the one associated
with the nonlocal MPO symmetry of our model [37,38,69].

Condensation of defects in the order parameter of sponta-
neously broken anomalous symmetries often leads to emer-
gent symmetries. In fact, such emergent symmetries are
one of the hallmarks of deconfined quantum critical points
[18,39,72]. For example, at the proposed deconfined quantum
critical point describing the 2D Néel-VBS transition, there is
an emergent SO(5) symmetry which allows to rotate between
the Néel and VBS order parameters, which should be treated
on equal footing at the transition point [72]. In the 1D model
studied here, there is a U(1) × U(1) symmetry that emerges
after condensing the anomalous domain walls, although there
is no deconfined quantum critical point or a physical interpre-
tation for the emergent symmetry in terms of rotating between
different order parameters. One point to make in this context
is that the emergent U(1) × U(1) symmetry of the Luttinger
liquid, acting as (φ, θ ) → (φ + α1, θ + α2), is closely related
to the self-duality of the free-boson CFT, which interchanges
φ and θ . From the symmetry action Eqs. (23), we see that both
φ and θ can serve as order parameters for the Z2 symmetry,
so it is the self-duality which states the equivalence of these
two order parameters (which signal the breaking of the same
symmetry) at the BKT transition. In the context of deconfined
quantum critical points, recent progress has shown that also
in two spatial dimensions emergent symmetries are often
closely related to dualities, in the sense that knowing dual
formulations of a particular theory can help in understanding
its emergent symmetries [39].

Our construction of the microscopic model can be general-
ized to arbitrary discrete groups, by doing a similar “anyonic-
chain” construction with the group cohomology data instead
of the F symbols of a modular category. As was shown in
Ref. [53] using a field theory analysis, in the case of ZN sym-
metry, the domain walls are expected to have parafermionic
statistics [73]. It would be interesting to understand the
connection between these symmetry-broken phases and the
recently studied parafermionic chains [74,75], which were
argued to also realize BKT transitions [76]. The anyonic-chain

construction, however, is not restricted to Abelian symme-
tries and realizes domain walls which cannot be captured
by the parafermion formalism. In particular, we can even go
back to the original anyonic-chain construction based on F
symbols and ask what is the precise nature of the defects in
the corresponding “symmetry-broken” phases of the nonlocal
MPO “symmetries” [43,44]. These symmetry-broken phases
are closely related to gapped boundaries of 2D topologi-
cally ordered phases. This connection is manifested clearly
in tensor-network representations of the relevant topological
phases, and has been exploited to study anyon condensation
numerically [60,77,78].

VII. CONCLUSION

In this paper, we have constructed a simple spin-chain
Hamiltonian that exhibits an anomalous Z2 symmetry by
explicitly modeling the semion statistics of the associated
Z2 domain wall configurations. The resulting Hamiltonian is
analogous to the Ising model, and shares with it an ordered
ferromagnetic phase and antiferromagnetic phase. However,
due to the anomalous realization of the symmetry, a gapped
disordered phase is ruled out [23]. Instead, we find a gapless
Luttinger liquid phase that is separated from the ordered
ferromagnetic phase by a phase transition of the BKT type,
and from the ordered antiferromagnetic phase by a first-order
phase transition. This model is believed to capture the univer-
sal physics of the boundary of 2D SPT phases.

The reasoning on which this paper is based can also be
applied to the boundaries of 3D SPT phases with discrete
symmetries. In the symmetry-broken phase, the ’t Hooft
anomaly will manifest itself via unconventional properties of
the junctions of domain walls, which again have a natural
interpretation in terms of the group cohomology data specify-
ing the SPT phase. If one could construct an effective model
that captures the anomalous properties of the domain-wall
junctions, then one could perhaps gain some insight into the
boundary phase diagram of 3D SPT phases.
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