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Abstract 10 

Aim Experimental nitrogen (N) addition (fertilization) studies are commonly used to quantify the 11 

impacts of increased N inputs on plant biodiversity. However, as plant community responses can vary 12 

considerably among individual studies, there is a clear need to synthesize and generalize findings 13 

with meta-analytical approaches. Our goal was to quantify changes in species richness and abundance 14 

in plant communities in response to N addition across different environmental contexts, while 15 

controlling for different experimental designs. 16 

Location Global  17 

Time period Data range: 1985 – 2016; Publication years: 1990-2018 18 

Major taxa studied Plants 19 

Methods We performed a meta-analysis of 115 experiments reported in 85 studies assessing the 20 

effects of N addition on terrestrial natural and semi-natural plant communities. We quantified changes 21 

in plant biodiversity in relation to N addition using four metrics: species richness (SR), individual 22 

species abundance (IA), mean species abundance (MSA) and geometric mean abundance (GMA). 23 

Results For all metrics, greater amounts of annual N addition resulted in larger declines in plant 24 

diversity. Additionally, MSA decreased more steeply with N that was applied in reduced (NH4
+) 25 

rather than oxidised (NO3
-) form. Species richness loss with increasing N amounts was found to be 26 

larger in warmer sites. Further, greater losses in species richness were found in sites with longer 27 

experimental duration, smaller plot sizes and lower soil cation exchange capacity (CEC). Finally, 28 

abundance reductions of individual species were larger for N-sensitive plant life-form types (legumes 29 

and non-vascular plants).  30 

Main conclusions N enrichment decreases both species richness and abundance of plant communities 31 

in N-addition experiments, but the magnitude of the response differs among biodiversity metrics and 32 

with the environmental and experimental context. This underlines the importance of integrating 33 

multiple dimensions of biodiversity as well as relevant modifying factors into assessments of 34 

biodiversity responses to global environmental change. 35 
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Introduction 39 

Nitrogen (N) deposition is among the main drivers of the loss of plant biodiversity in terrestrial 40 

ecosystems (Bobbink et al., 2010; Sala et al., 2000; Vellend et al., 2017). In the last century, enhanced 41 

emissions of nitrogenous compounds caused by agricultural and industrial activities have increased 42 

atmospheric nitrogen (N) deposition in natural and semi-natural ecosystems across the world 43 

(Erisman et al., 2013; Galloway et al., 2008), with concomitant consequences for the biodiversity of 44 

these ecosystems (Bobbink et al., 2010; Dise et al., 2011). Biodiversity is key for maintaining the 45 

functioning of ecosystems and the provision of ecosystem services (Cardinale et al., 2012; Hooper et 46 

al., 2005). Plant diversity, for example, enhances the ability of ecosystems to maintain multiple 47 

functions and processes, such as carbon sequestration, productivity, and the build-up of nutrient pools 48 

(Maestre et al., 2012). Apart from positive effects on ecosystem productivity, diversity also provides 49 

increased erosion control, resistance to invasive species and pest regulation (Quijas et al., 2012). 50 

The responses of plant communities to N deposition vary depending on the environmental context 51 

(Simkin et al., 2016; Vellend et al., 2017; Perring et al., 2018a). Modifying factors include the amount 52 

and duration of N deposition, which determine the cumulative N input over time (Bernhardt-53 

Römermann et al., 2015; Duprè et al., 2010); soil pH and acid neutralizing capacity (Clark et al., 2007; 54 

Simkin et al., 2016); the chemical forms of N input (Stevens et al., 2011) and environmental 55 

conditions such as climate (Clark et al., 2007; Humbert, Dwyer, Andrey, & Arlettaz, 2016; Limpens 56 

et al., 2011) and vegetation types (Pardo et al., 2011; Simkin et al., 2016). Additionally, land use 57 

history might play a relevant role, as this may drive the composition and function of plant 58 

communities into different trajectories of change (Perring et al., 2018b). 59 

There are two main empirical approaches to study the impact of N on plant diversity (Hettelingh, 60 

Stevens, Posch, Bobbink, & de Vries, 2015). These approaches are experimental N addition studies, 61 

and observational studies investigating plant species diversity over a gradient of N deposition, either 62 

in time series analysis (e.g. Stevens, Duprè et al., 2010; Stevens, Thompson, Grime, Long, and 63 

Gowing, 2010) or over a spatial gradient (e.g. Jones et al., 2004; Duprè et al., 2010). Observational 64 



 

 

gradient studies can benefit from existing datasets (e.g. Simkin et al., 2016), but need to correct for 65 

confounding site factors and cannot prove causality (Dise et al., 2011). Experimental studies, on the 66 

other hand, allow for effects to be directly attributed to N addition. However, experimental studies 67 

typically assess relatively short-term responses only and often use higher levels of N addition 68 

compared to atmospheric deposition in the field. Furthermore, the results might be influenced by 69 

experimental design and local environmental conditions, which limits the possibilities for regional 70 

and global extrapolation (Hettelingh et al., 2015). The latter might be solved by setting up globally 71 

distributed experiments such as the Nutrient Network (Firn et al., 2011; Borer et al., 2014), but also 72 

by synthesizing multiple N-addition experiments with a meta-analysis, allowing to derive a more 73 

general quantitative response of plant species diversity to N enrichment.  74 

Previous meta-analyses that addressed impacts of N on plant assemblages focused on species richness 75 

or biomass in specific ecosystems (i.e. Limpens et al., 2011; Humbert et al., 2016) or in specific 76 

geographic regions (i.e. Clark et al., 2007; Fu and Shen, 2016) or continents (i.e. De Schrijver et al., 77 

2011; Soons et al., 2017). To our knowledge, a systematic meta-analysis covering multiple 78 

dimensions of biodiversity in multiple ecosystems across the globe is yet lacking. In addition to 79 

covering a large geographical extent, it is particularly important to consider metrics beyond species 80 

richness, such as measures of species abundance, as different aspects of biodiversity may respond 81 

differently to environmental change (Dornelas et al., 2014; Schipper et al., 2016; Winfree, Fox, 82 

Williams, Reilly, & Cariveau, 2015). In this study we synthesized a large number of N-addition 83 

studies worldwide, in order to reveal overall effects of N addition on various metrics of local plant 84 

biodiversity and explore the role of potential experimental (amount of yearly N applied, experimental 85 

duration, type of fertilizer, plot size) and environmental (temperature, precipitation, soil pH, soil 86 

cation exchange capacity, atmospheric N deposition) moderators (Figure 1a). We considered four 87 

metrics of biodiversity change to incorporate richness and abundance as two essential dimensions of 88 

biodiversity (Schipper et al., 2016) (Figure 1b): species richness (SR), individual species abundance 89 

(IA) (Benítez-López et al., 2017), mean species abundance (MSA) (Alkemade et al., 2009) and 90 



 

 

geometric mean abundance (GMA) (Buckland, Magurran, Green, & Fewster, 2005; Buckland, 91 

Studeny, Magurran, Illian, & Newson, 2011). The metrics adopted cover different domains of the 92 

richness-abundance space and in our meta-analysis represent the changes observed between treatment 93 

and control plots (Figure 1b). 94 

We expected local biodiversity to decrease with increasing yearly N addition amounts and 95 

experimental duration, reflecting the negative effect of cumulative N enrichment (De Schrijver et al., 96 

2011; Humbert et al., 2016). We further hypothesized that larger negative impacts to N addition will 97 

occur in sites with low soil pH and low atmospheric N deposition, as plants growing in such 98 

conditions tend to be more adapted to low N availability (Bobbink et al., 2010; Simkin et al., 2016). 99 

We also expected that fertilizer types containing reduced N forms (NH4
+) result in higher impacts on 100 

plant diversity than oxidised forms (NO3
-), as reduced N tends to strongly acidify the soil and 101 

disadvantage the nutrient uptake of N-poor adapted species (van den Berg, Peters, Ashmore & 102 

Roelofs, 2008; Song et al., 2012). We further hypothesized that species losses would be larger in 103 

larger experimental plots, as these have higher chances of including rare species, which may also be 104 

more likely to go extinct in the treatment plots (Perring et al., 2018b). Higher impacts were also 105 

expected in sites with low soil cation exchange capacity (CEC), as lower CEC indicates higher 106 

susceptibility to acidification in response to N addition (De Vries, Posch & Kämäri, 1989; Clark et 107 

al., 2007). We further hypothesized losses to be larger in experiments conducted under higher mean 108 

annual temperature and precipitation, because these conditions are expected to result in higher N 109 

mineralisation rates hence enhanced N availability following fertilization (Dise et al., 2011; Yang, 110 

Ryals, Cusack & Silver, 2017).  111 

 112 

Methods  113 

Selection of primary studies 114 

In April 2018, we used the Scopus and Web of Science databases to collect primary studies. The 115 

search strings were composed of ‘OR’ and ‘AND’ statements combining terms related to N-addition 116 



 

 

experiments and different dimensions of plant species diversity, for example (“nitrogen fertilization” 117 

OR “nitrogen addition”) AND (“abundance” OR “composition” OR “number” OR “richness”) (see 118 

the complete search strings in Supporting Information Appendix S1). We selected relevant studies 119 

based on title and abstract, and then scanned their full texts and supporting materials to extract data 120 

on N-addition experiments. Where factorial treatment combinations were present, we retained data 121 

from control and N addition plots alone to avoid confounding effects. Thus, we excluded data from 122 

plots where N addition was performed together with watering, temperature increase, litter removal, 123 

grazing, fire manipulation or where N was added in combination with other nutrients.  We limited our 124 

selection to experiments conducted on natural or semi-natural vegetation excluding studies conducted 125 

on crops, mono-cultures or where species were artificially introduced in plots. Finally, we removed 126 

studies that reported the same data as other studies already included in our database. To avoid over-127 

representation, we collected data on species richness and abundance change at the final year of each 128 

experiment.  129 

Our literature search yielded a total of 2314 studies, of which we selected 85 relevant studies 130 

(published between March 1990 and January 2018) that reported data from 115 N-addition 131 

experiments performed between 1985 and 2016 in different geographical locations (Figure 2; Table 132 

S2.1, Appendix S2). Of the 85 studies, 48 reported data on species richness, 15 on individual species 133 

abundance, and 22 on both species richness and abundance (a list of the data sources is found in 134 

Appendix A). We extracted the number of species and species-specific abundance data separately 135 

from treatment and control plots and calculated the four biodiversity metrics as described in Table 1. 136 

Abundance data were extracted for each species reported in both the treatment and control plots, for 137 

a total of 403 taxa. The majority of these were identified to species level, but 32 were indicated with 138 

the genus name only. Thus, the total number of species in our dataset might be slightly overestimated. 139 

We recorded a total of 220 pairwise comparisons for SR. At the species level, we included 871 140 

individual species abundance comparisons (IA), some across multiple N fertilization levels within 141 

the same experiment, which resulted in 89 observations for MSA and GMA. Nitrogen addition levels 142 



 

 

ranged from 3.75 to 572 kg N ha-1 yr-1 in the species richness dataset (mean = 124.8 kg ha-1 yr-1; 143 

median = 92 kg ha-1 yr-1), and from 7 to 480 kg N ha-1 yr-1 in the species abundance dataset (mean = 144 

96.5 kg ha-1 yr-1; median = 70 kg ha-1 yr-1).  145 

 146 

Calculation of the effect sizes 147 

We calculated four biodiversity metrics for the meta-analysis, including the species richness ratio 148 

(SR), individual species abundance ratio (IA), mean species abundance (MSA), and geometric mean 149 

abundance (GMA) (Table 1). Both SR and IA were obtained by log-transforming the ratio between 150 

the species richness and individual species abundance in each N-treatment plot and control plot, 151 

respectively (Hedges, Gurevitch, & Curtis, 1999). Some species had zero abundance in treatment 152 

plots, precluding log-transformation for IA calculation. Therefore, we transformed IA effect sizes 153 

using a modification of the transformation proposed by Smithson and Verkuilen (2006) to shrink the 154 

ratios and avoid zero values (Benítez-López et al., 2017) (eq.1): 155 

𝑦𝑖 =
(𝑦∗𝑁+0.5)

𝑁
                                                                                                        (eq. 1) 156 

where y is the ratio (AT/AC) of individual species abundance in the treatment (AT) and control (AC) and 157 

N is the number of observations in the individual species abundance dataset (N = 871). This resulted 158 

in a distribution of ratios (yi) slightly displaced towards larger values (before transformation: [0, 82.5], 159 

after transformation: [0.0006, 82.5006]). The new ratios were then log-transformed to obtain IA. 160 

Since ratios AT/AC cannot be calculated when abundance in the control is equal to 0, we decided to 161 

exclude species that were present only in the treatments from the calculation of the IA and GMA 162 

metrics, following the definitions and approaches applied in previous studies (Table 1). 163 

We calculated MSA as the mean of the ratios of individual species abundance in each treatment versus 164 

the corresponding control (Alkemade et al., 2009; Benítez-López, Alkemade, & Verweij, 2010). 165 

Following the definition of MSA, the individual ratios were truncated at 1 for species with a higher 166 

abundance in the treatment group compared to the control group (Table 1). As MSA captures losses 167 

in abundance of species that are found in reference conditions (control plots) only, it cannot go beyond 168 



 

 

the original abundance and richness (Figure 1b). Finally, GMA was calculated as the back-169 

transformed mean of the log-transformed individual abundance ratios, without truncation (Buckland 170 

et al., 2011). The GMA metric (Buckland et al., 2005; Buckland et al., 2011) also combines abundance 171 

and species richness into one index but allows for gains in the abundance dimension (Figure 1b).  172 

 173 

Moderators 174 

Factors influencing plant community responses to N were selected a priori based on literature study 175 

(Figure 1a; Table S3.1, Appendix S3) and data availability. Nine moderators were considered in the 176 

analysis: 1) the annual amount of N added in the experiment (kg N ha-1yr-1); 2) the annual amount of 177 

background N deposition (kg N ha-1yr-1) (i.e. the amount of N deposited from the atmosphere, which 178 

is independent from the experimental N addition); 3) mean annual temperature (°C); 4) mean annual 179 

precipitation (mm yr-1); 5) duration of the experiment (number of years of N addition); 6) the type of 180 

N fertilizer, categorized as fertilizers containing nitrate (NO3) (i.e. ammonium nitrate or alkali nitrates) 181 

or fertilizers containing ammonium (NH4) as the only source of N  (i.e. urea, urine, ammonium 182 

sulphate and ammonium chloride) (see details in Table S4.1, Appendix S4); 7) plot size (m2) (i.e. the 183 

area of vegetation surveyed to estimate richness or abundance in each experiment); 8) initial soil pH 184 

at the experimental sites (estimated before N addition); 9) soil cation exchange capacity (CEC) (cmol 185 

kg-1). Additionally, we examined overall biodiversity responses among the ecosystem type where the 186 

study/experiment took place, with ecosystems categorized into five broad categories (temperate 187 

grasslands and heathlands, semi-arid ecosystems, bogs/peatlands, arctic/alpine ecosystems, and 188 

forests) (see details about grouping criteria in Table S4.2, Appendix S4). Further, we categorized each 189 

taxon into plant life-form types (herbaceous forbs, graminoids, legumes, ferns, woody plants and non-190 

vascular plants; see Table S4.3, Appendix S4) and used this to assess possible differences in individual 191 

abundance response among different species groups. 192 

We collected from each study the location (geographic coordinates), experimental setup (yearly 193 

amount of N addition, experimental duration, type of N fertilizer, plot size) and ecosystem type. 194 



 

 

Because many studies did not report atmospheric N deposition levels, we collected these data from 195 

the global TM5 model for the year 2000 (Dentener et al., 2006).  For the same reason, we extracted 196 

estimates of cation exchange capacity (CEC) and soil pH from the 250 m resolution global SoilGrids 197 

data (Hengl et al., 2014; Hengl et al., 2017), by averaging values provided for soil depths of 0-5, 5-198 

15 and 15-30 cm. Data on temperature and precipitation were derived from the global Climate 199 

Research Unit database, which comprises series of monthly meteorological data on a 0.5° * 0.5° grid 200 

(New, Hulme, & Jones, 1999). For each observation we extracted data for the corresponding year and 201 

calculated the mean temperature and precipitation over the 12 monthly values. 202 

 203 

Data analysis 204 

We performed the meta-analysis using multilevel mixed-effect models to control for non-205 

independence in the data due to multiple effect sizes per study and species (Nakagawa & Santos, 206 

2012). We first fitted single meta-regression models using yearly N addition as the only moderator, 207 

in order to compare changes among the metrics for a given amount of N applied. Then, we fitted 208 

multiple meta-regression models by including other moderators as well as interaction terms between 209 

the amount of N addition and these other moderators. Except for mean annual temperature and soil 210 

pH, we log-transformed all continuous moderators, as the data showed strong positive skewness, and 211 

we scaled and centred all continuous variables. The only moderate correlation among moderators was 212 

between mean annual precipitation and soil pH (richness dataset ρ=-0.75; abundance dataset ρ=-0.68). 213 

Based on this, we decided not to exclude any moderators upfront. We performed stepwise backward 214 

selection based on the Bayesian Information Criterion (BIC), whereby we excluded a moderator only 215 

in case it was also dropped from the interaction term. We estimated the amount of heterogeneity 216 

reduced in the best models selected and by each moderator using the omnibus Wald-type test of 217 

moderators (Benítez-López et al., 2017). 218 

We accounted for the correlation in the true effects by using experiments as the random effect in the 219 

models. For the IA metric, we used a crossed random effect structure including both experiment and 220 



 

 

species as random components. We nested the individual estimates within the experiment grouping-221 

level in the random structure of the models to account for the possibility that the underlying true 222 

effects within experiments are not homogeneous (Konstantopoulos, 2011). We weighted the 223 

importance of the effect sizes of SR and IA by the inverse of the sampling variance (Hedges et al., 224 

1999) (Table 1). Because of non-independence of the effect sizes, we computed the variance-225 

covariance matrix based on Lajeunesse (2011). For SR and IA, the models were fitted with the rma.mv 226 

function of the R package ‘metafor’ (Viechtbauer, 2010). Observations were weighted by the inverse 227 

of the sampling variance (Table 1), which we calculated from standard deviation directly from papers 228 

or through personal contact with the authors. We imputed missing standard deviations using the 229 

coefficient of variation from all complete cases with the R package ‘metagear’ (Lajeunesse, 2016). 230 

Since MSA and GMA have a different structure compared to log-transformed response ratios and 231 

standard deviations are not reported for these derived metrics, we used the number of replicates in 232 

each experiment to weight the observations (Soons et al., 2017). We fitted multi-level linear mixed-233 

effect models for MSA and GMA with the lme function of the R package ‘nlme’ (Pinheiro, Bates, 234 

DebRoy, Sarkar, & R Core Team, 2017). 235 

Finally, we used null models to estimate the weighted mean pooled effect size, namely the overall 236 

amount of plant diversity change across all experiments, independently from the amount of N 237 

addition. Based on these models, we also investigated publication bias with visual estimation of the 238 

funnel plots (Nakagawa & Santos, 2012). We tested the significance of funnel plots asymmetry with 239 

the Egger's test by fitting the residuals of the null model with observation precision (1/SE or the 240 

inverse of number of replicates) as a moderator (Møller & Jennions, 2001; Nakagawa & Santos, 241 

2012). Results of null models and publication bias are reported in Appendix S5. All analyses were 242 

performed in the R environment (version 3.4.2) (R Core Team, 2017). 243 

 244 

Results 245 



 

 

We found all metrics of plant diversity to respond negatively to increasing yearly N addition (Figure 246 

3). The single meta-regression models estimated different amounts of plant diversity loss per unit of 247 

N addition, depending on the metric considered. For example, with a yearly amount of 100 kg N ha-248 

1 yr-1 the models indicated a relative loss in species richness by 17% and in individual abundance by 249 

64%, whereas the MSA and GMA were estimated to be reduced by 34% and 36%, respectively, 250 

compared to the control plots. Only the GMA metric showed a non-linear relationship with yearly N 251 

amounts, indicating that a small amount of N addition may lead to an increase in abundance or 252 

evenness (Figure 3d).  253 

The multiple meta-regression models showed that responses of plant biodiversity to N addition are 254 

influenced by various environmental and experimental covariates (Table 2; see Appendix S6 for 255 

detailed model outputs). Climatic moderators were found to influence the responses of the abundance 256 

metrics, indicating stronger declines in areas with greater mean annual precipitation (for IA and 257 

GMA) or higher mean annual temperature (for MSA). In addition, the lowest BIC model for SR 258 

retained a significant interaction between yearly N addition amounts and mean annual temperature 259 

(Table 2). Species richness decreased not only with yearly N addition amounts, but also with 260 

experimental duration, indicating cumulative effects over time. We also found that plot size was a 261 

relevant moderator for SR, with larger relative losses occurring in smaller plots. Additionally, we 262 

found that overall losses in SR were less pronounced in soils with higher cation exchange capacity 263 

(CEC). For instance, after a 5-year experiment with an addition level of 100 kg N ha-1 yr-1, the model 264 

estimates 10% of species richness loss for soils with a moderately high buffering capacity to 265 

acidification (CEC = 35 cmol kg-1). However, estimated species richness loss drops to 30% if the 266 

same experiment (i.e. same duration and yearly N addition) is conducted on a poorly buffered soil 267 

(CEC = 8 cmol kg-1).  The best model for MSA retained a significant interaction between yearly N 268 

addition amount and fertilizer type, with stronger declines for N applied in a reduced form (NH4
+in 269 

urea or ammonium sulphate) as compared to fertilizer containing oxidised N forms (NO3
- in 270 

ammonium nitrate or alkali nitrates).  271 



 

 

We did not find a significant interaction between N application and ecosystem type for any metric, 272 

indicating that the overall direction of biodiversity change with increasing yearly N addition was the 273 

same in all the ecosystem types considered (Figure 4). For plant life-form types, we did not find a 274 

significant interaction with N application either, i.e., all plant groups decreased with increasing N 275 

addition amounts. A single regression model with life-form types as moderator indicated the largest 276 

mean losses for the most N-sensitive groups (-85% for legumes; -75% for non-vascular plants; Figure 277 

5). The responses of woody species and ferns showed larger variation and was not significantly 278 

different from zero.  279 

 280 

Discussion 281 

N dose-response relationships  282 

The biodiversity loss observed was strongly driven by the amount of yearly N addition. The higher 283 

the N addition to the soil, the larger the negative impact on local plant diversity, reflecting that the 284 

coexistence of different species is promoted by nutrient limitation (Harpole et al., 2011; Soons et al., 285 

2017). Growing accumulation of N in the soil increases soil acidification, which progressively 286 

determine abundance loss up to the complete extirpation of species adapted to N-poor conditions 287 

(Bobbink et al., 2010). In addition, eutrophication caused by N enrichment causes plant diversity 288 

losses through enhanced light competition (Hautier, Niklaus, & Hector, 2009). The negative 289 

relationships between plant biodiversity and the amount of N addition agree with the results of 290 

previous meta-analyses conducted on a large geographical extent across multiple ecosystems types 291 

(De Schrijver et al., 2016; Soons et al., 2017) and in mountain grasslands specifically (Humbert et 292 

al., 2016), although these studies did not consider species abundance. Abundance metrics and species 293 

richness were found to decrease at different rates as N addition increased. The largest declines were 294 

observed for IA, possibly because at the assemblage level extremely negative responses of some 295 

species (like the full extirpation occurring in the treatment plot) might be buffered by positive 296 

responses of other species in the same plot. 297 



 

 

Experimental duration and cumulative N enrichment 298 

For species richness, we found that experimental duration had a negative additive effect comparable 299 

in magnitude to the effect of the yearly N addition amount (Table 2), in accordance with the results 300 

of Humbert et al. (2016). This suggests that plant communities respond similarly to cumulative N 301 

application and cumulative atmospheric N deposition (Stevens et al., 2004; Duprè et al., 2010) and 302 

indicates that large diversity losses may occur even at low yearly N amounts when fertilization is 303 

protracted over a long-time period (Clark & Tilman, 2008). In the short term, species richness loss 304 

due to N application is likely to be buffered by species gain. However, species turnover tends to 305 

decline after several years of N addition (i.e. long experimental duration), when plant communities 306 

have become adapted to N inputs and populations of a few well-established N-tolerant species 307 

dominate the plots (Dise et al., 2011; Bobbink & Hettelingh, 2011). The absence of an effect of 308 

experimental duration on the responses of the species abundance metrics may reflect that these 309 

metrics do not capture effects of species replacement, because they include only species that were 310 

already present in the controls. Further, our models did not reveal a significant modifying influence 311 

of the background N deposition on the biodiversity responses (Table 2). This might reflect that 312 

background annual N deposition rates were too small (0.7-46.3 kg N ha-1yr-1) compared to N amounts 313 

applied in the experiments. In addition, it may reflect that the data source used to retrieve the N 314 

deposition levels (50 * 50 km resolution) was not detailed enough to adequately capture the site-315 

specific deposition rates.  316 

Scale dependence  317 

There is evidence that effects of experimental N addition on local species richness are scale-318 

dependent. For example, Lan et al. (2015) found that proportional loss following N addition was 319 

significantly higher in larger plots (> 8 m2). Contrary to these findings, we did not find a significant 320 

interaction between the rate of species richness change and plot size and we found overall larger 321 

richness loss in smaller plot sizes (1 x 1 m or less) compared to larger ones (3 x 3 m or more). Possibly, 322 

in larger plots chances are bigger to survey a few remaining individuals of the same species, 323 



 

 

decreasing the chance of full extirpation from the sampled area. Like our results, Perring et al. (2018b) 324 

found that richness response ratios across 1814 survey-resurvey plots in European temperate forest 325 

understories were positively related to the plot size of the survey. This may reflect that chances to 326 

encounter the same species in two different plots increase with plot size.  327 

As we studied effects on local or site-level biodiversity only, we cannot make inferences on the 328 

impacts of N on plant biodiversity at larger extents. Trends in local biodiversity have implications for 329 

changes in biodiversity at larger scales, but the mechanisms involved in these links are not yet fully 330 

understood (McGill, Dornelas, Gotelli & Magurran, 2015). Chase (2010) found that higher beta 331 

diversity (specifically spatial turnover) in more productive mesocosms yielded higher overall 332 

(gamma) diversity at greater nutrient levels. However, the extent to which such effects will also occur 333 

in response to atmospheric N deposition remains elusive, as atmospheric deposition levels are lower 334 

than typical experimental N addition doses and because responses may be confounded by influences 335 

of other environmental pressures. This may also explain why previous analyses of temporal changes 336 

in site-level plant diversity revealed no clear trends in species richness (Vellend et al. 2013; Vellend 337 

et al., 2017), despite increasing atmospheric N deposition levels occurring in the last century.     338 

Effect of N fertilizer type  339 

In our analysis, fertilizer type itself did not induce a significant response in any of the metrics 340 

considered, indicating similar overall impacts of the two types of N fertilizer. However, we found 341 

that MSA decreased more strongly when N was added as urea or ammonium nitrate (containing only 342 

NH4
+) rather than ammonium nitrate or alkali nitrate (fertilizers also containing NO3

-). In general, 343 

differences in the chemical form of fertilizer applied are very often neglected in the experimental 344 

design of N addition studies (but see Dias, Malveiro, Martins-Loução, Sheppard, & Cruz, 2011; Song 345 

et al., 2012). Yet, evidence suggests that plant species occurring in the same community differ in their 346 

ability to take up NO3 and NH4 forms, implying that plant community composition and abundance 347 

may strongly depend on the partitioning of differentially available soil N forms (Kahmen, Renker, 348 

Unsicker, & Buchmann, 2006; McKane et al., 2002; Miller & Bowman, 2002). Various studies in 349 



 

 

Northern Europe suggest that larger species losses are expected with increasing NH4
+ deposition due 350 

to increased acidification, especially in case of oligotrophic ecosystems that are sensitive to 351 

NH4
+:NO3

- increase, such as heathlands, bogs, and acidic grasslands (Kleijn, Bekker, Bobbink, Graaf, 352 

& Roelofs, 2008;  Paulissen, van der Ven, Dees, & Bobbink, 2004), while acidification tends to be 353 

less severe when NO3
- fertilizers are applied instead (van den Berg et al., 2008). Future nutrient 354 

addition experiments should account for the type of fertilizer applied to better elucidate such 355 

differences. 356 

Soil properties 357 

Soil acidification is one of the major processes to drive biodiversity loss following atmospheric N 358 

enrichment (Stevens et al., 2011). Yet, we did not find any evidence of soil pH modifying the 359 

relationship between local plant biodiversity and N addition, similar to the results of previous meta-360 

analyses (De Schrijver et al., 2011; Humbert et al., 2016). Soil acidity follows a negative linear 361 

relationship with base saturation (exchangeable base cations) (Beery & Wilding, 1971). However, 362 

the drop in base saturation is independent of initial soil pH, but it is dependent on soil cation exchange 363 

capacity (CEC) when the soil pH ranges between 4-7 units, as in the case of our data (Helling, 364 

Chesters & Corey, 1964, De Vries et al., 1989; Ulrich, 1986). This may explain why we found that 365 

the response of species richness was not modified by initial soil pH, but instead was related to the soil 366 

CEC, which reflects the ability of the soil to buffer N-induced acidification. Thus, in sites with higher 367 

soil CEC, the negative impact of N addition through acidification is reduced by base cation exchange 368 

in the soil, resulting in a lower species loss compared to sites with low CEC. Similar to our findings, 369 

greater species loss has been associated with lower soil CEC across 23 N-addition experiments in 370 

North America (Clark et al. 2007). Likely, soil CEC may also explain the small species richness 371 

response observed in peatlands and bogs, where overall mean effect size was close to zero (Figure 4). 372 

These ecosystems had the highest soil CEC values in our data (32 ± 3 cmol kg-1), reflecting the high 373 

organic matter content that characterizes peatland soils. 374 

Climate 375 



 

 

The best models selected for the abundance metrics retained main effects of the two climatic 376 

moderators (Table 2), suggesting that overall larger abundance losses occur in sites with higher mean 377 

annual temperature (for MSA) and precipitation (for IA and GMA). We also found evidence that the 378 

slope of the dose-response relationship for species richness is dependent on mean annual temperature 379 

at the site level, indicating that richness decreases more steeply with N dose in warmer sites. Similar 380 

outcomes have been reported for species richness of mountain grasslands (Humbert et al. 2016) and 381 

the abundance of Sphagnum mosses (Limpens et al. 2011), probably because N uptake tends to 382 

increase with temperature (Cross, Hood, Benstead, Huryn, & Nelson, 2015). In grasslands, higher 383 

temperature and precipitation have been found to amplify aboveground biomass growth in response 384 

to N addition (Shaw et al., 2002; Zavaleta, Shaw, Chiariello, Mooney, & Field, 2003). Similarly, in 385 

forests and tundra ecosystems, temperature has been shown to positively affect net primary 386 

productivity following N addition (LeBauer and Treseder 2008). This in turn negatively influences 387 

plant biodiversity, as increased biomass results in increased competition for light and in the loss of 388 

rare species (Soons et al., 2017). In addition, higher precipitation could also lead to increased N 389 

mineralisation (Yang et al. 2017) which, in the absence of increased N loss via leaching or gaseous 390 

emissions, could result in higher N availability and increased biodiversity loss. Although in general 391 

plant assemblage responses in our analysis were not very different among ecosystem types, the 392 

modifying role of temperature and precipitation highlight the importance to account for 393 

biogeographical and climatic gradients to assess the impacts of N enrichment on local plant diversity 394 

across large geographical extents.  395 

Individual responses of plant life-form types 396 

We found that abundance losses were particularly large for legumes and non-vascular plants (mosses 397 

and lichens). Indeed, both groups have been identified as the most sensitive to increased N inputs 398 

(Bobbink et al., 2010; Craine et al., 2002). Previous studies showed that vascular plants are known to 399 

outcompete mosses after N enrichment due to light competition (Malmer, Albinsson, Svensson, & 400 

Wallen, 2003; van der Wal, Pearce, & Brooker, 2005), with a substantial decline of nonvascular plants 401 



 

 

beyond 10-15 kg N ha-1yr-1 (Bobbink et al., 2010). A large negative response of legumes was also 402 

expected, as increased soil N availability represents a disadvantage for N fixation (Craine et al., 2002). 403 

Long-term fertilization studies conducted on multiple sites in the USA found substantial declines in 404 

N-fixers (Suding et al., 2005) and an overall large decline in total legume biomass was also detected 405 

in previous systematic reviews (Fu and Shen, 2016; Humbert et al., 2016). In addition, we found the 406 

abundance of individual graminoids decreased, on average, by half. This contradicts the general 407 

hypothesis that graminoids tend to become dominant following N enrichment (see e.g. Bobbink et 408 

al., 2010; Dise et al., 2011) and contrasts with previous meta-analyses of N addition studies that 409 

reported significant increases in total biomass of grasses and sedges (De Schrijver et al., 2011; Fu 410 

and Shen, 2016; Humbert et al., 2016). Such discrepancies with our results could reflect the fact that 411 

grass encroachment following N input usually comes about by one or few species only (Bobbink et 412 

al., 2010) while the rest of the graminoid species are progressively outcompeted in the treatment plots, 413 

resulting, on average, in a loss of graminoids’ individual abundance. Finally, the relatively small 414 

impacts on woody species might be due to longer persistence in vegetation thanks to their longer life 415 

span, which may exceed the typical duration of the experiments. 416 

Further insight into the mechanisms behind community change with N enrichment, including 417 

individual abundance responses, may be provided by trait analyses (see e.g. La Pierre & Smith, 2015; 418 

Read, Henning, Classen & Sanders, 2018). However, analyses of changes in plant functional traits 419 

(at both within- and among-species levels) were out of scope of our meta-analysis and the primary 420 

studies analysed. 421 

Concluding remarks 422 

We showed the importance of minimizing N enrichment in terrestrial ecosystems to reduce local plant 423 

biodiversity loss. Compared to several previous studies that summarized the impacts of N-addition 424 

experiments on plant biodiversity, we improved our understanding of the responses of plant 425 

communities to N enrichment by including not only species richness but also abundance metrics, 426 

which showed stronger responses and have been unexplored in meta-analyses so far. Further, we shed 427 



 

 

more light on the roles of different moderators influencing the response of species richness and 428 

abundance, thus showing how biodiversity loss is context-dependent and underlining the importance 429 

to integrate multiple dimensions of biodiversity into assessments of biodiversity responses to global 430 

environmental change.431 
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Table 1: Summary table of the metrics and weights used to quantify biodiversity change in the meta-analysis. 703 

Effect size Description Calculation Weight References 

Species richness (SR) Log-transformed response ratio 

of mean species richness in the 

treatment (ST) and control (SC) 

𝑆𝑅 = ln (
𝑆𝑇̅

𝑆𝐶̅

) 
Inverse of 

the 

sampling 

variance 

De Schrijver et al. (2011) 

Bernhardt-Römermann et al. (2015) 

Humbert et al. (2016) 

Individual species 

abundance (IA) 
Log-transformed response ratio 

of mean individual abundance of 

species in the treatment (AT) and 

control (AC) * 

 

𝐼𝐴 = ln (
𝐴̅𝑇

𝐴̅𝐶

) 

Inverse of 

the 

sampling 

variance 

Benítez-López et al. (2017)  

Mean species 

abundance (MSA) 

Mean of the individual species 

abundance response ratios 

(truncated at 1 if AT > AC). N is 

number of species in each 

observation. 

𝑀𝑆𝐴 =

∑ (
𝐴̅𝑇

𝐴̅𝐶
)𝐴̅𝑇<𝐴̅𝐶

+  ∑ 1𝐴̅𝑇≥𝐴̅𝐶
 

𝑁
 

Number of 

replicates 

 

Alkemade et al. (2009) 

Benítez-López et al. (2010) 

Geometric mean 

abundance (GMA)  

Mean of log-transformed 

response ratios of mean 

individual abundance. N is 

number of species in each 

observation. 

𝐺𝑀𝐴 = exp (
∑(ln(𝐴̅𝑇) − ln(𝐴̅𝐶))

𝑁
) 

Number of 

replicates 

 

Buckland et al. (2011) 

Schipper et al. (2016) 

Santini et al. (2017) 

* Before log-transformation, the ratio was first transformed following Smithson and Verkuilen (2006) to shrink the data and avoid zero values in the treatment. See 704 

‘Methods’705 



 

 

Table 2: Standardized coefficients (slope estimates) of terms retained in the best meta-regression models based on the Bayesian information criterion 706 

(BIC). Nadd = amount of yearly N addition; duration = duration of the experiment; CEC = cation exchange capacity; plot size = size of the plot; 707 

Nadd:MAT = interaction term between Nadd and MAT; Nadd:NO3 / Nadd:NH4 = interaction term (slope) of responses to Nadd depending on fertilizer 708 

used in the experiment (containing NO3 or NH4
 only, respectively); MAP = mean annual precipitation; MAT = mean annual temperature. The omnibus 709 

test statistics (QM and PQ) indicate the amount of residual heterogeneity explained for each individual moderator and for the whole model. In case of 710 

an interaction, the omnibus test is reported for the interaction term only. See Appendix S6 for detailed model outputs. 711 

Effect size 
Fixed effect 

(moderators) 
Estimate SE Z-value LCI UCI P-value QM (d.f.) PQ 

Species richness 

 (SR) 

Nadd -0.111 0.016 -6.855 -0.142 -0.079 <.0001 - - 

duration -0.093 0.024 -3.909 -0.140 -0.046 <.0001 15.7 (1) <.0001 

CEC 0.076 0.023 3.237 0.030 0.122 0.001 10.5 (1) 0.001 

plot size 0.101 0.024 4.168 0.054 0.149 <.0001 17.4 (1) <.0001 

MAT -0.015 0.024 -0.610 -0.062  0.033 0.542 - - 

Nadd:MAT -0.049 0.019 -2.599 -0.085 -0.012 0.009 6.7 (1) 0.009 

 76.9 (6) < .0001 

Individual species abundance  

(IA) 

Nadd -0.275 0.081 -3.389 -0.434 -0.116 0.001 11.5 (1) 0.001 

MAP -0.441 0.146 -3.011 -0.728 -0.154 0.002 9.1 (1) 0.002 

 18.5 (2) < .0001 

Mean species abundance  

(MSA) 

Nadd:NO3 -0.014 0.014 -0.958 -0.042 0.014 0.014 6.5 (1) 0.014 

Nadd:NH4 -0.072 0.022 -2.552 -0.145 0.000 - - - 

MAT -0.050 0.023 -2.314 -0.092 -0.008 0.025 5.2 (1) 0.047 

 26.0 (2) < .0001 

Geometric mean abundance  

(GMA) 

Nadd -0.103 0.037 -2.796 -0.175 -0.030 0.008 6.8 (1) 0.012 

MAP -0.181 0.059 -3.079 -0.295 -0.065 0.004 9.5 (1) 0.004 

 16.3 (3) < .0001 



 

 

 712 

Figure 1: Graphical representation of a) relationships between key factors (i.e. moderators; pink boxes) and fundamental processes (grey boxes) that 713 

trigger plant species responses in N-addition experiments. Solid arrows represent direct effects, while dashed arrows represent context-dependent 714 

effects (i.e. in the experiments, the extent of soil acidification and N mineralisation may be positively or negatively affected by soil fertility and 715 

climatic conditions, respectively), and b) the linkages between the changes in biodiversity metrics considered in this study. Richness and abundance 716 

represent the two dimensions of biodiversity affected by N addition, with ‘-’, ‘0’ and ‘+’ on the axes indicating loss, no change and increase, 717 

respectively. SR = species richness, IA = individual species abundance, MSA = mean species abundance, and GMA = geometric mean abundance. 718 



 

 

 719 

Figure 2: Geographical distribution of the studies included in the meta-analysis. Studies included experiments reporting on species richness only (= 720 

red circles); abundance only (= blue squares); or both species richness and abundance (= green triangles). Point size depicts the number of observations 721 

available (i.e. the number of N addition level) from each experiment. 722 

 723 



 

 

 724 

Figure 3: Effect of yearly N addition amount (kg N ha-1yr-1) on plant biodiversity metrics: a) species richness 725 

(SR); b) individual species abundance (IA); c) mean species abundance (MSA); and d) geometric mean 726 

abundance (GMA). Solid lines represent model predictions with log-transformed yearly N addition as 727 

moderator only, allowing for quadratic term inclusion when significantly improving the goodness of fit (the 728 

dotted lines represent the corresponding 95% CI bounds). The dashed lines indicate no biodiversity change 729 

compared to the control. Point size depicts observation weight.  730 

  731 



 

 

 732 

Figure 4:  Mean pooled biodiversity change (and 95% CI) per ecosystem type, expressed as percentage of change in N addition plots compared to 733 

control plots. Biodiversity change is quantified with species richness (SR), individual species abundance (IA), mean species abundance (MSA), and 734 

geometric mean abundance (GMA). Values are obtained by fitting the models without the intercept term, to estimate the mean pooled effect of each 735 

level. Significance level (*P < 0.01; **P < 0.001; ***P < 0.0001) and number of observation is provided for each estimate. 736 

 737 



 

 

Figure 5:  Individual species abundance ratios (and 95% CI) for forbs (F), graminoids (G), leguminosae (L), non-vascular plants (M), ferns (P) and 738 

woody species (W) (n = number of observations of each plant life-form type). Extremely negative effect sizes indicate the extirpation of species in 739 

the treatment plots. Diamonds represent overall weighted mean effect size estimate for each group (and 95% CI). Significance levels are provided for 740 

each mean estimate (**P < 0.001; ***P < 0.0001). The values are obtained by running the model without the intercept term to estimate the mean 741 

pooled effect of each level.  742 
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Appendix A – Data Sources 744 
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