RESISTANCE ASSESSMENT AND SAFEGUARDING THE EFFICACY: DOSE OPTIMALIZATION OF ENROFLOXACIN FOR THE TREATMENT OF COLIBACILLOSIS IN BROILERS

Temmerman R.¹, Pelligand L.², Schelstraete W.¹, Vanantwerpen G.³, Vanrobaeys M.³, Antonissen G.²,³, Garmyn A.⁴, Devreese M.¹

¹ Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
² Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
³ Animal Health Care Flanders (DGZ), Industriestraat 29, 8820 Torhout, Belgium
⁴ Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium

INTRODUCTION

Colibacillosis is one of the leading causes of disease-related economic loss in the poultry sector.

Fluoroquinolones are frequently used antimicrobials for the treatment of avian pathogenic *Escherichia coli* (APEC) infections.

However, development and selection of resistance to these antimicrobial drugs is an increasing problem.

OBJECTIVES

Assess the prevalence of resistance against enrofloxacin (ENRO) in clinical APEC isolates.

Establish an optimized dosage regimen for ENRO for the effective treatment of colibacillosis in broilers using pharmacokinetic/pharmacodynamic (PK/PD) modeling and Monte Carlo simulation (MCS).

MATERIALS AND METHODS

In vivo animal trials
- IV(n=8) / PO(n=8) administration: rich sampling, 15 samples over 24h per individual
- PO administration (n=120): sparse sampling, 5 samples over 32h per individual
- Drinking water administration for 3 consecutive days (n=75 divided over 5 major groups receiving different dosages): sparse sampling, 6 samples over 79h per individual

PK parameter distribution
- CI
- Vd
- Secondary parameters

Time-kill experiments

MCS

PRELIMINARY RESULTS

- MIC distribution of clinical APEC strains:
 - The MIC’s of 120 strains were determined (commercial gradient strip test, Etest). Forty-one percent of the strains were non-wild type (epidemiological cut-off, ECOFF: 125 µg/mL), 21% were clinically intermediate and 11% were clinically resistant (MIC ≥ 2 µg/mL).

- Spaghetti plot of 120 concentration-time profiles (after a single oral bolus, 10 mg/kg BW)

- Different doses:
 - Yellow: 20 mg/kg BW
 - Purple: 15 mg/kg BW
 - Red: 10 mg/kg BW (licensed)
 - Green: 5 mg/kg BW
 - Blue: 2.5 mg/kg BW

- Spaghetti plot of 75 concentration-time profiles (drinking water)

- The estimated population PK parameter values [95% CI] were:
 - Vd: 5491 mL/kg [5428 ; 5555]
 - CI: 538 mL/kg/h [532 ; 544]
 - Ks: 0.616 h⁻¹ [0.61 ; 0.63]
 - F: 97.84% [97.68 ; 97.98]

FUTURE PERSPECTIVES

- Time kill curves (TKC) data analysis
- Simultaneous (pop)PK modeling of PK datasets (IV, PO, drinking water)
- Perform MCS using the MIC distribution and the PK/PD-parameters

Select the dose that achieves the selected PK/PD index for 90% of the target population (PTA of 90%)