Discovering Data Sources in a Distributed Network of Heritage Information

Miel Vander Sande1, Sjors de Valk2, Enno Meijers2, Ruben Taelman1, Herbert Van de Sompel3, Ruben Verborgh1

1: IDLab, Ghent University – imec, Belgium
2: national library of the netherlands
3: Data Archiving and Networked Services, The Netherlands

Abstract. The Netwerk Digitaal Erfgoed is a Dutch partnership that focuses on improving the visibility, usability and sustainability of digital collections in the cultural heritage sector. The vision is to improve the usability of the data by surmounting the borders between the separate collections of the cultural heritage institutions. Key concepts in this vision are the alignment of the data by using shared descriptions (e.g. thesauri), and the publication of the data as Linked Open Data. This demo paper describes a Proof of Concept to test this vision. It uses a register, where only summaries of datasets are stored, instead of all the data. Based on these summaries, a portal can query the register to find what data sources might be of interest, and then query the data directly from the relevant data sources.

1. Introduction

The Netwerk Digitaal Erfgoed (NDE) project rethinks the role cultural heritage institutions when exchanging data. Data from various institutions is no longer collected by a central aggregator and then shared with applications. Instead, the NDE targets a distributed setup where cultural heritage institutions are responsible for the publication of their data. In this demo paper, we present a Proof of Concept (PoC) that explores an architecture to support this shift. We present a portal that wants to present information on fashion to end users and gathers all the relevant information on this theme from all the available datasets in the network of cultural heritage. For example, the portal can present information on body stockings, such as the fabric or type of clothing.

The cultural heritage institutions publish their datasets as Linked Open Data. They use terms from the NDE Network of Terms, which is developed by the NDE as the set of shared definitions that are relevant to cultural heritage data, such as for places, people, concepts and time periods. These terms have URIs, for example https://vtmk.data.momu.be/id/106061, which can be used to type an entity as a body stocking. Using this term URI, the portal can query the network to gather all the available data on this clothing type. For efficiency reasons in case many datasets are available, the portal first needs a list of datasets that might have interesting information. Then it can query these datasets to retrieve the information.
In the next section, we present an overview of our PoC’s architecture. Next, in Section 3, we discuss how dataset summaries are used to find relevant datasets for a query and determine the importance of datasets. Then, in Section 4 we explain such datasets can be registered and how the portal obtains a list of relevant data sources. Finally, we conclude in Section 5.

2. Architecture

Our PoC architecture enables Source Holders (e.g. person, organization) that own or manage digital collections to publish Datasets in the cultural heritage network, and Portal clients to query data from all these Datasets. Portals query multiple, distributed heritage data collections via SPARQL. Thus, every data source should be able to handle queries and clients should be able to select the relevant data sources before query execution to avoid contacting irrelevant sources.

To achieve our requirements, we introduce three distributed components: a Web API where a Dataset can be found and queried as Linked Data (Data Source); an application that selects relevant data from the network and presents these to users (Portal); and a service that offers the selection of Data Sources that are relevant to a query, based on a registration of all the available Datasets and metadata of these Datasets (Register). This demo uses Triple Pattern Fragments (TPF) APIs [1] to expose Data Sources, which can be queried by a Portal with SPARQL by using a Linked Data Fragments client such as Comunica [2]. To enable the Register to make an informed decision on the relevant Datasets for a query, we explore a Dataset summary approach, where the Register retrieves a summary from each Data Source. Fig. 1 illustrates this general architecture and the two main interaction scenarios we will demonstrate: report a Dataset to the Register, and query data within the network of all Datasets.
Sources.

Report a Dataset to the Register. Source Holders report Datasets to the network when they are new or when they want to disseminate an update. The process for both cases is equivalent. (1) A Source Holder loads a (new) version of the Dataset with the Loader component of the Data Source; (2) The Loader indexes these Datasets in the HDT format [3]: a binary, compact and searchable archive format for RDF data, which are published with a TPF interface; (3) The Loader creates a Summary of the Dataset, which is made available for download through a File API; (4) The Data Source sends a Linked Data Notification [4] to the Inbox of the Register via its Linked Data Platform API [5] with the message that a new Dataset or version is available; (5) The Register downloads the new Dataset Summary and adds it to the Summary Index; (6) The Summary Index is published using TPF.

Query data within the network of all Data Sources. Portals query the network to obtain the data they need. Hence, they first need to know which Data Sources are relevant to the query. A query is thus executed as follows: (a) A Portal sends a SPARQL query. (b) Based on this query, the Discoverer component of the Portal composes a discovery SPARQL query to select relevant Data Sources. For instance, this discovery query can contain the term URI about which the Portal wants to collect information. The triple pattern \(<term\text{ URI}>\text{dcterms:isPartOf}\ ?\text{source}\) selects a list of Data Sources in which the term occurs. (c) With the Linked Data Fragments client and the discovery query, the Portal retrieves a list of relevant Data Sources from the Register. (d) The Linked Data Fragments client of the Portal then executes the original query on the selected list of Data Sources and returns the results to the Portal.

3. Dataset Summaries

This demo uses Capability-based Dataset Summaries as they are defined in the Hi-BISCuS system [6]. For each predicate we include the authorities of both subject and object URIs, which is denoted as a capability. The authority of a URI is its domain and optionally the port number and authentication information. The schema of the URI is added as a prefix, e.g. http://. An exception is the rdf:type predicate, where we include the entire object URIs. Capability-based Dataset Summaries only include superficial characteristics of RDF, i.e. only URIs and triples and no semantics or graph characteristics, and only require cheap operations like substring manipulation and string comparison. These summaries support checking whether Datasets have triples with a certain URI authority as subject and/or object; triples with a certain predicate and a certain URI authority as the subject and/or object; or have data of a certain type, as described by the predicate capability.

Unfortunately, this is insufficient in NDE, because many common types cannot be found through the rdf:type predicate, e.g. queries on periods of time or on the material type of an object. Furthermore, the predicates and URIs in the Datasets are quite homogeneous, so they do not sufficiently distinguish. As this demo focuses on Data Sources that use term URIs from the NDE Network of Terms, all sources have similar resources and URIs. Thus, we add a histogram of the object URIs (not the literals) of
all triples, which represent term URI frequency, or, if needed, all triples that start with a certain prefix, e.g. of a thesaurus. Because histograms can become too large, we use a CountMinSketch [7], i.e. a compact, binary representation of a Dataset that allow determining how frequent an element (i.e. a term URI) is present. This compactness comes with a price in the form of false positives, meaning that the number of term URIs in a Dataset may be overestimated. False negatives do not occur, thus the absence of a certain URI in a Dataset is always certain, which is important to eliminate irrelevant Data Sources. In order to add a CountMinSketch to the Summary, they are encoded into a string with base64 encoding.

4. Registering and Obtaining Relevant Data Sources

In order to allow new Datasets to be added to the network, the Data Sources can send messages to the Register through Linked Data Notifications (LDN) [4]. They can notify the Register that a new version of a Summary is available, including its Data Source and where it can be found. The Register can download the new Summary and replace the old one in the Index. LDN uses the ActivityStreams vocabulary (https://www.w3.org/ns/activitystreams) for notifications of actions. The main notifications for our purposes are as:Add and as:Update. Listing 1 shows an example of an LDN from the Rijksmuseum Amsterdam to the Register.

```
@prefix as: <https://www.w3.org/ns/activitystreams#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

[ a as:Add; as:actor [ a as:Organization;
  as:name "Rijksmuseum Amsterdam"^^xsd:string ];
  as:object <link to summary> ;
  as:summary "Rijksmuseum Amsterdam added a summary"^^xsd:string .
```

Listing 1: Example of an LDN from the Rijksmuseum Amsterdam to the Register.

Portals can send requests to the Register to select relevant Data Sources with the SPARQL query language. To handle these requests, the Register publishes a TPF API to expose the Summaries of all the available Data Sources, by internally linking term URIs with Datasets. This enables Portals to request various information about the Data Sources, such as discovering all Data Sources that use a specific term URI.

For example, a Portal is interested to gather all the available information on body stockings. The Datasets that have clothing type information use the term URI https://vtmk.data.momu.be/id/106061 from the NDE Network of Terms, where the term URIs can be retrieved through a search API. The resulting interaction between a Portal and the Register is as follows: (1) the Portal sends a request to the Register for the triple pattern <https://vtmk.data.momu.be/id/106061> dcterms:isPartOf ?source; (2) the Register tests the CountMinSketch of all the Data Sources for the URI https://vtmk.data.momu.be/id/106061; (3) the Register adds all the matched Data Sources to the result, e.g. with the triple...
5. Conclusions

This demo illustrates the shift from a setup with a central aggregator towards a distributed setup for a distributed network of heritage information. It introduces a first possible solution to assist term-based queries. Portals can discover relevant Data Sources based on a term URI. These term URIs are agreed upon by the participating Data Sources and are available in the NDE Network of Terms. Term URIs are applied by the Datasets to type certain entities, such as fabrics of clothing or modes of transportation, and therefore occur in the object term of an RDF triple. Hence, Dataset Summaries include a CountMinSketch with object URIs. The Register can mark a Data Source as relevant by checking (a) the presence of a term URI and (b) possibly by how frequently it is used within the Dataset. In future developments, the Netwerk Digitaal Erfgoed will evolve the architecture to distribute the Register over the different Data Sources in the network, making a central authority obsolete. This of course includes more fine tuning of the Dataset Summaries and the source selection algorithms.

References

SEMPDS 2019
Posters and Demos at SEMANTiCS 2019

Karlsruhe, Germany, September 9th to 12th, 2019.

Edited by

Mehwish Alam *,**, Ricardo Usbeck ***, Tassilo Pellegrini ****
Harald Sack *,**
York Sure-Vetter **

* FIZ Karlsruhe, Leibniz Institute for Information Infrastructure, Germany
** Karlsruhe Institute of Technology (KIT), Germany
*** Fraunhofer IAIS, Dresden, Germany
**** University of Applied Sciences St. Poelten, Austria

Both editors contributed equally

Table of Contents

- Preface
 Mehwish Alam, Ricardo Usbeck, Tassilo Pellegrini, Harald Sack, York Sure-Vetter
- Author Index
- **Legal challenges of Robotic Process Automation (RPA) in administrative services**
 Sascha Alpers, Christoph Becker, Maria Pieper, Manuela Wagner, Andreas Oberweis

- **Controlling Internet of Things devices with Read-Write Linked Data Interfaces using Data-Driven Workflows**
 Nico Aßfalg, Leonard Nürnberg, Benjamin Jochum, Tobias Käfer

- **On Using Subjective Logic to Build Consistent Merged Ontologies**
 Samira Babalou, Birgitta König-Ries

- **GMRs: Reconciliation of Generic Merge Requirements in Ontology Integration**
 Samira Babalou, Birgitta König-Ries

- **A standard language for the description of datasets obtained in experimental studies**
 Alena Begler

- **Doc2RDFa: Semantic Annotation for Web Documents**
 Martin Beno, Erwin Filtz, Sabrina Kirrane, Axel Polleres

- **Verifying the Integrity of Information along a Supply Chain using Linked Data and Smart Contracts**
 Christoph Braun, Tobias Käfer

- **Semi-automatic Semantic Enrichment of Personal Data Streams**
 Jean-Paul Calbimonte, Fabien Dubosson, Ilia Kebets, Pierre-Mikael Legris, Michael Ignaz Schumacher

- **Towards Semantic Models for Profiling and Behavior Change in eHealth Applications**
 Jean-Paul Calbimonte, Fabien Dubosson, Michael Ignaz Schumacher

- **Semantic Knowledge Graph Embeddings for biomedical Research: Data Integration using Linked Open Data**
 Jens Dörpinghaus, Marc Jacobs

- **Semantic Containers for Data Mobility: A Seismic Activity Use Case**
 Fajar J. Ekaputra, Peb Ruswono Aryan, Elmar Kiesling, Christoph Fabianek, Eduard Gringinger

- **Knowledge-based Development of Games Using Design Patterns Ontology**
 Barbara Giżycka, Grzegorz J. Nalepa, Krzysztof Kutt

- **Automatic License Compatibility Checking**
 Giray Havur, Simon Steyskal, Oleksandra Panasiuk, Anna Fensel, Victor Mireles, Tassilo Pellegrini, Thomas Thurner, Axel Polleres, Sabrina Kirrane

- **Employing Geospatial Semantics and Semantic Web Technologies in Natural Disaster Management**
 Tobias Hellmund, Manfred Schenk, Philipp Hertweck, Jürgen Moßgraber

- **Offline Question Answering over Linked Data using Limited Resources**
 Paramjot Kaur, Vincent Blücher, Riricha Jalota, Diego Moussallem, Axel-Cyrille Ngonga Ngomo, Ricardo Usbeck

- **ONB Labs – An Open Digital Hub of Cultural Heritage**
 Monika Kovarova-Simecek, Sophie-Carolin Wagner, Stefan Karner

- **Semantic Integration and Monitoring of File System Activity**
 Kabul Kurniawan, Andreas Ekelhart, Elmar Kiesling, Agnes Froschl, Fajar Ekaputra

- **Change data capture of large-scale RDF data**
 Jindřich Mynarz, Adam Sotona

- **FAIRnets Search - A Prototype Search Service to Find Neural Networks**
 Anna Nguyen, Tobias Weller

- **Validating Danish Wikidata lexemes**
 Finn Årup Nielsen, Katherine Thornton, Jose Emilio Labra Gayo

- **OPN: Open Notice Receipt Schema**
 Harshvardhan J. Pandit, Mark Lizar

- **Evaluating Ontology Matchers on Real-World Financial Services Data Models**
 Jan Portisch, Michael Hladik, Heiko Paulheim

- **Take it Personally - A Python library for data enrichment for infometrical applications**
 Eva Seidlmayer, Lukas Galke, Tetyana Melnychuk

- **RDF-based Deployment Pipelining for Efficient Dataset Release Management**
 Claus Stadler, Lisa Wenige, Michael Martin, Sebastian Tramp, Kurt Junghanns

- **The Hubs and Authorities Transaction Network Analysis using the SANSA framework**
 Danning Sui, Gezim Sejdiu, Damien Graux, Jens Lehmann

- **Transfer Learning for Biomedical Named Entity Recognition with BioBERT**
 Anthi Symeonidou, Viachaslau Sazonau, Paul Groth

- **Linked Stage Graph**

Discovering Data Sources in a Distributed Network of Heritage Information
Miel Vander Sande, Sjors de Valk, Enno Meijers, Ruben Taelman, Herbert Van de Sompel, Ruben Verborgh

How to Prepare an API for Programming in Natural Language
Sebastian Weigel, Mathias Landhäußer, Martin Blersch

Generating ``Who Wants to Be a Millionaire?`` Questions Sets Automatically from Wikidata
Markus Wohlan, Yannik Schröder, Frank Höppner

Triple Pattern Join Cardinality Estimations over HDT with Enhanced Metadata
Elena Wössner, Chang Qin, Javier Fernández, Maribel Acosta

Visual Query Environment over RDF Data
Kārlis Čerāns, Julija Ovcinnikova, Leide Lace, Jūlija Hodakovska, Aiga Romane, Mikus Grasmanis, Elina Kalnina, Arturs Sprogis, Agris Sostaks

We offer a BibTeX file for citing papers of this workshop from LaTeX.

2019-09-05: submitted by Mehwish Alam, metadata incl. bibliographic data published under Creative Commons CC0
2019-09-22: published on CEUR-WS.org | valid HTML5|