Advanced search
1 file | 5.28 MB Add to list

Microstructural characterization of 3D printed cementitious materials

Jolien Van Der Putten (UGent) , Maxim Deprez (UGent) , Veerle Cnudde (UGent) , Geert De Schutter (UGent) and Kim Van Tittelboom (UGent)
(2019) MATERIALS. 12(18).
Author
Organization
Abstract
Three-dimensional concrete printing (3DCP) has progressed rapidly in recent years. With the aim to realize both buildings and civil works without using any molding, not only has the need for reliable mechanical properties of printed concrete grown, but also the need for more durable and environmentally friendly materials. As a consequence of super positioning cementitious layers, voids are created which can negatively affect durability. This paper presents the results of an experimental study on the relationship between 3DCP process parameters and the formed microstructure. The effect of two different process parameters (printing speed and inter-layer time) on the microstructure was established for fresh and hardened states, and the results were correlated with mechanical performance. In the case of a higher printing speed, a lower surface roughness was created due to the higher kinetic energy of the sand particles and the higher force applied. Microstructural investigations revealed that the amount of unhydrated cement particles was higher in the case of a lower inter-layer interval (i.e., 10 min). This phenomenon could be related to the higher water demand of the printed layer in order to rebuild the early Calcium-Silicate-Hydrate (CSH) bridges and the lower amount of water available for further hydration. The number of pores and the pore distribution were also more pronounced in the case of lower time intervals. Increasing the inter-layer time interval or the printing speed both lowered the mechanical performance of the printed specimens. This study emphasizes that individual process parameters will affect not only the structural behavior of the material, but they will also affect the durability and consequently the resistance against aggressive chemical substances.
Keywords
3D printing, mechanical properties, microstructure, pore size, durability

Downloads

  • materials-12-02993.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 5.28 MB

Citation

Please use this url to cite or link to this publication:

MLA
Van Der Putten, Jolien, et al. “Microstructural Characterization of 3D Printed Cementitious Materials.” MATERIALS, edited by Arnaud Perrot, vol. 12, no. 18, 2019.
APA
Van Der Putten, J., Deprez, M., Cnudde, V., De Schutter, G., & Van Tittelboom, K. (2019). Microstructural characterization of 3D printed cementitious materials. MATERIALS, 12(18).
Chicago author-date
Van Der Putten, Jolien, Maxim Deprez, Veerle Cnudde, Geert De Schutter, and Kim Van Tittelboom. 2019. “Microstructural Characterization of 3D Printed Cementitious Materials.” Edited by Arnaud Perrot. MATERIALS 12 (18).
Chicago author-date (all authors)
Van Der Putten, Jolien, Maxim Deprez, Veerle Cnudde, Geert De Schutter, and Kim Van Tittelboom. 2019. “Microstructural Characterization of 3D Printed Cementitious Materials.” Ed by. Arnaud Perrot. MATERIALS 12 (18).
Vancouver
1.
Van Der Putten J, Deprez M, Cnudde V, De Schutter G, Van Tittelboom K. Microstructural characterization of 3D printed cementitious materials. Perrot A, editor. MATERIALS. 2019;12(18).
IEEE
[1]
J. Van Der Putten, M. Deprez, V. Cnudde, G. De Schutter, and K. Van Tittelboom, “Microstructural characterization of 3D printed cementitious materials,” MATERIALS, vol. 12, no. 18, 2019.
@article{8628502,
  abstract     = {Three-dimensional concrete printing (3DCP) has progressed rapidly in recent years. With the aim to realize both buildings and civil works without using any molding, not only has the need for reliable mechanical properties of printed concrete grown, but also the need for more durable and environmentally friendly materials. As a consequence of super positioning cementitious layers, voids are created which can negatively affect durability. This paper presents the results of an experimental study on the relationship between 3DCP process parameters and the formed microstructure. The effect of two different process parameters (printing speed and inter-layer time) on the microstructure was established for fresh and hardened states, and the results were correlated with mechanical performance. In the case of a higher printing speed, a lower surface roughness was created due to the higher kinetic energy of the sand particles and the higher force applied. Microstructural investigations revealed that the amount of unhydrated cement particles was higher in the case of a lower inter-layer interval (i.e., 10 min). This phenomenon could be related to the higher water demand of the printed layer in order to rebuild the early Calcium-Silicate-Hydrate (CSH) bridges and the lower amount of water available for further hydration. The number of pores and the pore distribution were also more pronounced in the case of lower time intervals. Increasing the inter-layer time interval or the printing speed both lowered the mechanical performance of the printed specimens. This study emphasizes that individual process parameters will affect not only the structural behavior of the material, but they will also affect the durability and consequently the resistance against aggressive chemical substances.},
  articleno    = {2993},
  author       = {Van Der Putten, Jolien and Deprez, Maxim and Cnudde, Veerle and De Schutter, Geert and Van Tittelboom, Kim},
  editor       = {Perrot, Arnaud},
  issn         = {1996-1944},
  journal      = {MATERIALS},
  keywords     = {3D printing,mechanical properties,microstructure,pore size,durability},
  language     = {eng},
  number       = {18},
  pages        = {22},
  title        = {Microstructural characterization of 3D printed cementitious materials},
  url          = {http://dx.doi.org/10.3390/ma12182993},
  volume       = {12},
  year         = {2019},
}

Altmetric
View in Altmetric
Web of Science
Times cited: