Advanced search
1 file | 5.17 MB Add to list

Non-destructive tree volume estimation through quantitative structure modelling : comparing UAV laser scanning with terrestrial LiDAR

Author
Organization
Abstract
Above-Ground Biomass (AGB) product calibration and validation require ground reference plots at hectometric scales to match space-borne missions' resolution. Traditional forest inventory methods that use allometric equations for single tree AGB estimation suffer from biases and low accuracy, especially when dealing with large trees. Terrestrial Laser Scanning (TLS) and explicit tree modelling show high potential for direct estimates of tree volume, but at the cost of time demanding fieldwork. This study aimed to assess if novel Unmanned Aerial Vehicle Laser Scanning (UAV-LS) could overcome this limitation, while delivering comparable results. For this purpose, the performance of UAV-LS in comparison with TLS for explicit tree modelling was tested in a Dutch temperate forest. In total, 200 trees with Diameter at Breast Height (DBH) ranging from 6 to 91 cm from 5 stands, including coniferous and deciduous species, have been scanned, segmented and subsequently modelled with TreeQSM. TreeQSM is a method that builds explicit tree models from laser scanner point clouds. Direct comparison with TLS derived models showed that UAV-LS reliably modelled the volume of trunks and branches with diameter > 30 cm in the mature beech and oak stand with Concordance Correlation Coefficient (CCC) of 0.85 and RMSE of1.12 m(3). Including smaller branch volume led to a considerable overestimation and decrease in correspondence to CCC of 0.51 and increase in RMSE to 6.59 m(3). Denser stands prevented sensing of trunks and further decreased CCC to 0.36 in the Norway spruce stand. Also small, young trees posed problems by preventing a proper depiction of the trunk circumference and decreased CCC to 0.01. This dependence on stand indicated a strong impact of canopy structure on the UAV-LS volume modelling capacity. Improved flight paths, repeated acquisition flights or alternative modelling strategies could improve UAV-LS modelling performance under these conditions. This study contributes to the use of UAV-LS for fast tree volume and AGB estimation on scales relevant for satellite AGB product calibration and validation.
Keywords
CAVElab, Laser scanning, UAV, Forest, Above-Ground Biomass (AGB), Quantitative Structure Model (QSM), BIOMASS ESTIMATION, CARBON-DENSITY, FOREST, ALGORITHM, BENCHMARK, SYSTEM, TLS

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 5.17 MB

Citation

Please use this url to cite or link to this publication:

MLA
Brede, Benjamin, et al. “Non-Destructive Tree Volume Estimation through Quantitative Structure Modelling : Comparing UAV Laser Scanning with Terrestrial LiDAR.” REMOTE SENSING OF ENVIRONMENT, vol. 233, 2019.
APA
Brede, B., Calders, K., Lau, A., Raumonen, P., Bartholomeus, H. M., Herold, M., & Kooistra, L. (2019). Non-destructive tree volume estimation through quantitative structure modelling : comparing UAV laser scanning with terrestrial LiDAR. REMOTE SENSING OF ENVIRONMENT, 233.
Chicago author-date
Brede, Benjamin, Kim Calders, Alvaro Lau, Pasi Raumonen, Harm M Bartholomeus, Martin Herold, and Lammert Kooistra. 2019. “Non-Destructive Tree Volume Estimation through Quantitative Structure Modelling : Comparing UAV Laser Scanning with Terrestrial LiDAR.” REMOTE SENSING OF ENVIRONMENT 233.
Chicago author-date (all authors)
Brede, Benjamin, Kim Calders, Alvaro Lau, Pasi Raumonen, Harm M Bartholomeus, Martin Herold, and Lammert Kooistra. 2019. “Non-Destructive Tree Volume Estimation through Quantitative Structure Modelling : Comparing UAV Laser Scanning with Terrestrial LiDAR.” REMOTE SENSING OF ENVIRONMENT 233.
Vancouver
1.
Brede B, Calders K, Lau A, Raumonen P, Bartholomeus HM, Herold M, et al. Non-destructive tree volume estimation through quantitative structure modelling : comparing UAV laser scanning with terrestrial LiDAR. REMOTE SENSING OF ENVIRONMENT. 2019;233.
IEEE
[1]
B. Brede et al., “Non-destructive tree volume estimation through quantitative structure modelling : comparing UAV laser scanning with terrestrial LiDAR,” REMOTE SENSING OF ENVIRONMENT, vol. 233, 2019.
@article{8627578,
  abstract     = {Above-Ground Biomass (AGB) product calibration and validation require ground reference plots at hectometric scales to match space-borne missions' resolution. Traditional forest inventory methods that use allometric equations for single tree AGB estimation suffer from biases and low accuracy, especially when dealing with large trees. Terrestrial Laser Scanning (TLS) and explicit tree modelling show high potential for direct estimates of tree volume, but at the cost of time demanding fieldwork. This study aimed to assess if novel Unmanned Aerial Vehicle Laser Scanning (UAV-LS) could overcome this limitation, while delivering comparable results. For this purpose, the performance of UAV-LS in comparison with TLS for explicit tree modelling was tested in a Dutch temperate forest. In total, 200 trees with Diameter at Breast Height (DBH) ranging from 6 to 91 cm from 5 stands, including coniferous and deciduous species, have been scanned, segmented and subsequently modelled with TreeQSM. TreeQSM is a method that builds explicit tree models from laser scanner point clouds. Direct comparison with TLS derived models showed that UAV-LS reliably modelled the volume of trunks and branches with diameter > 30 cm in the mature beech and oak stand with Concordance Correlation Coefficient (CCC) of 0.85 and RMSE of1.12 m(3). Including smaller branch volume led to a considerable overestimation and decrease in correspondence to CCC of 0.51 and increase in RMSE to 6.59 m(3). Denser stands prevented sensing of trunks and further decreased CCC to 0.36 in the Norway spruce stand. Also small, young trees posed problems by preventing a proper depiction of the trunk circumference and decreased CCC to 0.01. This dependence on stand indicated a strong impact of canopy structure on the UAV-LS volume modelling capacity. Improved flight paths, repeated acquisition flights or alternative modelling strategies could improve UAV-LS modelling performance under these conditions. This study contributes to the use of UAV-LS for fast tree volume and AGB estimation on scales relevant for satellite AGB product calibration and validation.},
  articleno    = {111355},
  author       = {Brede, Benjamin and Calders, Kim and Lau, Alvaro and Raumonen, Pasi and Bartholomeus, Harm M and Herold, Martin and Kooistra, Lammert},
  issn         = {0034-4257},
  journal      = {REMOTE SENSING OF ENVIRONMENT},
  keywords     = {CAVElab,Laser scanning,UAV,Forest,Above-Ground Biomass (AGB),Quantitative Structure Model (QSM),BIOMASS ESTIMATION,CARBON-DENSITY,FOREST,ALGORITHM,BENCHMARK,SYSTEM,TLS},
  language     = {eng},
  pages        = {14},
  title        = {Non-destructive tree volume estimation through quantitative structure modelling : comparing UAV laser scanning with terrestrial LiDAR},
  url          = {http://dx.doi.org/10.1016/j.rse.2019.111355},
  volume       = {233},
  year         = {2019},
}

Altmetric
View in Altmetric
Web of Science
Times cited: