Harpacticoid copepods in a DEB framework: Investigating pharmaceutical effects on Nitocra spinipes

Josef Koch¹, Colin R. Janssen¹ and Karel De Schamphelaere¹

¹Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University, Ghent, Belgium

Introduction

- Copepods are an ideal test system in ecotoxicology studies:
 - Largest animal biomass on earth (estimate)
 - Small size
 - Easy lab culture and handling
- Dynamic Energy Budget (DEB) theory can help to identify a stressor’s mode of action (MoA) on energy allocation
- The copepod life cycle deviates from standard DEB:
 - Complete metamorphosis after 6th molt
 - Abrupt stop in growth at adult stage
- Copepods need further investigation for use in a DEB framework

Materials & Methods

Life cycle experiments

- Experimental setups were based on the OECD guidance document [1] for harpacticoid copepod life cycle testing

Test species: Nitocra spinipes

- Brackish water species
- Worldwide distribution
- Test species since 70s

Test compound: Citalopram

- Selective serotonin re-uptake inhibitor (antidepressant)

Identification of DEB-MoA

- Observed effects at 100 and 1000 µg/L were simulated in the DEBKiss model by means of the stress factor s
- A slope parameter a was introduced to the stress function to accurately cover the concentration dependent magnitude of effects

\[s = \frac{1}{c_T} \max(0, c_V - c_0)^a \]

- Observed effects could be explained by the presence of two individual MoAs:
 (a) Increase in growth costs
 (b) Decrease in reproduction costs
- The stress function could be calibrated with just one set of parameters to describe both effects (instead of using separate fits for each MoA)

Results & Discussion

Development and reproduction test

- The N. spinipes life cycle could be captured well by just slight modifications of the DEBKiss model structure
- Effects of citalopram on development (inhibition) and reproduction (stimulation) of N. spinipes were explained by MoAs on energetic costs for growth and reproduction

Conclusions

- Slight developmental delay at 100 ng/L and stronger delay at and above 100 µg/L
- Brood stimulation at and above 100 µg/L

References