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The continuous financial pressure on hospitals forces them the rethink various workflows.
We focus on optimizing hospital transports, within the hospital, as they count up to 30%

of the overall hospital cost. In this paper, we discuss a self-learning platform that learns
the causes of transport delays, in order to avoid these kinds of delays in the future. We pay

special attention to the explainability of the self-learning system, such that management

understands the learned causes and remains in control over the automated process. This
is achieved by providing the learned causes as sentences that can be understood by non-

technical personnel and allowing these causes to first be supervised before the system

takes them into account. Once approved, the system will calculate how much more time
should be assigned to these transports in order to avoid future delays. As a result, the

scheduling of patient transportation can be automatically optimized, while management

remains full control of the process.
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1. Introduction

1.1. Background

Due to the continuous financial pressure, hospitals struggle to balance budget while

maintaining quality of care [1, 2]. Hospitals are forced to rethink and optimize vari-

ous workflows in order to meet the financial constraints. In this paper, we focus on

the transportation of patients within hospitals, as in-hospital transportation counts

up to 30% of the total hospital cost [3]. Furthermore, not all transport tasks are

performed by logistic personnel. It is estimated that nurses spent up to 10% of their

time performing transportations of patients or goods [4], instead of taking care of

patients. This leads to cost and care implications, but most importantly, due to

the shortage of healthcare personnel, to social implications, such as stress-related

diseases [4].

The increase in ICT infrastructure in hospitals can aid in the optimization of
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hospital’s workflows, as the better use of ICT infrastructure is essential to providing

better care at lower cost [5, 6]. The advent of the Internet Of Things (IoT) allows

the usage of non-intrusive sensors and devices to capture the environment through

sensor readings [7]. These sensors and devices can be used to track the locations of

various transports, to localize beds & wheelchairs, to easily notify staff members,

etc.

Existing solutions have three major shortcomings. Firstly, the algorithms to

schedule transports are based on fixed predefined parameters. For example, a trans-

port from a patient room to a medical room always takes the same amount of time.

They do not take the hospital’s context into account. For example, the current oc-

cupancy level of the hospital is disregarded, thus regardless of the hospital’s occupy,

the same amount of time is scheduled to perform a transport. During visitor hours,

the additional visitors might cause the transports to move more slowly. Secondly,

the transport schedule is made in advance and last minute changes in the schedule

are hard to achieve as the scheduler cannot be dynamically updated. Lastly, since

these solutions lack the ability to model the context of what is happening inside

the hospital, they are oblivious to why certain transports are late. As such, they

cannot learn from past delays and keep making the same sub-optimal decisions.

The high cost and involvement of the nursing staff and the lack of automation

make in-hospital patient transport an ideal candidate for optimization.

1.2. Related Work

Previous work has focused on learning delays in the health, financial and transport

domain. Laskowski et al. [8] investigated how to reduce the patient wait time in the

emergency department. The technique is specifically for the emergency department

and does not provide interpretable explanations on the algorithmic suggestions.

Markovic et al. [9] proposed a system to learn the passenger train arrival delays,

while Rebollo et al. [10] focused on predicting air traffic delays. Xu et al. [11] have

focused on predicting traffic delays and Silva et al. [12] investigated the influence

and delays on the public transports when certain stations or lines have been closed.

However, these techniques predict the amount of time a certain transport will be

late, but do not provide interpretable rules that can be supervised and provide an

explanation of why the delays occur.

Lecue et al. [13] have shown the importance of explainability, as they allow

flagged expenses to be explained to auditors in the financial sector. This allows

the auditors to understand why certain expenses were flagged. Diagnosis of traffic

congestion has also been investigated, allowing to explain and identify why cer-

tain roads are congested [14]. Even though these systems enable explanation, they

provide the explanation in the form of rules, which still require domain experts to

understand them.

Previous research has also focused on the scheduling of dynamic changing tasks

in hospitals. Fiegl et al. [15] describe an online algorithm for dynamic scheduling
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of pick-up and delivery tasks in hospitals. Hanne et al. [16], on the other hand,

have focused on transport between hospital buildings. Beaudry et al. [17] provide

a solution to scheduling dynamic hospital transport requests. They take both in-

house transports, i.e. transports within the same hospital building, as campus-based

transports, i.e. transports between hospital buildings that need to be provided by

an ambulance. Kergosien et al. [18] take into account additional constraints, such as

disinfection of a vehicle or type of vehicle needed. These algorithms are able to cope

with the dynamic nature of the tasks requests, however, no insights are provided in

why these transports are late.

1.3. Objective

In this paper, we present a solution, designed in collaboration with two Flemish

hospitals, that models the hospital’s context by integrating various sources of infor-

mation: static information regarding the hospital layout, patient & staff information

and dynamic data resulting from the sensor stream, such as sensor readings that

capture the location of the transports. Based on a historical view of this context,

we provide a self-learning module that learns the causes of transport delays. These

causes are presented as human-interpretable sentences that can be supervised by

management. Upon supervision, when one or more of these causes are accepted by

management, the system takes these causes into account and when transports that

adhere to the selected causes are requested in the future, the system will calculate

the additional time needed to enable accurate scheduling and avoid future delays.

Note that highly accurate scheduling is important. When too much time is assigned

and a transport is finished too early, the next transport might not be ready for

transportation yet. When too little time is assigned, the next transports need to

wait until the transport is ready and the whole schedule gets turned over.

1.4. Requirements

To provide a system that can learn the causes of delayed hospital transports, provide

them in a fashion that non-technical users can understand them and allow these

causes to be taken into account such that future delays can be avoided, the following

requirements should be adhered:

• Extendability: since the ICT infrastructure in hospitals keeps evolving,

it should be possible to easily incorporate new sources of information, such

that this new information can also be used to learn the causes of delays.

These sources can be either sensors & devices providing dynamic data or

databases providing descriptions regarding the hospital’s static context.

• Human-involvement: since it is sensitive to allow an automated system to

directly adapt the hospital work processes, it should, therefore, be possible

to involve human decision making.

• Explainability/Interpretability: to involve human decision making, it
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should be possible for non-technical users to interpret and understand which

causes the self-learning algorithm is suggesting. It is important that users

understand the decisions of an automated system [19].

• Scalability: to be applicable to different sizes of hospitals, the algorithms

should scale adequately.

• Usability: non-technical users must be able to operate the system and

evaluate the decisions from the self-learning module. The system should be

easily accessible through a Graphical User Interface (GUI). Furthermore,

the GUI should provide an easily interpretable overview of the findings of

the module. Lastly, it should be intuitive to accept certain identified causes

and update the system.

1.5. Paper organization

The remainder of the paper is organized as follows. Section 2 details the designed

architecture to optimally schedule requested hospital transports, notify the staff,

capture the data to learn upon and describes how it can be deployed as a whole in

a hospital. In Section 3, we zoom in on the self-learning component and detail the

devised algorithms. Section 4 describes how we enabled explainability of the learning

component, such that non-technical personnel, can understand the outcome of the

learning system. The evaluation of the learning module is described in Section 5 and

the outcome is discussed in Section 6. In Section 7 we highlight the most important

conclusions and describe opportunities for future work.

2. The AORTA platform

In this section, we describe how the data originating from various sources can be in-

tegrated and interpreted and detail the overall architecture of the designed Adaptive

Optimization for Resource & Task Assignment in Hospitals (AORTA) platform.

2.1. Ontologies & Reasoning

To enable heterogeneous data integration and interpretation, an ontology [20] is

composed that models the hospital’s context. Ontologies are formal models that

semantically describe a certain domain, in this case, the hospital domain. This de-

scription is made by modeling the different concepts within the domain and how

they relate through the use of relations. Each concept, relation or individual (an

instance of the former) is referenceable through a unique Uniform Resource Identi-

fier (URI), e.g. http://aorta.intec.ugent.be/ontology/aorta.owl#PatientTransport.

Ontologies are also an ideal tool for integrating IoT data [21], as it provides a uni-

form model for multiple heterogeneous data sources to adhere to. A part of the

ontology designed to describe the hospital transports is depicted in Figure 1a. As

aThe full ontology can be found on http://pbonte.github.io/Ontologies/aorta/aorta.owl
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Figure 1 describes, there are two types of transports, i.e. LogisticTransportTasks

and PatientTransportTasks, that each are executed by a certain Person, that has

a certain Role and each TransportTask has a specific Location as destination, etc.

Since the ontology is a uniform and formal model, different data sources can map

their data onto the ontology allowing to integrate data from various sources. As

such we get a complete, interpreted overview of the current context and status of

the hospital transports.

The ontology can define implicit relations within the data, that can be inferred

through the use of a reasoner. The reasoning process is comparable to the execution

of rules but in a more formal environment. For example, as depicted in Figure 1,

a Nurse is a subclass of Staff, which is a subclass of Role. The reasoner will infer

that each Nurse is also a type of Role, when it is provided with an instance of the

type Nurse. However, more complex constructions can be defined in the ontology.

For example, we could define that a PatientTransport that has a relation hasTrans-

portType to a Bed and a relation hasErrorCode to a PatientNotReady error code

can be considered a late transport. This could be defined in a formal way asb:

LateTransport ≡ ∃hasTransportType.Bed u ∃hasErrorCode.PatientNotReady

When a transport is requested that adheres to this definition, the reasoner will

infer that the transport is a LateTransport. Say the following fragment describes a

newly requested transport:

PatientTransportTask(p1), hasTransportType(p1, t1), BedWithPatient(t1)

hasErrorCode(p1, e1), PatientIsEating(e1)

The reasoner will infer that the individual p1 is a LateTransport because it knows

that BedWithPatient is a subclass of Bed and PatientIsEating is a subclass of

PatientNotReady. Note that p1, t1, e1 are data instances (individuals) that have

a certain type and relations, e.g. p1 has the type PatientTransportTask and has a

relation hasTransportType to t1.

The definition of these rules allows to incorporate the logic that is specific to a

certain domain. Here, we will use the reasoning capabilities to identify transports

that adhere to the previously learned causes that identify that a transport might

be late. Note that the system assigns more time to these late transports, such that

the scheduling can be defined more accurately.

2.2. Architecture

Now that we can model the context in our hospital and integrate the data from

various data sources, we can describe the components in the AORTA architecture.

Figure 2 provides a visual overview of the different components and how they in-

teract.

bThe ∃ denotes an existential quantifier and can be interpreted as ‘there exists’.
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concepts (interpreted as subconcepts and visualized through full arrows) of the designed hospital

transport ontology.
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Figure 2. Architecture of AORTA project.

To capture the hospital’s environment, smart devices, wearables, and sen-

sors are introduced into the hospital’s environment. These devices generate the

dynamic data, e.g. data describing the location of the staff or the status of the

transport. Each staff member is equipped with a smart wearable that allows to
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receive, accept/decline transports notifications and transmit location updates. Fur-

thermore, the smart wearable allows to scan, through the use of NFC or QR codes,

each patient that needs to be transported, eliminating mix-ups. All this information

is pushed on the Message Bus that routes the generated data to the interested

services, which can subscribe to particular data on the bus. The Notification Man-

ager communicates with the wearable devices and notifies the staff members about

new tasks or updates. It captures whom of the staff are available on which devices,

allowing the Context Layer to target the correct staff members when dispatching

tasks.

The EAI Application module is responsible for integrating the existing hos-

pital data tools, such as the electronic health records of patients and information

regarding the staff members and the logistics. This module is responsible for extract-

ing from these existing tools, the information relevant for scheduling and executing

the transportation tasks and providing it to the Context Layer.

The Transport Manager allows the different hospital departments to request

transport tasks, which are forwarded to the Context Layer for optimal scheduling.

The Context Layer captures the current context in the hospital by combining

and integrating the data resulting from the EAI Application and Transport Manager

with the dynamic sensor data. The ontology described above is exploited for this

purpose. This contextual information is stored in a triple store, i.e. a database for

ontological data. The Context Layer provides data to the Dynamic Scheduler that

needs to know which tasks to be scheduled, which personnel is available and what

are their locations, the achievable walking speed considering the current commotion

of the hospital, etc. The Context Layer uses reasoning to infer missing and implicit

data, based on the ontological definitions. The reasoning can indicate which trans-

ports need more time to be executed, e.g. by detecting delays and interruptions.

The Dynamic Scheduler receives the transportation requests from the Context

Layer and uses its context to construct an optimal schedule such that all the requests

can be handled in a timely manner with an optimal use of resources. To achieve

this optimal rostering, the scheduler will request the dynamic context information

from the Context Layer, e.g., the locations, availability, competences, work load

& average walking speed of the staff, busy areas and possible causes of delay. It

constantly maintains an overall optimal schedule and updates this schedules as new

requests and status updates of on-going transports come in. When a staff member

indicates that a transport has been finished, the Context Layer will communicate

this to the Dynamic Scheduler, which will then assign a new task to this staff

member based on this overall optimized schedule. Note that it is the Context Layer

that indicates how much more time should be assigned to the transports that are

expected to be late. The scheduler will try to optimally schedule the tasks based on

the provided information from the Context Layer. To be able to dynamically update

its schedule when new transports are requested, the scheduler uses a dynamic pick-

up and delivery model [22].
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The Self-Learning module consists of four components, the learner, the visu-

alizer, the verbalizer and a historical database. The later keeps a historical view

of the Context Layer. The learner requests the data from the historical database,

such that it can learn from the historical data why certain transports were delayed.

Based on this historical context, the learner identifies why transports in the past

were delayed, such that these delays can be prevented in the future. For example,

the module could learn that certain transports during the visiting hour on Friday

are often late and more time should be reserved for them. Once the learner has

learned the causes as ontological rules, the verbalizer can transform these rules to

human readable sentences such that management can access the identified causes

through the visualization and argue their validity while remaining control over the

automated system. Once approved, these rules are added to the Context Layer.

When similar transports are scheduled, they will be identified through the use of

the reasoner and the platform will calculate how much more time will need to be in-

corporated to schedule these kinds of transports accurately. This module is further

detailed in Section 3.

2.3. Implementation

We now explain some of the implementation details of the components that are not

discussed in detail in the remainder of the paper.

The Message Bus is based on Mirth Connectc, a message broker optimized for

the transmission of healthcare messages.

The Notification Manager receives the scheduled tasks from the Message Bus,

which are already targeted for a given user. The Notification Manager chooses the

best way to notify the user, i.e. choose the most convenient device that the user is

carrying at a given moment. Then, the Notification Manager transforms the tasks

into notifications that are tailored to be presented on the selected device.

The Context Layer utilizes RDFox [23] to store the contextual data and per-

form the reasoning on it. RDFox is the fastest reasoning-enabled triplestore, i.e.

a database to store ontological data, currently available. The Context Layer also

needs to map the healthcare messages from the Message Bus to the ontological

data, this is done through the use of RML [24], that allows to map raw data to the

ontology model.

2.4. Workflow Self-Learning component

When a new transport is requested, it is captured by the Context Layer that mod-

els the current view of the hospital’s context. After its execution, the details of

the transport are communicated with the Self-Learning module, such that the mod-

ule can store a history of past transports. Figure 2 shows the components of the

chttps://www.nextgen.com/products-and-services/integration-engine
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Figure 3. Example of the verbalized rules.

learning module. The new transport arrives through the Message Bus, the Learner

component first captures the transport and stores it in the historical database. It

also does some quick preprocessing such that a real-time overview of the transports

can be shown in the Visualization.

When a more in-depth description of the causes of delays is necessary, through

the visualization one can request the Learning component to start learning the

delays of the transports in the selected time range, e.g. the last month. It will

load the data from the historical database and start one of the learning algorithms

detailed in Section 3. The Learner passes the learned rules to the Verbalizer and

sends them to the Visualization so they can be shown in the visualization dashboard.

Figure 3 shows an example of the verbalized rules in the dashboard.

When one of the verbalized causes get accepted by management, the learning

module calculates the average delay that was caused by these transports. The ad-

ditional time is added as part of the rule. The Context Layer is then updated by

adding the new cause as a rule that will be invoked by the reasoner when a similar

transport is being scheduled. Since the extra time necessary to execute the trans-

port within accepted time is part of the rule, the additional time is automatically

added to the new transport.

Example 1. (Adding time to late transports) Say the following rule has been

accepted:

hasTransportType.Bed ∧ hasPeriod.visitingHour → LateTransport

When adding this rule to the reasoner and a transport is requested with the trans-

port type bed and requested during visiting hours, the reasoner will know that the

transport will be late. We can now calculate how much more time, on average, is

necessary to provide the scheduler with as accurate data as possible, to prevent

future delays. This can be done by calculating how much more time is necessary to

finish this task within time. This calculated time can then be added as part of the

rule. If 10 additional minutes are required, we can update the rule, to automatically
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add this time to the transport:

hasTransportType.Bed∧hasPeriod.visitingHour → LateTransport, addT ime(10min)

When the Context Layer adds this rule to the reasoner, and a new transport is

requested that adheres to this rule, it will know that the transport will be late and

that 10minutes additional time should be reserved to perform the transport.

3. Rule Learner module

The Self Learning module and more specifically the Learner, learns from historical

information regarding the transports why certain transports are delayed. By indi-

cating the causes of these delays, future delays can be prevented. We investigated

and optimized two techniques to learn the transport causes: an Assocation Rule

Mining (ARM) [25] and an Inductive Logic Programming (ILP) [26] technique. We

detail each technique and how we combined them for the best performance.

3.1. Association Rule Mining

ARM was originally developed to discover hidden knowledge from transactional

data, such as relational databases. A transaction is an observation of the co-

occurrence of a set of items.

I = {i1, i2, . . . , im} is defined as a set of m items describing the different elements

the database could contain and D = {t1, t2, . . . , tn} as a database of n transactions,

where each transaction in D is a subset of I and can be seen as a database entry.

We name a subset of items an itemset. supp(X) is the support of an itemset X, i.e.

the percentage of transactions in the database D that contain X.

An association rule r can then be defined as a rule of the form X ⇒ Y where X

and Y are non-empty subsets of I, and X ∩ Y = ∅. X is called the antecedent of r

and Y is the consequent of r. The support and confidence of a rule are respectively

denoted as

supp(r) =
|{t ∈ D ∧X ⊆ t}|

|D|
(1)

and

conf(r) =
supp(X ∪ Y )

supp(X)
(2)

where de confidence describes the how confident one can be that the antecedent is

related to the consequent of the rule.

Mining association rules is the process of finding all association rules with a

support and confidence greater than a predefined threshold. This mining process

can be divided into two phases. First, frequent itemsets of the transactions have

to be computed according to the minimum support threshold. Second, rules are

generated from these frequent itemsets with respect to the minimum confidence

threshold.
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Table 1. Example transactions

transactionID Walking WheelChair VisitingHour Late

t1 1 0 1 0

t2 0 1 0 0

t3 0 1 1 1

t4 1 0 0 0

t5 0 1 1 1

Example 2. (Association Rule Mining) Table 1 shows a database with four items:

I = {Walking, WheelChair, V isitingHour, Late} and five transactions. If we want

to calculate if the association rule r = {WheelChair, V isitingHour} => {Late}
holds, we calculate the support as supp(r) = 2

5 , as only two transaction (t3, t5)

consist of the itemset {WheelChair, V isitingHour} and the database consists

out of five transactions. The confidence is calculated as conf(r) = supp(X∪Y )
supp(X) =

supp({WheelChair,V isitingHour,Late})
supp({WheelChair,V isitingHour}) = 2/5

2/5 = 1.

Since ARM works specifically on items and transactions, it needs to be adapted

to work with semantic data. Our previous work [27] describes in detail how the

ontological data can be converted to items and transactions and how various op-

timizations can be executed. This conversion is necessary as the semantic data

described by the ontology can be seen as a graph rather than a set of transactions.

The conversion consists of the following steps:

(1) We identify a concept in the ontology we want to get insights from and retrieve

all individuals from that concept, e.g. all patient transports in a certain hospital.

(2) We follow all the relations the selected individuals have to other individuals,

store them as so-called features, and follow the relations from the new concepts

until we reach a certain threshold that indicates how many concepts to follow.

(3) We also store the types of each followed individual, i.e. the ontology concept

they have been assigned to and look up the hierarchy of these concepts in the

ontology and store the hierarchy as well.

(4) The stored features can now be used as items for the transactions database.

Example 3. (Converting ontological data to transactions)

Say we have the following five (simplified) transports in our ontology:

• PatientTransport(t1), hasTransportType(t1,walking), Walking(walking), dur-

ingPeriod(t1,visitorHours),

• PatientTransport(t2), hasTransportType(t2,wheelchair),

Wheelchair(wheelchair), duringPeriod(t2,morning),

• PatientTransport(t3), hasTransportType(t3,wheelchair),

Wheelchair(wheelchair), duringPeriod(t3,visitorHours),
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Table 2. Example ontology conversion to transactions
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1 1 0 1 0 1

2 1 1 0 1 0

3 1 1 0 1 0

4 1 0 1 0 1

5 1 1 0 1 0

• PatientTransport(t4), hasTransportType(t4,walking), Walking(walking), dur-

ingPeriod(t4,morning),

• PatientTransport(t5), hasTransportType(t5,wheelchair),

Wheelchair(wheelchair), duringPeriod(t5,visitorHours)

When we follow the above described steps, we can convert the ontological data into

transactions:

(1) The individuals we want to learn about are t1, t2, t3, t4, and t5, which are all

PatientTransports.

(2) When following their relations we obtain for each individual the feature

hasTransportType and when coupling the relation to the linked individ-

ual we obtain the features: hasTransporType.walking and hasTransport-

Type.wheelchair. Following the next relations, we obtain the features: during-

Period,duringPeriod.visitingHours and duringPeriod.morning.

(3) When taking the types into account we obtain the features: hasTransport-

Type.Walking, hasTransportType.Wheelchair, duringPeriod.TimePeriod. Tak-

ing the hierarchy of the ontology into account we obtain the feature: hasTrans-

portType.TransportType.

(4) We can now convert the selected features to items and use each patient transport

individual as a transaction. Table 2 shows a part of these transactions. Note

that some items should be filtered out as they do not provide any information

gain, e.g. all transaction have the item hasTransportType.

3.2. Inductive Logic Programming

ILP is a machine learning technique that combines inductive machine learning and

logic programming. ILP is able to learn rules as ontology concepts and fully exploits

the semantics describing the data. Thus, ILP can work directly with the semantic
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data and generates very accurate rules, however, it is less scalable than statistical

approaches such as ARM. Statistical relational learning [28] is an extension of ILP

that incorporates probabilistic data and can handle observations that may be miss-

ing, partially observed, or noisy. However, since our observations are not possible

missing or partially observed, we do not consider it here.

ILP starts from the idea of positive and negative examples and a background

describing the domain. ILP tries to learn a hypothesis such that the positive ex-

amples follow from the hypothesis but the negative examples do not. Finding the

hypothesis is, of course, the difficult part. The Class Expression Learning for On-

tology Engenieering (CELOE) algorithm [29] from DL-learnerd takes a generate

and test approach where it appends ontology concepts and relations to the learned

hypothesis in order to achieve the highest possible accuracy. This is possible by

making the hypothesis more generic or more specific. The latter is calculated on

the fact that more positive examples are contained by the hypothesis compared to

negative examples.

Example 4. (Inductive Logic Programming) We reuse the transports form Exam-

ple 3 where both transport t3 and t5 are positive examples. The algorithm will take

the following steps:

(1) Create a new concept, e.g. LateTransport;

(2) Add a new concept or relation to the concept, e.g. adding the relation hasTrans-

portType. We thus generate a new concept that says that a LateTransport has

a relation hasTransportType.

(3) The algorithm tests the coverage of the new concept and sees that both positive

and negative examples have the relation hasTransportType. The coverage is

tested by adding the new concept to the ontology and ask the reasoner for all

the individuals that have the new concept as a type. The accuracy is calculated

as the percentage of individuals that have the type LateTransport and were in

fact in the positive examples.

(4) The algorithm can decide to make the generated class more specific by chang-

ing any hasTransportType relation specifically for one type of transport, i.e.

for wheelchairs. After specifying this relation, all the positive examples are con-

tained, however, one negative example (transport t2) is also contained.

(5) Therefore, the algorithm tries to add another relation, i.e. the duringPe-

riod.visitorHours relation. Now all the positive examples are contained and

none of the negative examples.

Eventually the algorithm generates a new class:

LateTransport ≡ PatientTransport ∧ ∃hasTransportType.{wheelchair}
∧∃duringPeriod.{visitorHours}.

dhttp://dl-learner.org/
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transport1
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Edge

...

Figure 4. Example of a fragment of a transports described by the ontology schema.

In a realistic dataset, there are many reasons that might cause transport delays.

This means that multiple rules need to be identified. In previous work, we coupled

the ILP technique with an ontological clustering technique to split the dataset into

some more manageable clusters, such that the algorithm can easier find the various

delays [30].

3.3. Combining ARM & ILP for optimal identification of causes

of delays

We have combined the two approaches such that we can benefit from the scalable

statistical analysis from ARM and the correctness of ILP. Our technique is based

on a statical evaluated generate and test method. Thus the statistical evaluation

from ARM combined with the generate and test methodology from CELOE. ARM

generates rules that are applicable to the whole dataset, however, since we are only

interested in rules detailing the lateness of transports, many rules need to be filtered.

Furthermore, since we have positive and negative examples, more rules need to be

filtered that occur both in the positive and negative examples. Thus, there are many

unnecessary computations as many rules need to be filtered to make the technique

applicable. CELOE has the advantage of testing each addition it generates but

requires for each addition a call to the reasoner, that does not scale very well, to

compute the coverage.

In this approach, we directly compare the support, see Equation 1, of each item

in the rule in both the positive and negative examples. We take a Breadth-First

Search (BFS) through the graph to compose the rules. Each edge we transverse, we

test if the information is adding value to the generation of the rule. For each edge,

we take four steps which are visualized in Figure 5 that executes the algorithm on
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Figure 5. The algorithm traverses the graph in BFS mode and first adds the relations as items,

then the individual names, followed by the types and super types and finally the data properties.

an example detailed in Figure 4. These four steps are:

(1) We add the edge (relations) to the path and use it as a feature.

(2) We add the URIs of the individuals to the path and use it as a features.

(3) Instead of the URI we add the type of the individual to the path and use it as

a feature.

(4) Instead of the type we generate for each super type (defined in the ontology

hierarchy) of the type a new feature.

(5) Instead of the super types, we add the data properties with their values to the

path and use them as features.

We test which one of the four steps is the best feature candidate, both in terms of

support and interpretability. The interpretability hierarchy is configurable, standard

the most specific type has priority over the concepts in the type hierarchy, then the

data properties, the relations and lastly the individual names. Note that this is

only considered if multiple of these produce the same results. Once all the potential

candidates have been generated we test which conjunctions enable a significantly

higher drop in the support of the negative dataset, compared to the positive set.

Example 5. (Conjunction example) Let us consider the transports from Exam-

ple 3 where t3 and t5 were late. We will calculate the conjunction between the

transports with wheelchair transport type and the transports scheduled during vis-

iting hours. Table 3 shows the transactions that allow us to calculate the support

of the conjunction. Table 4 shows the support calculation for each of the positive

(t3, t5) and negative (t1, t2, t4) examples. The table shows the support for the

transports scheduled with the transport type wheelchair, i.e. a support of 2/5 for
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Table 3. Example of conjunction.

t hasTransportType hasPeriod isLate

.Wheelchair .visitingHours

1 0 1 0

2 1 0 0

3 1 1 1

4 0 0 0

5 1 1 1

Table 4. Support calculation of the conjunction between transports with the transport type

wheelchair and transports scheduled during visiting hours.

Positive Negative

support(hasTransportType.Wheelchair) |{t3,t5}|
5 = 2/5 |{t2}|

5 = 1/5

support(hasPeriod.visitingHours) |{t3,t5}|
5 = 2/5 |{t1}|

5 = 1/5

support(hasTransportType.Wheelchair

∧ hasPeriod.visitingHours)
|{t3,t5}|

5 = 2/5 |{}|
5 = 0/5

the positive set and 1/5 for the negative. The support for the transports scheduled

during visiting hours are 2/5 for the positive and 1/5 for the negative. The table

also shows that the support drops in the negative set when calculating the conjunc-

tion between the rules, while the support in the positive set remains. This means

that this conjunction should be considered as a candidate result or temporarily re-

sult, e.g. when additional conjunctions are required to find significant difference in

support.

3.4. Related approaches

Nebot et al. [31] proposed an ARM technique for ontological data. The concept and

the features to learn about are defined through a SPARQL query , i.e. a query lan-

guage for ontological data, and translated to transactions for the ARM algorithm.

Our ARM approach build upon their proposed technique in the sense that no ex-

plicit indication of the learning features is necessary and various optimizations are

proposed to prune the learned rules.

AMIE[32] and its successor AMIE+[33] provide an algorithm for mining rules

in large knowledge bases where there are no negative examples. The technique is

more scalable than standard ILP techniques, however, it does not enable reasoning

during the learning phase. This means that the algorithm cannot make a rule more

specific or more generic to match the examples. Furthermore, it is not optimized to

cope with positive and negative examples.
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4. Interpretable Results

In Section 3, we have shown how we can learn rules that describe why transports

are late. However, as can be seen in Example 4 and 5, these rules are not very

interpretable or intuitive for non-technical end-users, e.g. management of a hospital.

4.1. Verbalizing Rules

To make the learned rules more interpretable, we can convert the rules to human

readable sentences. Since we make use of an ontological model, the model describ-

ing the rules is fixed. Therefore, we can make use of a verbalizer such as Natu-

ralOWL [34] that can convert ontology concepts to readable sentences. By defining

how the classes and properties in the ontology should be verbalized, NaturalOWL

can generate fluent human-readable text. This makes it easier for the management

to interpret the learned rules. In practice, to enable this, the ontology needs to be

annotated and indicated which concepts should be interpreted as adjectives, nouns

or verbs and how they construct readable sentences when combined. However, this

typically needs to be done only once, since the ontology itself does not change

(often).

Example 6. (Verbalization) The concepts in the ontology are annotated with ver-

balization information and various sentence plans are defined to be able to construct

human-readable sentences. The class assertion definitions can be verbalized through

the following sentence plan:

[OWNEROWNER][isverb][a kindstring][ofprop][FILLERFILLER]

This means that the assertion PatientTransport(trans1) will be verbalized as

”trans1 is a kind of PatientTransport” . Where OWNER is the individual as-

signed to the class, here trans1 and FILLER is the class itself, here the class

PatientTransport.

The relation transportMode can be verbalized through the sentence plan:

[OWNEROWNER][hasverb][astring][transportmodenoun]

[of the typestring][FILLERFILLER]

This means that the relation hasTransportMode(trans1, bed) will be verbalized as

“trans1 has a transport mode of the type bed”. Here OWNER is the individual

from where the relation starts, here trans1 and FILLER is the individual that is

linked by the relation, here the individual bed.

4.2. Dashboard

We are now able to learn the causes of the delays and verbalize them such that

management can interpret them. However, they are still not usable as distinct tools.

Therefore, we provide a visualization through a dashboard that enables insights

into the transports and allows to activate the learning-verbalization-chain. Figure 6

visualizes the dashboard. It provides some graphical analytics such as:
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• An overview of the number of tasks that were on-time versus the ones that were

late.

• An overview of all the transport modes and how they influence the arrival times.

• An overview of both the location the transport came from/is going to and how

they relate to the arrival times.

The exact metric for what is shown in the overview can be easily configured through

the use of a query. For example, in Figure 6 two queries are defined, one for selecting

the transport types and one for selecting the destination location of the transports.

When a more in-depth analysis is necessary, the learning module can be activated

from the dashboard to inspect the causes of transports delays over a specific time

range. Figure 3 shows an example of how the verbalized rules in the dashboard are

shown. Each of the learned rules is translated into readable sentences and can, after

inspection of management, be incorporated into the system to avoid future delays.

5. Evaluation

This section elaborates on the evaluation of the Self-Learning module and more

specifically on its learning capabilities. We make a comparison between the learning

capabilities of the different algorithms discussed in Section 3.

5.1. Dataset

As the IoT system described in Section 2.2 can only be deployed in a real hospi-

tal setting after thorough evaluation and proof that the system functions correctly,

we do not have enough real-time data to be used in the evaluation. We note that

the IoT platform has been evaluated in a controlled hospital environment, to prove

its feasibility. To enable the learning phase, data of many transports is necessary

and since the platform could only be deployed in a smaller controlled environment,

capturing enough data to enable the learning phase was not possible. However,

the hospitals currently have a static scheduling system, describing the various dis-

patched tasks. Even though the static does not contain all the context as it would

in the IoT case, it is still a good starting point to show the feasibility of the learning

component. As this static data is maintained in a relational database, we extract

the data, map the data to the semantic model through the use of RML [24], which

allows non-semantic data to be mapped to a semantic model, such that it can be

used by the learning algorithms. We note that in the IoT deployment, when more

data is available, more accurate rules can be learned.

We received static transport data from two Flemish hospitals describing over

three months worth of patient transports details, based on 40 variables. On aver-

age, around 10000 transports are scheduled each month and about 26% of these

transports are late. For the first two evaluations, i.e. Section 5.2 and Section 5.3,

we adapted the hospital dataset so we can manipulate its distributions in order

to illustrate the underlying mechanics of the learning algorithms. We selected one
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Figure 6. Overview of the AORTA Self-Learning Dashboard.

month worth of data and removed all transports that were late and added on time

transports from the next months to obtain a total of 10000 transports. To evaluate

the learning capabilities of the algorithm, we injected several causes of delays in the

dataset, allowing to evaluate accurately if the algorithm is capable of detecting these

causes. Among these causes are 1) transports from a patient room to a consultation

room where the patient had to walk, 2) transports on Friday in the evening and

3) transports in the afternoon towards the operating room. For the last evaluation,

Section 5.4, we used the received dataset to explain why certain transports were

late.

The dataset itself contains 474 unique locations, each mapped to the hospital

layout and specific function of the location, 8 transport modes (e.g. bed, wheelchair,
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Figure 7. Influence of the support parameter on the number of rules.

walking, etc.), the period of the day (i.e. morning, afternoon, evening), the exact

time, etc. Since we started from the received dataset, the data distributions are

realistic.

5.2. Minimum number of late transports

The cause of the late transports can only be detected if a sufficient number of

these transports are contained in the positive examples. The question remains, how

frequent should they occur to be detected? This is defined by the support parameter

that defines the minimum frequency a candidate item should occur before it can

be considered. This filters out very low occurring items and reduces the number of

generated rules. Thus, the lower the support parameter the higher the chances it

is detected by the algorithm. However, since lower support parameters imply more

generated rules, more noise will be produced and complicates the interpretability by

management. Figure 7 shows the influence of the support parameter on the dataset,

OWN indicates our combined algorithm, ARM our ARM approach and DL the

CELOE approach provided by DL-learner. It is worthing noting that the CELOE

does not have a support parameter and needs to be configured in the function of

the number of results it may generate and the amount of time it may execute. We

fixed the number of results to the same number as the expected number of results,

i.e. the number of rules contained in the data and the correct execution time was

obtained by iterating over various execution times until the causes were detected by

the algorithm. The figure shows that for ARM and OWN, the lower the parameter,

the more rules are generated. This makes sense as none of the injected rules are

contained in more than 30% of the late transports. Therefore, the causes are only

starting to be detected as the support threshold decreases below 0.3. It is clear that

the ARM approach generates many more rules, but more rules do not necessarily
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Figure 9. Influence of the support parameter on the execution time.

mean better results.

Figure 8 shows the percentage of duplicates contained in the results. These du-

plicates are unique rules that have the same meaning, e.g., each transport mode has

a certain ID, resulting in two rules, one stating that the transport mode ‘Running’

causes transports to be late or one stating that the transport mode with id ‘131’

causes transports to be late. These are different rules but have the same meaning.

As explaining in Section 3.3 our own algorithm is tailored to only generate the

most meaningful features and rules. This is reflected in the results of Figure 8 as

the percentage of duplicates is low for our algorithm.

In Figure 9 the execution time of each algorithm is plotted. The ARM and
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Figure 10. Influence of the support parameter on the false negatives.

OWN algorithms are faster than the CELOE algorithm as they take a more scalable

statistical approach. For low support thresholds the execution time increases, this

is because more features are selected which results in more combinations that need

to be tested to detect the rules. Our own algorithm is less prone to this, as it uses

a generate and test approach and only considers combinations of features if they

are improving the accuracy. The ARM approach generates more combinations and

is thus slower.

Figure 10 shows the percentage of false negatives, i.e. the percentage of rules that

should have been detected but were not. It is clear that as the support parameter

decreases, more rules are found for the ARM and OWN approach and the percentage

of false negatives drops. As the support parameter has no influence on the DL

approach, it remains constant. However, it fails to find most rules even after long

execution times. The false negatives decrease faster in the ARM approach, however,

only our OWN approach finds all rules. The reason for this slower decrease is because

our OWN approach is very selective in which rules to generate.

5.3. Noise in the dataset

A second important aspect is the ability to cope with is noise. Many transports are

late for no reason and are thus adding noise to the positive examples as there is not

a straightforward explanation.

Figure 11 shows the number of found rules in function of the percentage of

noise in the dataset for a support threshold of 0.2, 0.1 and 0.05 for the ARM and

OWN approach. We did not further include the DL approach, as it has troubles

to deal with noisy data. We artificially added additional late transports to the

dataset, which were selected from the set of transports that were on time and thus

do not contain any real causes for their delays and can be considered as noise.
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Figure 11. Influence of the noise on the number of results.
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Figure 12. Influence of the noise has the execution time.

The figure shows that as the noise increases, the number of found rules decreases.

This is because the percentage of the late transports in the dataset that should

be detected decreases and random causes increase. When further decreasing the

support parameter, the rules can be detected again. However, when decreasing too

much, random rules will start populating the results. Table 5 shows this trend for

a dataset containing 80% noise. The table shows for both OWN and ARM that as

the support parameter decreases, more rules are generated. However, as the support

parameter decrease, more random rules are considered as well. This can be expected,

as with a support parameter of 0.001, a rule only needs to occur in 0.01% of the

examples. For a dataset of one month, this means that only two occurrences should
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Table 5. The influence of the decreasing support parameters for a dataset with high number of

noise (80%). Both the number of generated results (#res) are compared to the number of correct
results (#correct).

Support OWN ARM

#res #correct #res #correct

0.2 1 1 2 1

0.1 2 2 2 1

0.05 7 7 50 16 (56% duplicates)

0.01 16 14 - -

0.005 35 14 - -

0.001 198 14 - -

be present in the data. This leads to the production of many random results. The

ARM approach is not able to produce rules for a support parameter of 0.01 and

lower. This is due to the fact that too many conjunctions need to be tested and

therefore the execution time explodes.

5.4. Evaluating the unmodified dataset

We also executed the algorithms on the datasets received from the hospitals, i.e.

the dataset described in Section 5.1 without the artificially injected late transports.

Since we did not inject the transports, there is no objective metric to evaluate the

correctness of the learned rules. Therefore, we provide a discussion of our findings.

Figure 13 depicts the dashboard of the received dataset and shows some of the

dataset characteristics.

While executing the learning algorithms, we found that some of the learned

causes are rather trivial, such as the fact that if the task started on time or the

priority of the task is low, then transports are often late. Other causes are however

less trivial. In one of the hospitals, transports in the morning that need a wheelchair

are often late. Transports on Friday or Saturday or to the consultation room share

the same fate. However, transports that need a bed with a bed mover or transports

planned on Wednesday/Thursday afternoon are mostly on time. However, the algo-

rithm also reveals more sensitive data, such as certain persons or teams that cause

more delays than other. Figure 14 provides an example of the verbalization of some

of the learned rules on the static dataset.

In Section 6 we discuss how to deal with sensitive data and the advantages of

having a system that provides explanations in these situations.

5.5. Comparison

Compared to ARM our technique scales very well as it does not need to generate

rules regarding the whole dataset that later on needs to be filtered out. Furthermore,

since we pick the features very carefully, the number of elements that are used
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Figure 13. The dashboard visualizing some of the characteristics of the dataset received from the
hospitals.

Figure 14. Example of the verbalized rules for the hospital datasets.
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to calculate the conjunctions is limited and thus faster. We also have a different

algorithm for creating conjunctions of rules. ARM has multiple algorithms to achieve

this but essentially checks if the support of the conjunction is above a certain

threshold. We take a different approach where we only consider conjunctions that

enable a greater drop in the support of the negative dataset, compared to the

positive dataset. This means that the conjunction occurs more frequently in the

positive dataset compared to the negative dataset and it also appears relatively more

as a conjunction. Furthermore, because we filter the features early on by selecting

only the most interpretable features, fewer conjunctions need to be calculated and

less duplicate results are produced.

Compared to ILP (DL/CELOE) we take a statistical approach to test the cov-

erage of the rule and not a logical one. This is possible by converting the graph

to features, by the generation of the paths. This is more scalable than the ILP

approach as the coverage is easier to compute. The CELOE algorithm generates

possible rules from the ontology concepts and checks if it matches the dataset. We

take another approach by starting from the dataset and generalize the found rules

by incorporating the knowledge in the ontology. The ILP algorithm has also trou-

bles to find rules in a noisy dataset. The ILP technique is more suited when one

specific and possibly complex rule needs to be found. In our case, because multiple

causes for delay exist in the dataset and noise can be present, the technique is not

ideal. Furthermore, the configuration of our algorithm is easier than to configure

the CELOE algorithm, as it requires to indicate the execution time.

It is clear that our approach is the fastest in execution time and also produces the

most correct results. By incorporating the filtering techniques during the generation

of the features, the number of duplicate rules is minimized. Also, the detection of

the correct rules is higher than in the other algorithms. This allows to provide only

the essential rules and give a clear overview and insights into the data.

6. Discussion

The proposed system is able to learn rules that identify possible causes of why trans-

ports in hospitals are late. By identifying the context in which transports are often

late, we can predict which transports will be late in the future and more importantly

avoid future delays. Both patients, staff members and hospital management benefit

from more accurate scheduling. Currently, patients often have to wait before being

picked up before or after a medical intervention, which is often uncomfortable. For

staff members, it is stressful to see their tasks pile up as the assigned transports

take longer than expected.

Furthermore, by explaining the cause as human-readable sentences, management

gets understandable insights into their underlying hospital’s mechanics. The fact

that these causes can be understood by non-experts, allows management to be

involved in the automated process and provides them with the final judgment.

The use of the semantic model allows to easily extend the platform and integrate
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additional data that could offer more accurate insights. For example, a new sensor

could be added that captures the exact route a transport takes. This would allow to

detect various bottlenecks in the transport routes, such as taking a specific elevator

that is slow during certain times of the day (maybe visitors tend to use the elevator

as well) or routes that pass a certain corridor in the hospital that is often very busy.

The learning phase can also detect sensitive data, such as certain staff members

or teams that are underperforming. These are scenarios where management should

open a discussion with their employees to find out the real cause of the problem. By

first providing the causes to management for verification, management is provided

with the opportunity to have this discussion and staff members are not rewarded for

executing their tasks more slowly. In a fully automated system, the system would

detect that a certain staff member takes more time and automatically assign more

time to the tasks this staff member has to execute. Other insights can also provide

opportunities for optimizations, e.g. transport towards certain specific locations that

are always late could indicate that there is a structural problem in the department

and perhaps a reorganization of the department would be beneficial.

The dashboard provides an easy access to the learning tool. By providing some

graphical overviews of the transport distributions between timely and late trans-

ports, management can have a quick visual overview. By making the overviews

adaptable through queries, the content can be easily adapted. However, the con-

struction of these queries might not be trivial for non-technical persons. Therefore,

we provide some basic queries and allow the option to monitor the transports that

adhere to the previously selected causes of delays. This allows to quickly validate

if the system is now assigning the required time to execute these transports more

accurately.

A disadvantage of learning from past transports is that data about past trans-

ports need to be available. If management restructures the execution of transports,

it takes time to see the influence in the learned causes. One solution to solve this

is to only take the transports into account that were conducted from the time the

restructuring took place. However, data about the transports is still necessary.

Besides late transports, there might also be cases where the transports are as-

signed too much time, i.e the transports arrive too early compared to the assigned

delivery time. These transports can be identified in the same way we identified late

transports. By alternating both identifying the early and late tasks, the system will

converge to an optimal setting.

7. Conclusion & Future Work

In this paper, we propose a learning system that can indicate the causes of why

certain hospital transports are late. Special precautions are taken to make sure

that the learned causes can be explained to management, enabling management to

remain in full control of the automated system. We have shown that our platform

is capable of learning said causes and verbalize them in interpretable sentences for
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further inspection by the hospital management.

In future work, we wish to incorporate additional sensors to allow the detection

of more accurate and complex rules. We also wish to further extend the usability

of the dashboard. For example, allow management to easily construct the overview

queries in a natural and interpretable manner for non-technical users.
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[25] Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in
large databases. In: Acm sigmod record. vol. 22. ACM; 1993. p. 207–216.

[26] Lavrac N, Dzeroski S. Inductive Logic Programming. In: International Conference on
Inductive Logic Programming. Springer; 1994. p. 146–160.

[27] Bonte P, Ongenae F, Hoogstoel E, De Turck F. Mining semantic rules for optimizing
transport assignments in hospitals. In: ISWC2016, the 15th International Semantic
Web Conference; 2016. p. 1–6.

[28] De Raedt L, Kersting K. Statistical Relational Learning. Encyclopedia of Machine
Learning. 2011;p. 916–924.

[29] Lehmann J, Auer S, Bühmann L, Tramp S. Class expression learning for ontology
engineering. Web Semantics: Science, Services and Agents on the World Wide Web.
2011;9(1):71–81.

[30] Bonte P, et al. Learning Semantic Rules for Intelligent Transport Scheduling in Hos-
pitals. In: European Semantic Web Conference (ESWC2016); 2016. .

[31] Nebot V, Berlanga R. Finding association rules in semantic web data. Knowledge-
Based Systems. 2012;25(1):51–62.
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