Advanced search
1 file | 92.54 MB Add to list

Bridging spatiotemporal scales in biomechanical models for living tissues : from the contracting Esophagus to cardiac growth

(2019)
Author
Promoter
(UGent) , (UGent) and (UGent)
Organization
Abstract
Appropriate functioning of our body is determined by the mechanical behavior of our organs. An improved understanding of the biomechanical functioning of the soft tissues making up these organs is therefore crucial for the choice for, and development of, efficient clinical treatment strategies focused on patient-specific pathophysiology. This doctoral dissertation describes the passive and active biomechanical behavior of gastrointestinal and cardiovascular tissue, both in the short and long term, through computer models that bridge the cell, tissue and organ scale. Using histological characterization, mechanical testing and medical imaging techniques, virtual esophagus and heart models are developed that simulate the patient-specific biomechanical organ behavior as accurately as possible. In addition to the diagnostic value of these models, the developed modeling technology also allows us to predict the acute and chronic effect of various treatment techniques, through e.g. drugs, surgery and/or medical equipment. Consequently, this dissertation offers insights that will have an unmistakable impact on the personalized medicine of the future.
Het correct functioneren van ons lichaam wordt bepaald door het mechanisch gedrag van onze organen. Een verbeterd inzicht in het biomechanisch functioneren van deze zachte weefsels is daarom van cruciale waarde voor de keuze voor, en ontwikkeling van, efficiënte klinische behandelingsstrategieën gefocust op de patiënt-specifieke pathofysiologie. Deze doctoraatsthesis brengt het passieve en actieve biomechanisch gedrag van gastro-intestinaal en cardiovasculair weefsel, zowel op korte als lange termijn, in kaart via computermodellen die een brug vormen tussen cel-, weefsel- en orgaanniveau. Aan de hand van histologische karakterisering, mechanische testen en medische beeldvormingstechnieken worden virtuele slokdarm- en hartmodellen ontwikkeld die het patiënt-specifieke orgaangedrag zo accuraat mogelijk simuleren. Naast de diagnostische waarde van deze modellen, laat de ontwikkelde modelleringstechnologie ook toe om het effect van verschillende behandelingstechnieken, via medicatie, chirurgie en/of medische apparatuur bijvoorbeeld, acuut en chronisch te voorspellen. Bijgevolg biedt deze doctoraatsthesis inzichten die een onmiskenbare impact zullen hebben op de gepersonaliseerde geneeskunde van de toekomst.
Keywords
biomechanics, soft living tissue, finite element analysis, physics-based modeling, soft tissue mechanics, heart, esophagus, cardiovascular, gastro-intestinal, living matter

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 92.54 MB

Citation

Please use this url to cite or link to this publication:

MLA
Peirlinck, Mathias. Bridging Spatiotemporal Scales in Biomechanical Models for Living Tissues : From the Contracting Esophagus to Cardiac Growth. 2019.
APA
Peirlinck, M. (2019). Bridging spatiotemporal scales in biomechanical models for living tissues : from the contracting Esophagus to cardiac growth.
Chicago author-date
Peirlinck, Mathias. 2019. “Bridging Spatiotemporal Scales in Biomechanical Models for Living Tissues : From the Contracting Esophagus to Cardiac Growth.”
Chicago author-date (all authors)
Peirlinck, Mathias. 2019. “Bridging Spatiotemporal Scales in Biomechanical Models for Living Tissues : From the Contracting Esophagus to Cardiac Growth.”
Vancouver
1.
Peirlinck M. Bridging spatiotemporal scales in biomechanical models for living tissues : from the contracting Esophagus to cardiac growth. 2019.
IEEE
[1]
M. Peirlinck, “Bridging spatiotemporal scales in biomechanical models for living tissues : from the contracting Esophagus to cardiac growth,” 2019.
@phdthesis{8622190,
  abstract     = {Appropriate functioning of our body is determined by the mechanical behavior of our organs. An improved understanding of the biomechanical functioning of the soft tissues making up these organs is therefore crucial for the choice for, and development of, efficient clinical treatment strategies focused on patient-specific pathophysiology.

This doctoral dissertation describes the passive and active biomechanical behavior of gastrointestinal and cardiovascular tissue, both in the short and long term, through computer models that bridge the cell, tissue and organ scale. Using histological characterization, mechanical testing and medical imaging techniques, virtual esophagus and heart models are developed that simulate the patient-specific biomechanical organ behavior as accurately as possible. In addition to the diagnostic value of these models, the developed modeling technology also allows us to predict the acute and chronic effect of various treatment techniques, through e.g. drugs, surgery and/or medical equipment. Consequently, this dissertation offers insights that will have an unmistakable impact on the personalized medicine of the future.},
  author       = {Peirlinck, Mathias},
  isbn         = {9789463552585},
  keywords     = {biomechanics,soft living tissue,finite element analysis,physics-based modeling,soft tissue mechanics,heart,esophagus,cardiovascular,gastro-intestinal,living matter},
  language     = {eng},
  pages        = {XXXIII, 266},
  school       = {Ghent University},
  title        = {Bridging spatiotemporal scales in biomechanical models for living tissues : from the contracting Esophagus to cardiac growth},
  year         = {2019},
}