A phytogenic feed additive suppresses inflammatory signals in the gut by controlling the activation of the MAPK pathway and decreasing the level of Enterobacteriaceae in broiler chickens

Gunther Antonissen1,2, Filip Van Immerseel1, Vasileios Paraskevas3, Eirini Griela3, Evy Goossens1, Marc Verlinden1, Richard Ducatelle1, Freddy Haesebrouck1, Nicole Reisinger4, Siska Croubels2, Konstantinos C. Mountzouris3

1 Dept. of Pathology, Bacteriology and Avian Diseases, 2 Dept. of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium 3 Dept. of Nutritional Physiology and Feeding, Agricultural University of Athens, Athens, Greece; 4 Biomin Research Center, Tulln, Austria

Certain feed ingredients, such as non-starch polysaccharides, may put considerable stress on the digestive system. When passing a certain threshold, even in the absence of any specific pathogens, this may damage the health status of the gastro-intestinal tract, leading to partial loss of function. Therefore, the aim of this study was to investigate the impact of a phytogenic feed additive on the activation of the mitogen-activated protein kinase (MAPK) signaling pathway and intestinal microbiota in an experimental dysbiosis-challenge model.

Male broiler chickens (Ross 308) were fed either a dysbiosis challenge diet or a dysbiosis challenge diet supplemented with a phytogenic feed additive (150 g/ton) (5 pens/group, 18 birds/pen). Sampling was performed at day 13, 26 and 39. Intestinal microbiome profiling was performed by next-generation sequencing of 16S ribosomal DNA. mRNA expression of genes involved in the MAPK pathway was evaluated by qRT-PCR.

Supplementing the diet with phytogenic feed additive resulted in a significantly decreased abundance of Enterobacteriaceae family and increased abundance of Peptostreptococcaceae in the ileum at the age of 13 days. A significant decreased mRNA expression of the genes encoding c-Jun N-terminal kinase (JNK) 2, P38 MAPK α, β2, and δ, tumor necrosis factor-α, interferon (IFN)γ, and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB1) were observed in the caecum of chickens (13 and 26 days old) fed the phytogenic supplemented feed.

These findings suggest that phytogenic feed supplementation results in a decreased level of lipopolysaccharide containing Enterobacteriaceae and a decreased pro-inflammatory cytokine release, reducing the NF-κB1/JNK/P38 MAPK pathway activation, decreasing the inflammatory response.