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Abstract. In this article we obtain Strichartz estimates for a Schrödinger

equation associated with the harmonic oscillator and the Laplacian. Our main

tools are embeddings between Lebesgue and Triebel-Lizorkin spaces.

1. Introduction

In this article we consider the quantum harmonic oscillator H := −∆ + |x|2 on
Rn where ∆ is the standard Laplacian. We obtain regularity for the Schrödinger
equation (associated with H)

iut(t, x)−Hu(t, x) = 0, (1.1)

with initial data u(0, ·) = f . It is well known that this is an important model in
quantum mechanics, see for example Feynman and Hibbs [6]. As a consequence of
the regularity we have estimates for the classical Schrödinger equation

iut(t, x) + ∆u(t, x) = 0. (1.2)

Regularity for (1.1) has been extensively studied; see for example Thangavelu
[17, Section 5], Bongioanni and Torrea [2], Bongioanni and Rogers [3], Yajima [19],
and the references therein. On the other hand, regularity properties for (1.2) can
be found in the seminal work by Ginibre and Velo [8], also in Moyua and Vega
[9], in Keel and Tao [11], and in their references. The works by Carleson [4] and
Dahlberg and Kenig [5] include pointwise convergence theorems for the solution
u(x, t) = eit∆f .

The following sharp result was proved in [9]: when 2(n+2)
n ≤ p ≤ ∞ and 2 ≤ q <

∞ with 1
q ≤

n
2 ( 1

2 −
1
p ), the estimate

‖u(t, x)‖Lpx(Rn,Lqt [0,2π]) ≤ Cs‖f‖Hs(Rn) (1.3)

holds for all s ≥ sn,p,q := n( 1
2 −

1
p ) − 2

q . Also if s < sn,p,q, then (1.3) is false. In
the result above Hs is the Sobolev space associated with H and with the norm
‖f‖Hs := ‖Hs/2f‖L2 . The proof of (1.3) involves Strichartz estimates by Keel and
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Tao [11], and Wainger’s Sobolev embedding theorem. It is important to mention
that the machinery for the work by Keel and Tao [11] implies the estimate

‖u(t, x)‖Lqt ([0,2π],Lpx(Rn)) ≤ Cp‖f‖L2(Rn), (1.4)

for 2 ≤ q < ∞ and 1
q = n

2 ( 1
p −

1
2 ), excluding the case (p, q, n) = (∞, 2, 2). On the

other hand, Koch and Tataru proved estimate (1.4) for Schrödinger type operators
in more general contexts, including the operatorH. They also proved that estimates
of this type cannot be obtained for 2 ≤ p < 2n

n−2 .
The following is a remarkable formula that links the solution of (1.1) to that of

the classical Schrödinger equation (see Sjögren and Torrea [16]),

‖e−it((−∆+|x|2))f‖Lq [(0,π4 ),Lpx(Rd)] = ‖eit∆f‖Lq [(0,∞),Lpx(Rd)] (1.5)

for 1 ≤ p, q ≤ ∞ and 2
q = n( 1

2 −
1
p ). As it was pointed out in [16], the interval of

integration in the t variable is now bounded, (1.4) remains true if the equality in
(1.5) is replaced by the inequality n( 1

2 −
1
p ) ≤ 2

q , and the interval (0, π/4) can be
replaced by (0, π/2). In such case the two norms are equivalent, for real functions
f . In particular, (1.5) shows that (1.4) is equivalent to the following Strichartz
estimate (see [12])

‖eit∆f‖Lq [(0,∞),Lpx(Rd)] ≤ C‖f‖L2(Rn) (1.6)
which holds if and only if 2 ≤ p ≤ ∞ for n = 1, 2 ≤ p < ∞ for n = 2, and
2 ≤ p < 2n

n−2 for n = 2 for n ≥ 3.
The novelty of this article is that we provide regularity results for the Schödinger

equation associated with H, involving Lp-Sobolev norms for the initial data instead
of the L2 and L2-Sobolev bounds mentioned above. Our main result in this article
is the following theorem.

Theorem 1.1. Let n > 2, 2 ≤ q < ∞ and 1 ≤ p ≤ 2 satisfy | 12 −
1
p | <

1
2n . Then

the estimate
‖u(t, x)‖

Lp
′
x [Rn,Lqt [0,2π]]

≤ C‖f‖W 2s,p,H(Rn) (1.7)

holds for every s ≥ sq := 1
2 −

1
q . In particular, if q = 2 we have

‖u(t, x)‖
Lp

′
x [Rn,L2

t [0,2π]]
≤ C‖f‖Lp(Rn). (1.8)

Moreover, for n > 2, 1 ≤ p ≤ 2, and 1 ≤ q ≤ p′, we have

‖u(t, x)‖
Lp

′
x [Rn,Lqt [0,2π]]

≤ C‖f‖Lp(Rn), (1.9)

provided that | 1p −
1
2 | <

1
nq .

In the following remarks, we briefly discuss some consequences of our main result.
The main contributions of Theorem 1.1 are the estimates (1.7) and (1.9). This

theorem laso provides an analogue to the Littlewood-Paley theorem (see (2.13)
below). Littlewood-Paley type results can be understood as substitutes of the
Plancherel identity on Lp-spaces.

An important consequence of Theorem 1.1 are the estimates:

‖eit∆f‖Lq [(0,∞),Lpx(Rd)] � ‖u(t, x)‖Lqt ([0,2π],Lpx(Rn)) ≤ C‖f‖F sp,2(Rn), (1.10)

for s ≥ sq, 2 ≤ p ≤ q <∞, 2
q = n( 1

2 −
1
p ), (see Theorem 3.6). The inequality

‖eit∆f‖
Lq [(0,∞),Lp

′
x (Rd)]

� ‖u(t, x)‖
Lqt ([0,2π],Lp

′
x (Rn))

≤ C‖f‖W 2s,p,H(Rn), (1.11)
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holds for s ≥ sq, | 1p −
1
2 | <

1
2n , 1 < p < 2, n > 2 and 2

q = n( 1
p −

1
2 ), (compare (1.11)

and (1.4)). The estimate

‖f‖F 0
p,2(Rn) ≤ C‖eit∆f‖Lq [(0,∞),Lpx(Rn)] � C‖u(t, x)‖Lqt ([0,2π],Lpx(Rn)) (1.12)

holds when 2 ≤ q ≤ p < ∞ provided that n( 1
2 −

1
p ) = 2

q . In the results above, the
spaces F sp,2 are Triebel-Lizorkin spaces associated with H, to be introduced in the
next section.

Estimate (1.10) links our results to those in [11, 16]. For 1
q = n

2 ( 1
2−

1
p ), Corollary

3.7 shows that
‖u(t, x)‖Lpx(Rn , Lqt [0,π/4]) ≤ Cs‖f‖L2(Rn) (1.13)

holds provided that 2 ≤ p ≤ ∞ for n = 1, 2 ≤ p < ∞ for n = 2, and 2 ≤ p < 2n
n−2

for n ≥ 3. As a consequence of the embedding Hs ↪→ L2 for s ≥ 0, estimate (1.13)
improves (1.3) in the case above.

This article is organized as follows. In section 2 we present some basics on the
spectral decomposition of the harmonic oscillator and we discuss our analogue of
the Littlewood-Paley theorem. Finally, in the last section we provide our regularity
results.

2. Spectral decomposition of the harmonic oscillator and a
Littlewood-Paley type result

Let H = −∆ + |x|2 be the Hermite operator or (quantum) harmonic oscillator.
This operator extends to an unbounded self-adjoint operator on L2(Rn), and its
spectrum consists of the discrete set λν := 2|ν|+n, ν ∈ Nn0 , with a set of real eigen-
functions φν , ν ∈ Nn0 , (called Hermite functions) which provide an orthonormal
basis of L2(Rn). Every Hermite function φν on Rn has the form

φν = Πn
j=1φνj , φνj (xj) = (2νjνj !

√
π)−1/2Hνj (xj)e

−x2
j/2, (2.1)

where x = (x1, . . . , xn) ∈ Rn, ν = (ν1, . . . , νn) ∈ Nn0 , and

Hνj (xj) := (−1)νjex
2
j
dk

dxkj
(e−x

2
j )

denotes the Hermite polynomial of order νj . By the spectral theorem, for every
f ∈ D(Rn) we have

Hf(x) =
∑
ν∈Nn0

λν f̂(φν)φν(x), (2.2)

where f̂(φv) is the Hermite-Fourier transform of f at ν defined by

f̂(φν) := 〈f, φν〉L2(Rn) =
∫

Rn
f(x)φν(x) dx. (2.3)

The main tool in the harmonic analysis of the harmonic oscillator is the Hermite
semigroup, which we introduce as follows. If P`, ` ∈ 2N0 + n, is the projection on
L2(Rn) given by

P`f(x) :=
∑

2|ν|+n=`

f̂(φν)φν(x), (2.4)
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then the Hermite semigroup (semigroup associated with the harmonic oscillator)
Tt := e−tH , t > 0 is given by

e−tHf(x) =
∑
`

e−t`P`f(x). (2.5)

For each t > 0, the operator e−tH has Schwartz kernel

Kt(x, y) =
∑
ν∈Nn0

e−t(2|ν|+n)φν(x)φν(y). (2.6)

In view of Mehler’s formula (see Thangavelu [18]) the above series can be summed
and we obtain

Kt(x, y) = (2π)−n/2 sinh(2t)−n/2e−( 1
2 |x|

2+|y|2) coth(2t)+xy csch(2t)). (2.7)

In this article we estimate the mixed norms Lpx(Lqt ) of solutions to Schr̈odinger
equations by using the following version of Triebel-Lizorkin space associtated with
H.

Definition 2.1. Let 0 < p ≤ ∞, r ∈ R and 0 < q ≤ ∞. The Triebel-Lizorkin space
associated with H, the family of projections P`, ` ∈ 2N + n, and the parameters
p, q and r is defined by the complex functions f satisfying

‖f‖F rp,q(Rn) :=
∥∥(∑

`

`rq|P`f |q
)1/q∥∥

Lp(Rn)
<∞. (2.8)

The above definition differs from those arising with dyadic decompositions [1, 13].
The following are natural embedding properties of such spaces. Let Hs denote the
Sobolev space associated with H and defined by the norm ‖f‖Hs := ‖Hs/2f‖L2 .
Sobolev spaces W 2s,p,H in Lp-spaces and associated with H, can be defined by the
norm ‖f‖W 2s,p,H := ‖Hsf‖Lp . Then we have

(1) F r+εp,q1 ↪→ F rp,q1 ↪→ F rp,q2 ↪→ F rp,∞, ε > 0, 0 < p ≤ ∞, 0 < q1 ≤ q2 ≤ ∞.
(2) F r+εp,q1 ↪→ F rp,q2 , ε > 0, 0 < p ≤ ∞, 1 ≤ q2 < q1 <∞.
(3) F 0

2,2 = L2 and consequently, for every s ∈ R, H2s = F s2,2.
Some other properties associated with Sobolev spaces of the harmonic oscillator
can be found in [1, 2, 13].

Now we discuss a close relation between F 0
p,2 and Lebesgue spaces. If ψ is a

smooth function supported in [1/4, 2], such that ψ = 1 on [1/2, 1],
∞∑
k=0

ψk(t) = 1, ψk(t) := ψ(2−kt), (2.9)

and A is an elliptic pseudo-differential operator on Rn of order ν > 0, then the
(dyadic) Triebel-Lizorkin space F rp,q,A(Rn) associated with A is defined by the norm

‖f‖F rp,q,A := ‖{2kr/ν‖ψk(A)f‖Lp}‖`q , (2.10)

where r ∈ R and 0 < p, q ≤ ∞. For A = H or A = ∆x, it is well known the
Littlewood-Paley theorem [7] which states that F 0

p,2,A = Lp for all 1 < p < ∞. If
A = ∆x, one also has∥∥(∑

k

|1(k,k+1)(∆x)f |2
)1/2∥∥

Lp(Rn)
≤ C‖f‖Lp , 2 < p <∞, (2.11)
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with C depending only on p. However, such inequality is false for 1 < p < 2,
` ∈ 2N + n, P` = 1[`,`+1)(H) and

‖f‖F 0
p,2

=
∥∥(∑

`

|1[`,`+1)(H)f |2
)1/2∥∥

Lp(Rn)
. (2.12)

In Remark 3.2, we shall explain in detail that we have not a Littlewood-Paley
theorem for F 0

p,2, in the proof of our main theorem we obtain the following estimate
for 1 ≤ p ≤ 2 (see equation (3.18))

‖f‖F 0
p′,2

=
∥∥(∑

`

|1[`,`+1)(H)f |2
)1/2∥∥

Lp′ (Rn)
≤ C‖f‖Lp (2.13)

provided that | 1p −
1
2 | <

1
2n . Such inequality is indeed, an analogue of (2.11). An

immediate consequence is the estimate

‖f‖F s
p′,2

= ‖Hsf‖F 0
p′,2
≤ C‖Hsf‖Lp =: C‖f‖W 2s,p,H (2.14)

provided that | 1p −
1
2 | <

1
2n .

3. Regularity properties

To analyze the mixed norms of solutions of the Schödinger equation we need
the following multiplier theorem. The space L2

f (Rn) consists of those finite linear
combinations of Hermite functions on Rn.

Theorem 3.1. Let us assume that m ∈ L∞(N0) is a bounded function. Then the
multiplier m(H) extends to a bounded operator on F 0

p,q(Rn) for all 0 < p ≤ ∞ and
0 < q ≤ ∞. Moreover

‖m(H)‖B(F 0
p,q)

= ‖m‖L∞ . (3.1)

In particular if m := 1[0,`′], then S`′ = 1[0,`′](H), ‖S`′‖B(F 0
p,q)

= 1 and

lim
`′→∞

‖S`′f − f‖F 0
p,q

= 0 (3.2)

uniformly on the F 0
p,q-norm.

Proof. Let us consider f ∈ F 0
p,q. Then, P`(m(H)f) = m(`)P`f and

‖m(H)f‖F 0
p,q

=
∥∥(∑

`

|m(`)|q|P`f |q
)1/q∥∥

Lp(Rn)
≤ sup

`
|m(`)|‖f‖F 0

p,q
. (3.3)

As a consequence,
‖m(H)‖B(F 0

p,q)
≤ ‖m‖L∞ . (3.4)

Now, for the reverse inequality, let us choose f = φν , `′ = 2|ν| + n. Then
‖m(H)f‖(F 0

p,q)
= |m(`′)|‖f‖(F 0

p,q)
and as consequence ‖m(H)‖B(F 0

p,q)
≥ sup` |m(`)|.

The second part is consequence of the uniform boundedness principle. �

Remark 3.2. As an important consequence of the previous result, L2
f (Rn) is a

dense subspace of every space F rp,q, in fact, for every f ∈ F rp,q, the sequence {S`′f}`′
lies in L2

f (Rn) and S`′f → f in norm. For n = 1, it is well known that the
sequence of operators {S`′}`′ is uniformly bounded on Lp if and only if 4/3 < p <
4, so the spaces F 0

p,2 does not coincide necessarily with Lebesgue spaces and we
have not a general Littlewood-Paley Theorem. Nevertheless, this disadvantag is
compensated by the efficiency of such spaces when we want to estimate solutions
of the Schrödinger equation.
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We shall use the first part of this remark in the following result.

Lemma 3.3. If f ∈ F 0
p,2(Rn), then for all 0 < p ≤ ∞,

‖u(t, x)‖Lpx[Rn,L2
t [0,2π]] =

√
2π‖f‖F 0

p,2(Rn) . (3.5)

Proof. In view of (3.2), by denseness, we consider f ∈ L2
f (Rn). The solution of

(1.1) is given by

u(t, x) =
∑
ν∈Nn0

e−it(2|ν|+n)f̂(φν)φν(x). (3.6)

Then, we have (see [9])

‖u(t, x)‖2L2
t [0,2π] =

∑
`

2π · |P`f(x)|2

which can be proved using the orthogonality of trigonometric polynomials. So, we
conclude that

‖u(t, x)‖L2
t [0,2π] =

(∑
`

2π · |P`f(x)|2
)1/2

, f ∈ L2
f (Rn). (3.7)

Consequently,
‖u(t, x)‖Lpx(Rn,L2

t [0,2π]) =
√

2π‖f‖F 0
p,2(Rn). (3.8)

�

Lemma 3.4. Let 0 < p ≤ ∞, 2 ≤ q <∞ and sq := 1
2 −

1
q . Then

C ′p‖f‖F 0
p,2
≤ ‖u(t, x)‖Lpx(Rn,Lqt [0,2π]) ≤ Cp,s‖f‖F sp,2 , (3.9)

for every s ≥ sq.

Proof. By a denseness argument, we consider f ∈ L2
f (Rn). By following the

approach in [3], to estimate the norm ‖u(t, x)‖Lpx[Rn,Lqt [0,2π]] we use the Wainger
Sobolev embedding Theorem,∥∥ ∑

`∈Z, 6̀=0

|`|−αF̂ (`)e−i`t
∥∥
Lq [0,2π]

≤ C‖F‖Lr[0,2π], α :=
1
r
− 1
q
. (3.10)

For sq := 1
2 −

1
q we have

‖u(t, x)‖Lq [0,2π] =
∥∥ ∑
ν∈Nn0

e−it(2|ν|+n)f̂(φν)φν(x)
∥∥
Lq [0,2π]

=
∥∥∑

`

e−it`P`f(x)
∥∥
Lq [0,2π]

≤ C
∥∥∑

`

`sqe−it`P`f(x)
∥∥
L2[0,2π]

= C
∥∥∑

`

e−it`P`[Hsqf(x)]
∥∥
L2[0,2π]

= C
(∑

`

|P`[Hsqf(x)|2
)

:= T ′(Hsqf)(x).
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So, we have

‖u(t, x)‖Lpx[Rn,Lqt [0,2π]] ≤ C‖T ′(Hsqf)‖Lp(Rn)

≤ Cp‖Hsqf‖F 0
p,2(Rn) = Cp‖f‖F sqp,2(Rn) .

(3.11)

We complete the proof by taking into account the embedding F sp,2 ↪→ F
sq
p,2 for every

s > sq and the following inequality for 2 ≤ q <∞,

‖f‖F 0
p,2

=
1√
2π
‖T ′f‖Lp

=
1√
2π
‖u(t, x)‖Lpx[Rn,L2

t [0,2π]]

. ‖u(t, x)‖Lpx[Rn,Lqt [0,2π]].

(3.12)

�

Theorem 3.5. Let n > 2, 2 ≤ q <∞ and 1 ≤ p ≤ 2, satisfy | 12 −
1
p | <

1
2n . Then

‖u(t, x)‖
Lp

′
x [Rn,Lqt [0,2π]]

≤ C‖f‖W 2s,p,H(Rn) (3.13)

for every s ≥ sq := 1
2 −

1
q . In particular, if q = 2 we have

‖u(t, x)‖
Lp

′
x [Rn,L2

t [0,2π]]
≤ C‖f‖Lp(Rn). (3.14)

Moreover, for n > 2, 1 ≤ p ≤ 2, and 1 ≤ q ≤ p′, we have

‖u(t, x)‖
Lp

′
x [Rn,Lqt [0,2π]]

≤ C‖f‖Lp(Rn), (3.15)

provided that | 1p −
1
2 | < 1/(nq).

Proof. First, we want to proof the case q = 2 and later we extend the proof for
2 < q < ∞ by using a suitable embedding. Our main tool will be the dispersive
inequality [15, p. 114]

‖u(t, x)‖
Lp

′
x (Rn)

≤ C|t|−n|
1
p−

1
2 |‖f‖Lp(Rn), 1 ≤ p ≤ 2. (3.16)

Consequently,

‖u(t, x)‖
L2
t ([0,2π],Lp

′
x (Rn))

≤ C‖ | · |−n|
1
p−

1
2 |‖L2[0,2π]‖f‖Lp(Rn), 1 ≤ p ≤ 2. (3.17)

We need | 1p −
1
2 | <

1
2n in order for ‖ | · |−n|

1
p−

1
2 |‖L2[0,2π] < ∞. Because p′ ≥ 2 we

can use Minkowski integral inequality to obtain
‖f‖F 0

p′,2
= ‖u(t, x)‖

Lp
′
x (Rn,L2

t ([0,2π]))

≤ ‖u(t, x)‖
L2
t ([0,2π],Lp

′
x (Rn))

. ‖f‖Lp(Rn).
(3.18)

In fact, we have

‖u(t, x)‖
Lp

′
x (Rn,L2

t ([0,2π]))
:=
(∫

Rn

(∫ 2π

0

|u(t, x)|2dt
)p′/2

dx
) 2
p′ ·

1
2

≤
(∫ 2π

0

(∫
Rn
|u(t, x)|p

′
dx
)2/p′

dt
)1/2

=: ‖u(t, x)‖
L2
t ([0,2π],Lp

′
x (Rn))

.

Now (3.18) can be obtained from (3.17) for 1 ≤ p ≤ 2 and | 1p −
1
2 | <

1
2n . Estimate

(3.18) proves the theorem for q = 2. The result for 2 < q < ∞ now follows, as in
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the proof of Theorem 3.4, by using the Wainger Sobolev embedding Theorem as in
(3.11) together with (2.14):

‖u(t, x)‖
Lp

′
x [Rn,Lqt [0,2π]]

≤ C‖T ′(Hsqf)‖Lp′ (Rn) ≤ Cp′‖H
sqf‖F 0

p′,2(Rn)

= Cp′‖f‖F sq
p′,2(Rn) ≤ C‖f‖W 2sq,p,H(Rn).

So, the proof of the first statement is complete.
Now, to proof (3.15) we observe that

‖u(t, x)‖
Lp

′
x (Rn)

≤ C|t|−n|
1
p−

1
2 |‖f‖Lp(Rn), 1 ≤ p ≤ 2, (3.19)

which implies

‖u(t, x)‖
Lqt [[0,2π],Lp

′
x (Rn)]

≤ C · Ip,n,q‖f‖Lp(Rn), 1 ≤ p ≤ 2, (3.20)

where

Ip,n,q =
(∫ 2π

0

|t|−nq|
1
p−

1
2 |
)1/q

<∞

for |1/2− 1/p| < 1/(nq). Since, q ≤ p′, by using the Minkowski inequality we have

‖u(t, x)‖
Lp

′
x [Rn,Lqt [0,2π]]

≤ ‖u(t, x)‖
Lqt [[0,2π],Lp

′
x (Rn)]

(3.21)

and consequently
‖u(t, x)‖

Lp
′
x [Rn,Lqt [0,2π]]

≤ C‖f‖Lp .

�

Theorem 3.6. Let us assume that for some s, f ∈ F sp,2(Rn) is a real function and
u(·, t) = e−itHf(·). Let 2 ≤ p ≤ q <∞ and 2

q = n( 1
2 −

1
p ). Then

‖eit∆f‖Lq [(0,∞),Lpx(Rn)] � ‖u(t, x)‖Lqt ([0,2π],Lpx(Rn)) ≤ C‖f‖F sp,2(Rn) , (3.22)

for s ≥ sq. Consequently,

‖eit∆f‖
Lq [(0,∞),Lp

′
x (Rd)]

� ‖u(t, x)‖
Lqt ([0,2π],Lp

′
x (Rn))

≤ C‖f‖W 2s,p,H(Rn) , (3.23)

for s ≥ sq, | 1p −
1
2 | <

1
2n , 1 < p < 2, n > 2 and 2

q = n( 1
p −

1
2 ). Moreover, for

2 ≤ q ≤ p <∞ and 2
q = n( 1

2 −
1
p ) we have

‖f‖F 0
p,2(Rn) ≤ C‖eit∆f‖Lq [(0,∞),Lpx(Rn)], C‖u(t, x)‖Lqt ([0,2π],Lpx(Rn)) . (3.24)

Proof. From the Minkowski integral inequality applied to Lq/p, we deduce the in-
equality

‖u(t, x)‖Lqt ([0,2π] ,Lpx(Rn)) ≤ ‖u(t, x)‖Lpx[Rn,Lqt [0,2π]] . (3.25)

In fact,

‖u(t, x)‖Lqt ([0,2π] ,Lpx(Rn)) :=
(∫ 2π

0

(∫
Rn
|u(t, x)|pdx

)q/p
dt
) p
q ·

1
p

≤
(∫

Rn

(∫ 2π

0

|u(t, x)|qdt
)p/q

dx
)1/p

=: ‖u(t, x)‖Lpx[Rn,Lqt [0,2π]] .

Now, we only need to apply Lemma 3.4 and the equivalence given by (1.5).
Estimate (3.23) is consequence of (2.14) and (3.22) applied to p′ instead of p. On
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the other hand, for 2 ≤ q ≤ p <∞, by using the Minkowski integral inequality on
Lp/q we have

‖f‖F 0
p,2(Rn) = ‖u(t, x)‖Lpx[Rn,L2

t [0,2π]]

. ‖u(t, x)‖Lpx[Rn,Lqt [0,2π]]

≤ ‖u(t, x)‖Lqt ([0,2π] ,Lpx(Rn)).

(3.26)

So, by using the equivalence expressed in (1.5) we obtain

‖f‖F 0
p,2(Rn) ≤ C‖eit∆f‖Lq [(0,∞),Lpx(Rn)] � C‖u(t, x)‖Lqt ([0,2π],Lpx(Rn)) .

The proof is complete. �

Corollary 3.7. Let 1 < q ≤ p <∞ and 1
q = n

2 ( 1
2 −

1
p ). Then

‖u(t, x)‖Lpx(Rn , Lqt [0,π/4]) ≤ Cs‖f‖L2(Rn), (3.27)

provided that 2 ≤ p < ∞ for n = 1, 2 ≤ p < ∞ for n = 2, and 2 ≤ p < 2n
n−2 for

n ≥ 3.

Proof. As in Theorem 3.6, by using the Minkowski integral inequality on Lp/q, for
1 < q ≤ p <∞, we have the inequality

‖u(t, x)‖Lpx[Rn,Lqt [0,π/4]] ≤ ‖u(t, x)‖Lqt ([0,π/4] ,Lpx(Rn)). (3.28)

Finally (3.27) follows by using (1.6) and the equivalence (1.5). �

Remark 3.8. Note that the compactness of the interval [0, π/4] and the embedding
Lqt [0, π/4] ↪→ Lrt [0, π/4], for r ≤ q, allow us to obtain the Strichartz estimate

‖u(t, x)‖Lpx(Rn,Lqt [0,π/4]) ≤ Cs‖f‖L2(Rn), (3.29)

provided that 1 < q ≤ p < ∞, 1
q ≥

n
2 ( 1

2 −
1
p ), and n = 1 for 2 ≤ p < ∞, n = 2 for

2 ≤ p <∞ and 2 ≤ p < 2n
n−2 for n ≥ 3.
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