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ABSTRACT 

In the present study, we aimed to test the protectiveness of the bioavailability-

normalisation procedure, with its associated hazardous concentrations for x% of the 

species (HCx), that is currently implemented to derive environmental threshold 

concentrations for Ni in European environmental legislative frameworks. We exposed a 

natural plankton-dominated community to three constant Ni concentrations, i.e. a control 
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with no Ni added (background Ni between 1.2 and 4 µg/L) and the bioavailability-

normalized HC5 and HC50 of 24 and 97 µg dissolved Ni/L, respectively, during a 56d-

microcosm experiment under high DOC conditions (dissolved organic carbon 14 mg/L at 

test initiation). The effects of the bioavailability-normalised HC5 and HC50 were 

evaluated at the level of the community structure (community composition and plankton 

group abundances), community functioning (measured as indirect physicochemical 

proxies for overnight respiration and carbon fluxes) and individual species abundances. 

The bioavailability-normalised HC50-treatment had clear effects (defined as effects 

occurring on at least two consecutive sampling days) on both the structure and 

functioning of the investigated aquatic community. Through its effect on community 

functioning (i.e. reduced pH and DOC), Ni also influenced its own bioavailability. Clear 

direct effects of Ni were observed for only three species (i.e. the cyanobacteria 

Oscillatoria sp. 1 and the rotifers ‘Asplanchna/Testidunela sp’ and ‘Trichocerca group 

similis’). Most other effects occurring in the plankton community in the HC50 treatment 

were indirect and likely driven by the direct effect of Ni on the cyanobacteria Oscillatoria 

sp. 1, which was the dominant phytoplankton species in the control microcosms. In 

contrast to this, the bioavailability-normalised HC5 did not induce clear effects on 

community structure and functioning endpoints, as these were only affected on individual 

sampling days. Clear (direct) effects were observed for only two plankton species (i.e. the 

rotifer Trichocerca group similis and the cyanobacteria Oscillatoria sp. 1), but their 

abundances recovered to control levels at the end of the study. In addition, a few species 

(1 phytoplankton and 3 zooplankton species) were affected in the HC5 treatment only on 

the last sampling day. It is uncertain whether or not these species would have shown clear 
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effects over a longer exposure duration. Thus, our study shows that the bioavailability-

normalised HC5 of Ni at high DOC induced clear effects on a few individual species. 

However, the overall conclusion is that the bioavailability-normalised HC5 of Ni as 

derived with the procedure that is currently implemented in European legislative 

frameworks protects against clear effects on community structure and function. 

Keywords: metal toxicity, ecological risk assessment, freshwater toxicology, biotic ligand 
model, microcosm, plankton community 

Address correspondence to charlotte.nys@arche-consulting.be 

INTRODUCTION 

Nickel (Ni) is listed as one of the priority substances under the European Water 

Framework Directive (WFD) (EC 2013). Hence, a European Union (EU) wide 

environmental quality standard (EQS) for Ni in the aquatic environment has been 

adopted. The importance of taking into account Ni bioavailability (Deleebeeck et al. 

2007, 2008, 2009) has been recognized within the WFD, and, therefore, the current 

European Ni EQS allows a bioavailability-correction to the water chemistry of the 

receiving water (EC 2013). In addition, the derivation of the Predicted No-Effect 

Concentrations (PNEC) within the European risk assessment procedures for metals under 

the Registration, Evaluation, Authorization and Restriction of Chemicals-directive 

(REACH) is also preferentially based on bioavailability normalizations (ECHA 2008). In 

practice, the bioavailable EQS and PNEC for Ni are derived using a large dataset 

containing chronic Ni toxicity data (mostly 10% effect concentrations) obtained in 

standard single species ecotoxicity tests. This toxicity dataset is normalized to a specific 

target water chemistry using the chronic Ni bioavailability models developed for 
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invertebrates (D. magna, C. dubia), fish and algae (Deleebeeck et al. 2007, 2008, 2009). 

An environmental threshold concentration, such as the 5% hazardous concentration 

(HC5), is then derived from the species-sensitivity distribution (SSD) combining the 

bioavailability normalized toxicity data, as explained in detail in Schlekat et al. (2010) 

and Nys et al. (2016). 

The underlying assumption of this approach is that the bioavailability-based EQS or 

PNEC is protective for the effects of Ni on natural aquatic communities (Posthuma et al. 

2000). Because the effects of chemicals in actual field communities are difficult to 

unravel, the validity of this assumption is often evaluated using microcosm or mesocosm 

experiments (Del Signore et al. 2016). This type of experiments uses controlled exposure 

concentrations to address the direct effects of toxicants on the population and community 

level, as well as possible indirect effects, which may occur because of changes in 

competition and predation interactions (Rorh and Crumrine 2005). Recently, Hommen et 

al. (2016) investigated the effects of Ni on a freshwater community in a water with high 

Ni bioavailability (high pH, low to medium DOC). They concluded that the 

bioavailability-normalization approach currently used for Ni was protective for 

community-level effects, because the No-Observed-Adverse-Effect Concentration 

(NOAEC) of the most sensitive taxon, snails, was at least two times higher than the 

bioavailability-normalized HC5 of the specific test system. In addition, exposures to Ni 

concentrations that were up to 4-times higher than the bioavailability-normalized HC5 

did not affect the phytoplankton or the zooplankton community (Hommen et al. 2016). 

The test system of Hommen et al. (2016) represented a rather high Ni bioavailability 

situation (i.e. high pH and low to medium Dissolved Organic Carbon [DOC]: median pH 
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of 8.6 and median DOC concentration of 3.9 mg/L), in which the median bioavailability-

normalized HC5 of 5.5 µg dissolved Ni/L was relatively close to the baseline conditions 

used to derive the bioavailable-EQS implemented under the WFD (i.e. 4 µg dissolved 

Ni/L; EC 2013). Given the wide range of physico-chemistry in European waters, it is 

important to evaluate whether the bioavailability normalization procedure for Ni and its 

associated environmental threshold (HC5) that were developed with single-species 

bioavailability models (Nys et al. 2016) are also protective for complex communities 

under different bioavailability conditions.  

Chemical stressors may also affect important community functions, such as oxygen 

dynamics, nutrient turnover rates and decomposition rates through their direct or indirect 

effects on key taxa (Fleeger et al. 2003, Johnston et al. 2014, Artigas et al. 2014). Within 

the environmental legislation, it is assumed that the protection of community structure 

also preserves community functioning (EC 2003), although this assumption has hardly 

been addressed in community studies with metals (but see Roussel et al. (2008), Van de 

Perre et al. (2016) and Van Regenmortel et al. (2018) for three exceptions). 

Here, we aimed to evaluate the protectiveness of the bioavailability-normalization 

approach under conditions of high DOC (as opposed to the low to medium DOC 

condition in Hommen et al., 2016). To address this research objective, we exposed a 

natural plankton-dominated community to two constant Ni concentrations (bioavailable 

HC5 and HC50) and a control during a 56d-microcosm experiment. More specifically, 

we derived No-Observed Effect Concentrations (NOEC) for Ni for the plankton 

community structure, community functioning and individual species. We hypothesized 

that no clear effects (defined as significant effects occurring on at least two consecutive 
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days) on community functioning and structure would be observed at the HC5, but that 

relatively strong effects would occur at the HC50. 

MATERIALS AND METHODS 

Experimental design 

To investigate the community-level effects of Ni, a microcosm experiment was 

conducted that lasted 8 weeks. The effects of Ni on a plankton community were 

evaluated using the following treatments: a control treatment (no metals added), a HC5 

treatment and a HC50 treatment (=3 treatments in total). The microcosms evaluated in the 

present study were part of a larger microcosm study to answer in a resource-efficient 

manner a broad array of research questions with in total 15 individual treatments (metal 

mixture treatments were published in Van Regenmortel et al. 2018). Hence, including 

more Ni treatments was not feasible. However, this design and its associated data-

analysis (see further) is still adequate to evaluate the protectiveness of the HC5. A similar 

design has previously been used to evaluate the protectiveness of the Zn HC5 (Van de 

Perre et al. 2015). The control treatment received 4 replicates, all other treatments 

received 3 replicates, which gave a total of 10 cosms. Microcosm exposures were 

performed in polystyrene aquaria of 10 L (31x18x16 LxWxH; Flamingo). The aquaria 

contained a sediment layer of approximately 2 cm and 5 L natural water, both collected 

from an uncontaminated mesotrophic pond (Sinderhoeve Experimental Station, Renkum, 

The Netherlands) in September 2015. The microcosms were randomly positioned in a 

water bath (16-18°C, representing the average local temperature in late spring/early 

summer of this particular ecosystem) under a 12:12 hours light:dark cycle (55 µmol.m-2.s-
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1) .The microcosms were seeded with zooplankton collected from uncontaminated small 

water bodies at the Sinderhoeve experimental site. Three small snails (<1 cm) (Lymnaea 

stagnalis) were added to every cosm to prevent growth of periphyton. A pre-treatment 

period of 4 weeks was run prior to the actual start of the experiment. During this period 

(and also during the experiment), nutrients (NH4NO3, 1 mg N/L and KH2PO4 0.01 mg 

P/L) were added twice a week to stimulate phytoplankton growth. In the pre-treatment 

period, the water from all the microcosms was mixed once a week to guarantee similar 

start conditions in all test systems (Brock et al. 2014; Van de Perre et al. 2016). A 

detailed description of the experimental setup can be found in Van Regenmortel et al. 

(2018).  

The HC5 and HC50 concentrations to be applied to the microcosms were calculated by 

normalizing chronic toxicity data with chronic bioavailability models using the 

bioavailability normalization tool of Nys et al. (2016). Normalizations were executed 

based on the average measured water chemistry variables of all microcosms the day 

before the start of the experiment (Table 1). A log-normal SSD was fitted to the BLM-

normalized chronic Ni toxicity data (Nys et al. 2016), from which the HC5 and HC50 

were derived. This is in accordance with the procedure used in the European risk 

assessment for Ni (DEPA 2008). The corresponding calculated HC5 and HC50 were 24 

and 97 µg dissolved Ni/L, respectively.  

Metal addition and chemical analyses 

Ni was added to the microcosm by distributing the correct volume of stock solution (12.0 

mL and 50.5 mL for the HC5 and HC50 treatment of a 9.6 mg Ni/L stock solution, 

respectively) evenly over the water surface of the microcosms at test initiation. The 
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spiked metal was stirred into the water as a result of the compressed air flow above the 

water column (see Van Regenmortel et al. 2018). Ni concentrations were adjusted daily 

by additional spiking to compensate for losses from the water column. Ni was always 

added at a concentration 15% above the nominal concentrations in order to maintain an 

average Ni concentration equal to the nominal concentration. The required volume of 

stock solution to achieve this concentration was calculated based on the last available Ni 

measurement. Samples for dissolved metals were taken twice a day to monitor the metal 

concentrations. Samples were taken just before the spiking of Ni and between 15 min and 

35 min after spiking. Sampling consisted of taking a 10 mL filtered sample (filtered 

through a 0.45µm filter; Acrodisc, PALL Life Sciences; after preconditioning the filter 

with 5 mL of water) per microcosm after gentle stirring of the water using a syringe, 

approximately 5 cm under the water surface. Samples for metal analysis were acidified to 

0.14 mol/L HNO3 (Normatom quality, VWR Prolabo). Ni concentrations were measured 

using inductively coupled plasma optical emission spectroscopy (ICP-OES; ICAP 7200 

DUO; ThermoFisher Scientific; limit of quantification 4 µg Ni/L; method detection limit 

1.2 µg Ni/L). Samples for cations were taken twice a week, while samples for anions 

were taken once every two weeks. Cations were measured using ICP-OES. Anions were 

measured using ion chromatography (Aquamate, Thermo Electron Corporation; Chloride: 

Merck, Spectroquant 1.14897.001; Sulphate: Merck, Spectroquant 1.14548.001). 

Samples for measurements of dissolved and total organic and inorganic carbon were 

taken once a week and were measured with a Total Organic Carbon analyser following 

the NPOC method (TOC-5000, Shimadzu, Duisburg, Germany; Limit of Quantification 

1.5 mg DOC/L; Method Detection Limit 0.5 mg DOC/L). The pH, conductivity, 
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temperature and oxygen content of each microcosm was measured before the start and at 

the end of the photoperiod and this twice a week. The pH and conductivity were 

measured using a pH glass electrode (826 pH mobile, Metrohm) and a conductivity meter 

(WTW cond 315i), respectively. The temperature and oxygen content were measured 

using an oximeter (WTW oxi 330i).  

Sampling and identification of zooplankton and phytoplankton 

Samples for zooplankton and phytoplankton identification were taken from every 

microcosm each week (starting the day before the start of the first metal addition). Water 

was collected randomly from several locations (6 to 8, depending on the volume of water 

that could be collected from every individual location) in the microcosm by lowering a 

transparent tube (3.3 cm diameter) in the water column just above the sediment surface 

until a total volume of 600 mL was collected (Van Regenmortel et al. 2018), representing 

12% of the total microcosm volume. The water was successively filtered through a 

plankton net with a mesh width of 55 µm (for the collection of zooplankton) and a 

plankton net with a mesh width of 20 µm (for the collection of phytoplankton). 

Afterwards, the filtered water was returned to the microcosms. Both zooplankton and 

phytoplankton samples were preserved with lugol (0.3%). Due to practical constraints, 

plankton samples were identified for the following sampling days: day 0 (test initiation), 

14, 28, 42 and 56 (test termination). The identification of zooplankton and phytoplankton 

was done using an inverted microscope. Macro- and microzooplankton individuals 

present in the zooplankton samples were identified to the lowest practical taxonomic 

level and counted. Copepoda were classified as either Cyclopoida or Calanoida and 

counted. The phytoplankton species in the phytoplankton samples were identified to the 

This article is protected by copyright. All rights reserved. 



 
A

cc
ep

te
d 

A
rt

ic
le

 
lowest practical taxonomic level by counting and identifying at least 300 individual cells 

of a subsample of 30 mL. The abundances per species were afterwards recalculated to 

numbers per liter. Colonies of colony forming algae were counted as single individuals. 

Data analysis 

Data of the microcosm experiment were analysed in terms of the following types of 

effects: (1) community structure effects: defined as effects on community composition 

(multivariate analysis with principal response curves) and effects on plankton groups 

(univariate analysis), (2) effects on individual species (hereafter denoted as ‘species 

effects’; univariate analysis), and (3) functional effects. Three different functional 

community-level effects were distinguished: (a) overnight community respiration rate 

which was calculated as ΔDO = 𝐷𝑂𝑒𝑣𝑒𝑛𝑖𝑛𝑔 𝑑𝑎𝑦 𝑥 − 𝐷𝑂𝑚𝑜𝑟𝑛𝑖𝑛𝑔 𝑑𝑎𝑦 𝑥+1 (Downing and 

Leibold 2002, Van Regenmortel et al. 2018), (b) 

ΔpH = 𝑝𝐻𝑒𝑣𝑒𝑛𝑖𝑛𝑔 𝑑𝑎𝑦 𝑥 − 𝑝𝐻𝑚𝑜𝑟𝑛𝑖𝑛𝑔 𝑑𝑎𝑦 𝑥+1 which can also be regarded as a proxy for 

overnight community respiration, because overnight decreases in pH are governed by 

CO2 produced during respiration (Brönmark & Hansson 2005), and (c) the DOC 

concentration, of which changes during experiments in a closed system gives information 

about the carbon flows through the microbial loop (accounted for by heterotrophic 

bacteria and microzooplankton grazers) and the pelagic food web (Van Regenmortel et 

al. 2018).  

Prior to the analysis of community structure effects and individual species effects, 

abundance values (x, number of individuals per liter) were ln (ax+1)-transformed, such 

that when the lowest abundance value is used as x the transformation equals 2 (Van Den 
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Brink et al. 2000). This transformation down-weights high abundance values and ensures 

an approximate log-normal distribution of the data. In practice, the phytoplankton data 

were ln (0.001x+ 1)–transformed and the zooplankton data were ln (0.86x+1)-

transformed. 

Community structure effects were evaluated using the principal response curve (PRC) 

method (Van den Brink & Ten Braak 1999) in CANOCO 4.5 (Ter Braak & Smilauer 

2002). This method is a multivariate technique, which is based on redundancy analysis 

ordinations. The method evaluates changes in community structure over time, relative to 

a control. The statistical significance of Ni application on community structure was tested 

using a Monte Carlo permutation test on the ordination axis of the PRC, with the natural 

logarithm of the dose as an explanatory variable. If Monte Carlo permutation tests 

revealed a significant effect of Ni application on the community structure, a LOEC for 

community structure (LOECcomposition) was derived by applying the Williams test on the 

sample scores, which resulted from the PCA-analysis for each of the sampling occasions  

Effects on plankton groups, individual species and community functioning were 

evaluated by performing univariate analyses with the Williams test. The Williams test 

assumes an increasing effect (either lower or higher abundance compared to the control) 

with increasing dose (Williams 1972). The Williams tests were performed in the 

Community Analysis 4.3.14-software (Hommen et al. 1994). The lowest Ni concentration 

for which a significant effect on plankton group abundance, species abundance or 

functional trait was observed was determined to be the LOECplankton group, LOECspecies and 

LOECfunction, respectively. The highest Ni concentration for which no significant effect on 

plankton group abundance, species abundance or functional trait was observed was 
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determined to be the NOECplankton group, NOECspecies and NOECfunction. Community 

structure and species abundance effects were calculated separately for the zooplankton 

and phytoplankton community. 

To determine the statistical reliability of the observed effects on individual species, 

plankton groups and on functional endpoints, a Minimal Detectable Difference (MDD) 

was calculated for each of these effects on each of the sampling occasion using the 

Community Analysis 4.3.14-software (Hommen et al. 1994). The MDD expresses the 

minimum difference, in %, in the mean abundance of a specific taxon or mean functional 

response between a Ni treatment and the control that is needed to find a significant effect 

for the considered endpoint. Hence, the MDD can be considered as a measure of the 

robustness of the NOEC and LOEC derivation. Brock et al. (2015) proposed to categorize 

the reliability of the NOEC derivation of a taxon in three MDD categories. In category 1, 

the MDD must meet at least 1 of the following conditions during the exposure period: (a) 

<100% for at least 5 samplings (not relevant for our sampling frequency); or (b) <90% 

for at least 4 samplings; or (c) <70% for at least 3 samplings; or (d) <50% for at least 2 

samplings. In category 2, the MDD does not meet the criteria for category 1, but a LOEC 

can be calculated for at least 1 sampling occasion. In category 3, the MDD does not meet 

the category 1 and 2 criteria. MDDs for all taxa and functional endpoints are listed in 

Supplemental Information (Table S2.1, Table S3.1 and Table S4.1). Only MDD category 

1 & 2 species can be used to derive significant effects. Brock et al. (2015) have proposed 

that at least 8 species belonging to MDD category 1 should be present in a microcosm 

study to ensure enough statistical power for deriving a regulatory acceptable 

concentration (RAC), a threshold concentration defined in the framework of pesticide 
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regulation in Europe (EFSA 2013). However, in the present study the focus is 

fundamentally different, as we aimed to evaluate whether the existing threshold 

concentration for Ni (i.e. HC5) and the currently accepted methods to derive it are 

protective for community structure and functioning. Hence, we used the MDDs 

categories to indicate the reliability of each of the endpoints considered, while no specific 

criterion on the number of taxa within MDD-class 1 was put forward. 

For MDD category 1 & 2 species, we defined following effects classes: (1) “no 

significant effect” at any sampling day; (2a) ”temporary effect”, i.e. significant effect 

only on individual sampling days (but excluding the last sampling day); (2b) “effect on 

the last sampling day” (day 56), while no effects in the same direction were observed on 

day 42 (indicating the uncertainty about the persistence of the effect over a longer 

exposure duration); (3) “clear effect with full recovery”, i.e. significant effect in the same 

direction, observed on at least 2 subsequent sampling dates, but with full recovery 

observed within the assessment period (i.e. no effects observed on the last sampling day); 

(4) “clear effect without full recovery” i.e. significant effect in the same direction, 

observed on at least 2 subsequent sampling dates, without full recovery within the 

assessment period. The effect classes are based on those that were proposed by Brock et 

al. (2015) for use in the regulatory frameworks for pesticides, and have been used before 

to evaluate the protectiveness of the Zn HC5 (Van de Perre et al. 2016).  

RESULTS 

Exposure and physico-chemistry  

Measured dissolved Ni concentrations before test initiation and in the control microcosms 

were in most samples lower than the quantification limit of the ICP-OES measurements 
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(i.e. <4 µg Ni/L), but always higher than the detection limit (i.e. >1.2 µg Ni/L). In the 

HC5 and HC50 microcosms, average dissolved Ni concentrations were within 10% of the 

targeted dissolved Ni concentrations (Figure 1, Table 1). The pH and oxygen 

concentrations in the microcosms showed a diurnal fluctuating pattern, which coincided 

with the photoperiod applied during the exposure period. The pH at the end of the 

photoperiod (i.e. evening) in the control microcosms was on average 9.2±0.5, and 

decreased overnight to on average 7.5±0.5 (Supplemental Information, Figure S1.1). 

Although pH increased to relatively high values during the day, pH values remained 

within the pH range reported for the Sinderhoeve pond-system, i.e. pH 7-10 (Portielje, 

1994), and for the experimental ditches of the Sinderhoeve site, i.e. pH 7.2-9.2 (Lin et al. 

2012). Oxygen at the end of the photoperiod (i.e. evening) in the control microcosms was 

on average 11.9±1.1 mg/L, and decreased overnight to on average 8.6±1.1 mg/L 

(Supplemental Information, Figure S1.2). The DOC concentration in the control 

microcosms at test initiation was on average 13.4±0.1 mg/L, and increased over the 

exposure period to 16.6±4.1 mg/L at test termination (Figure 2). Ni addition affected both 

the diurnal patterns of pH and oxygen, as well as the DOC concentration (described in the 

‘Effects of Ni on indirect proxies for functional community traits’-section). An overview 

of the average physico-chemistry in the microcosms is given in Table 1. 

Although dissolved Ni concentrations remained relatively stable during the exposure 

period, changes in pH and DOC affected Ni bioavailability both over time and between 

treatments. The bioavailability-normalized HC5 values based on the water chemistry of 

the HC5 treatment were almost always higher than those calculated based on the water 

chemistry of the control treatment (Figure 2 right panel). This is mainly due to a slightly 
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lower pH in the HC5 treatment compared to the control treatment (Table 1). In the first 

four weeks of the exposure period, the bioavailability-normalized HC50 based on the 

water chemistry of the HC50 treatment was higher than the HC50 calculated based on the 

water chemistry of the control treatment (Figure 1, right panel). This is related to the 

lower pH in the HC50 treatment over the first 4 weeks (Figure S1.1, right panel). The pH 

in the HC50 treatment recovered to control levels from week 4 to week 8. The latter 

period is also the period in which the decrease in DOC in the HC50 treatment becomes 

apparent. The latter results in higher Ni bioavailability conditions, as reflected by the 

lower bioavailability-normalized HC50 in the HC50 treatment compared to the HC50 

calculated based on the control chemistry in the last two weeks of the exposure.  

Effects of Ni on the phytoplankton community and species 

In total, 46 phytoplankton species belonging to 8 higher taxonomic groups (i.e. 

cyanobacteria, chlorophyta, cryptophyta, diatoms, charophyta, chrysophyta, euglenoida 

and dinophyta) were identified. Among the 8 phytoplankton groups present, 3 fulfilled 

MDD-criterion 1 and 4 fulfilled MDD-criterion 2 (Table 2), while dinophyta were 

categorized as MDD-class 3. Among the 46 phytoplankton species present, 1 fulfilled 

MDD-criterion 1 and 19 fulfilled MDD-criterion 2. 

At the start of the exposure period, the phytoplankton community was dominated by 

cyanobacteria-species (average relative abundance ± standard error 56±5%), while 

diatoms, chlorophyta and charophyta represented on average 13±1%, 12±2% and 12±2% 

of the individuals identified, respectively (Figure S2.1). Euglenoida (5±2%), cryptophyta 

(2±0%), and chrysophyta (1±0%) were relatively uncommon in the microcosms. 

Dinophyta were only recorded in one microcosm on the first sampling day, after which 
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they were not recovered from any of the microcosms during the remaining exposure 

period. Cyanobacteria remained the most important phytoplankton group in the control 

and HC5 microcosms during the entire exposure period, while in the HC50 treatment the 

dominance of the cyanobacteria gradually decreased and other groups (chlorophyta, 

euglenoida and charophyta) became increasingly more important in the phytoplankton 

community. 

The principal response curve diagram of the phytoplankton community is shown in 

Figure 3 (upper panel). Relatively little variation in community composition was 

observed at the start of the experiment. Over the entire exposure period, 36% of the 

variance depicted in the principal response curve for the phytoplankton community was 

explained by time, while 21% of the variance in the phytoplankton community 

composition was explained by Ni-treatment. Of the total variance explained by Ni, 49% 

is depicted in the first PRC-axis (i.e. by the vertical axis in Figure 3), while another 14% 

is depicted by the second PRC-axis (not shown). The Monte-Carlo permutation tests 

showed that the first principal response axis was significant. The Williams test on the 

PCA sample scores showed that the phytoplankton community composition was not 

affected by the HC5 treatment (effect class 1), while the community composition was 

significantly affected in the HC50 treatment from day 14 until the end of the exposure 

period (effect class 4).  

According to the principal response curve analysis, the colony-forming cyanobacteria 

Oscillatoria sp. 1 was most negatively affected by Ni exposure (largest positive species 

weight; bk). The population dynamics of Oscillatoria sp. 1 in the different Ni treatments 

is visualized in Figure 4A. While abundances of Oscillatoria sp. 1 in the control and HC5 
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treatment increased over the exposure period, the abundance of this species remained 

largely constant over the exposure period in the HC50 treatment. Hence, Oscilatoria sp. 1 

colonies were at least 20-fold less abundant in the HC50 treatment compared to the 

control after the test initiation. Another species with a relatively high positive species 

weight was an unknown colony-forming species, for which the population dynamics is 

visualized in Figure S2.2A. The abundance of this species was 2- to 9-fold lower in the 

HC50 treatment than in the control treatment. At the other side of the species weights 

axis, a single cell diatom and an unknown green algae species had the strongest negative 

species weights, indicating that the abundances of these species were positively affected 

by Ni. The abundances of the single cell diatoms decreased rather drastically over the 

exposure period in the control microcosms, i.e. a 10-fold difference was observed 

between the abundance on day 0 and day 56 (Figure 4B). This decrease in the abundance 

of the single cell diatoms was less explicit in the HC50 cosms (i.e. only a 2-fold decrease 

was noted over the same time period). The ‘unknown green algae colony’ was not 

observed in any of the control microcosms throughout the exposure period, while the 

species was reported in the HC5 and/or HC50 cosms from day 28 onwards (Figure 

S2.2B). The species even dominated the chlorophyta community in the HC50 cosms at 

the end of the exposure period (i.e. on average 50±25% of the chlorophyta were 

identified to be the ‘unknown green algae colony’). 

The results of the analysis of the effect of Ni on the abundance of the different 

phytoplankton groups and species is summarised in Table 2. Focusing on the community 

structure level, the total abundance of the phytoplankton community was significantly 

affected by Ni addition (Figure 5, upper left panel). From exposure day 28 until the end 
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of the exposure period, a significant decrease in total algae densities was observed in the 

HC50 treatment (effect class 4). In this period; the phytoplankton densities decreased by 

at least 2-fold compared to the control. Total phytoplankton abundance was also 

significantly affected in the HC5 treatment, but only on a single sampling date (effect 

class 2a). The cyanobacteria and diatoms were significantly affected in the HC50 

treatment without recovery occurring at the end of the exposure period (effect class 4). 

Cyanobacteria densities were significantly lower in the HC50 microcosms compared to 

the control treatments from day 28 until the end of the exposure period (at least a 6.5-fold 

difference in cyanobacteria densities was observed; Figure 5 upper row, middle panel). 

Diatom densities, on the other hand, increased significantly in the HC50 cosms, and this 

already at the first sampling day after the first Ni addition (Figure 5 middle row, middle 

panel). Diatoms were on average at least 3-fold more abundant in the HC50 cosms than 

in the control cosms. Effects occurring only on a single sampling day, excluding the last 

sampling day (class 2a effects), were observed for the cyanobacteria (day 28), 

Crysophyceae (day 42) and Cryptophyceae (day 42) in both the HC5 and HC50 

treatment. 

At the species level, clear effects without recovery (class 4) were reported for two 

phytoplankton species in the HC50-treatment, a cyanobacteria (Oscillatoria sp. 1) and a 

diatom (single cell diatoms), while clear effects with recovery (class 3) were observed for 

the species Staurastrum. Oscillatoria sp. 1 densities were significantly negatively 

affected in both the HC5 and HC50 treatment on sampling days 14 and 28 (Figure 4.A). 

However, Oscillatoria sp. 1 densities in the HC5-treatment recovered to control levels on 

sampling days 42 and 56 (class 3), whereas the significant negative effect persisted in the 
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HC50-treatment until the end of the exposure period (class 4). The abundance of single 

cell diatoms increased significantly compared to the control in the HC50-treatment, and 

this from the first sampling day after the Ni addition until the end of the exposure period 

(Class 4; Figure 4.B). Abundances of the two Charophyta species increased significantly 

in the HC50 treatments compared to the controls on day 14 and 28 (Class 3; Figure 

S3.2.C & D). Slight effects (Class 2b) at the HC5 and at the HC50 were observed for 3 

and 11 species, respectively. In addition, for 1 species (Chroococcus) significant effects 

were observed in the HC5 treatment on the last sampling day, while no such effects (at 

least in the same direction) were observed on day 42 ( effect class 2b). In the HC50 

treatment, 6 species were affected on the last sampling, while no effect was observed on 

day 42 (effect class 2b). 

Effects of Ni on the zooplankton community and species  

In total, 35 zooplankton species belonging to 4 zooplankton groups (i.e. copepoda, 

cladocera, rotifer and ostracoda) were identified. All zooplankton groups fulfilled MDD-

criterion 1, except the ostracoda group which was classified as MDD class 3. Five 

zooplankton species fulfilled MDD-criterion 1 and 13 zooplankton species fulfilled 

MDD-criterion 2. At the start of the exposure period the zooplankton community was 

dominated by copepods (average relative density ± standard error 51±1%), while rotifers 

and cladocera represented on average 28±2% and 20±1% of all individuals in the 

community (Supplemental Information; Figure S3.1). Ostracoda were not observed in 

any of the microcosms at the beginning of the exposure period and ostracoda-abundances 

remained low throughout the exposure period (relative abundance was maximally 1%). In 

the control and HC5 microcosms, the relative abundances of the copepods and rotifers 
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became almost equal near the end of the exposure period, while the relative abundance of 

the cladocerans decreased to 10% near the end of the exposure period. In the HC50 

cosms, the cladocerans almost disappeared from the zooplankton community, 

representing only 3% of the total zooplankton, while rotifers dominated the zooplankton 

community at the end of the exposure period (relative abundance 62%). 

The principal response curve diagram depicts the effects of Ni on the zooplankton 

community (Figure 3, lower panel). Relatively little variation in community composition 

was observed between treatments at the start of the experiment. Over the exposure 

period, the principal response curve explained 42% of the variance depicted in the 

zooplankton community composition by time, while 19% of the variance in the 

zooplankton community composition was explained by Ni-treatment. Of the total 

variance explained by the Ni-treatment, 38% is depicted in the first PRC-axis (i.e. by the 

vertical axis in Figure 3), while another 21% is depicted by the second PRC-axis (not 

shown). The Monte-Carlo permutation tests showed that the first principal response axis 

was significant. The Williams test on the PCA sample scores showed that the 

zooplankton community composition was significantly affected in the HC5 microcosms 

only on day 28 (effect class 2), while the community composition was significantly 

affected in the HC50 cosms on day 28 and day 42 (effect class 3). Although the PRC-

curve of the zooplankton also indicates effects at day 56, Williams-testing on PCA 

sample scores did not reveal significant effects at this sampling moment in either the HC5 

or HC50 treatment.  

The rotifer species ‘Asplanchna/Testidunella sp.’ had the largest positive species weight 

(bk) within the PRC (Figure 3, right lower panel), indicating that this species was most 
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negatively affected by Ni exposure. Figure S3.2 shows the abundance of this species 

during the exposure period. The rotifer species ‘Asplanchna/Testidunella sp.’ almost 

completely disappeared from the HC50 microcosms after 42 days of exposure. Other 

species with high species weights (i.e. absolute bk>1) in the PRC diagram did not show 

any clear effects from Ni addition. 

The results of the analysis of the effects of Ni on the zooplankton community structure 

(PRC and abundance of the different zooplankton groups) and species abundances are 

summarised in Table 3. At the community structure-level, Ni only affected the total 

abundance of the zooplankton community on day 28 and this only in the HC50 treatment 

(effect class 2a). The zooplankton group copepoda showed the same response. The 

abundance of all other higher taxonomic zooplankton groups (i.e. rotifers, cladoceran & 

ostracoda) were not significantly affected by any of the Ni treatments (effect class 1; 

Figure 6).  

At the zooplankton species-level, only two species showed clear effects (i.e. on two 

consecutive sampling days), the rotifers ‘Asplanchna/Testidunela sp’ and ‘Trichocerca 

group similis’ (Figure S3.2). The rotifer species ‘Asplanchna/Testidunela sp’ was 

significantly less abundant in the HC50 treatment on the last two exposure days (effect 

class 4), which was also indicated in the PRC-graph (discussed above). For the species 

‘Trichocerca group similis’, a significant decrease in abundance in both the HC5 and 

HC50 microcosm was observed on day 14 and day 28 of the exposure period, but not 

later on (effect class 3). Slight effects, i.e. effects observed on individual sampling days 

(Class 2a) were observed for an additional 6 and 7 species in the HC5 and HC50 

treatments, respectively. In addition, for 3 species (Ascomorpha saltans, Alona guttata 
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and Acroperus harpae) significant effects were observed in the HC5 treatment on the last 

sampling day, while no effects in the same direction were observed on day 42 (effect 

class 2b). In the HC50 treatment, 6 species were affected on the last sampling, while no 

effect was observed on day 42 (effect class 2b). 

Effects of Ni on indirect proxies for functional community traits 

The community respiration, measured as overnight change in dissolved oxygen 

concentration (ΔO2), was clearly affected by Ni addition (i.e. on at least 2 consecutive 

days) between day 17 and 31 (Figure 7, upper panel). In this period, overnight respiration 

was significantly decreased in the HC50 treatment, compared to the control (effect class 

3). The overnight decrease in pH (ΔpH), an additional proxy for overnight respiration, 

increased steadily in the control microcosms from 1.5±0.1 pH-units at test initiation to 

2.3±0.2 pH-units at the end of the exposure period (Figure 7, lower panel). A similar 

trend in overnight decreases in pH was observed in the HC5 treatment, but this overnight 

change in pH was significantly lower in the HC50 treatment from day 3 to day 31 after 

the first Ni application (effect class 3). Near the end of the exposure period the ΔpH and 

ΔO2 in the HC50 cosms recovered to control levels. 

The DOC concentration, which is a proxy for the carbon cycling through the microbial 

loop and pelagic food web interactions, increased slightly over the exposure period in the 

control and HC5 microcosms, but DOC decreased over the exposure period in the HC50 

treatment (Figure 2). The difference in DOC concentrations between the control 

treatments and the HC50 treatments became significant from exposure day 28, and 

remained significant until the end of the exposure period (effect class 4).  
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DISCUSSION 

For phytoplankton, the effects of Ni on the community structure (community composition 

and plankton group abundances) became apparent relatively early after the first Ni 

application. The early onset of changes in the community structure after Ni application 

was mainly driven by a single cyanobacteria species, i.e. Oscillatoria sp. 1. This species 

appears to be directly affected by Ni, because while Oscillatoria sp. 1 showed a relatively 

steep population growth in the control microcosms no net growth was observed in the 

HC50 treatment (Figure 4A). Moreover, in the control microcosms Oscillatoria sp. 1 

became increasingly more important in the phytoplankton community, and was the 

dominant species in these control communities from exposure day 28 onwards (Figure 

4.C). The effects observed on other phytoplankton species can largely be explained by 

indirect effects occurring in the community, likely due to a lower competition pressure 

exerted by Oscillatoria sp. 1 in the HC50 microcosms, i.e. competitive release (Fleeger et 

al. 2003). The decrease in Oscillatoria sp. 1 abundance created the opportunity for 

diatoms, and especially the single cell diatoms, to maintain a population in the HC50 

treatments, while diatoms were outcompeted by Oscillatoria sp. 1 in the control 

microcosms (Figure 4). This pattern was also observed in our control microcosms: at the 

start of the exposure period abundances of Oscillatoria sp. 1 were low (only 1.5% of the 

total algae cells/colonies), while single cell diatoms were in comparison more abundant 

(12.5% of the total algae cells/colonies) (Figure 4C). At the first sampling day, 

Oscillatoria sp. 1 densities increased 14-fold compared to the test initiation, and single 

cell diatom densities decreased more than 2-fold. Over the exposure period, Oscillatoria 

sp. 1 became the dominating species in the control microcosms, while single cell diatoms 
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further decreased. In the HC50 microcosms on the other hand, both Oscillatoria sp. 1 and 

single cell diatoms densities remained relatively constant over the exposure period. The 

densities of two other phytoplankton species were also positively affected by exposure to 

HC50, the Charophyta Staurodesmus sp. and Staurastrum sp. Hence, it is possible that 

these species were also indirectly affected by the reduced competition with Oscillatoria 

sp. 1, although abundances of these species remained relatively low and effects became 

non-significant near the end of the exposure period. Although abundances of single 

diatoms and Staurodesmus sp. and Staurastrum sp. increased in the HC50-cosms 

compared to the control microcosms, the total algae abundance was still negatively 

affected in the HC50 microcosms, perhaps because they could not entirely compensate 

for the lower growth of the Oscillatoria sp. 1 in these microcosms. 

Ni application had a clear effect on all three chemical parameters used as proxies for 

community functioning. These effects on community functioning were most likely also 

governed by the effect of Ni on Oscillatoria sp. 1. Both proxies for overnight respiration 

(measured as ΔO2 and ΔpH) were significantly decreased in the HC50 microcosms from 

day 17 through to day 31 of the exposure period. This period corresponds with the period 

of maximal population growth of the most dominant algal species in the control 

microcosms, Oscillatoria sp. 1 (Figure 4.C). After this period, community respiration 

recovered to control levels near the end of the exposure period. The latter coincides with 

the decreased importance of Oscillatoria sp. 1 within the algae community (Figure 4.C). 

DOC was used as a proxy for the cycling of carbon through the community. This is 

because DOC, which originates from the exudates of phytoplankton, inefficient 

zooplankton feeding or the breakdown of organic particles, supports the bacterial 
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production in freshwater ecosystems, which then fuels higher trophic levels through the 

food web (Leff 2009). In the present study, the decreased DOC concentrations in the 

HC50 treatments were most likely caused by a decreased phytoplankton abundance in the 

HC50 treatments, which in turn generated a lower input of DOC to the microbial loop 

compared to the control microcosms. In addition, DOC concentrations in the HC50 

treatment decreased over time. Decreases in DOC concentrations are an indication that 

the consumption of DOC by bacteria is higher than the DOC production. In the control 

and HC5 microcosms, DOC concentrations increased over time. The latter can be 

explained by a higher DOC input as the bloom of cyanobacteria progressed. Senescent 

algae are an important carbon source for the microbial loop, and especially at the end of 

algae blooms high levels of carbon are released (Brönmark & Hansson 2005).  

Chemicals can affect species of higher trophic levels, such as consumers, either directly 

or indirectly. Indirect effects occur due to changes in algae community structure and 

composition, which may affect consumers through alterations in food quality and 

quantity (Fleeger et al. 2003). Overall, the effects of Ni addition on the zooplankton 

community were limited. Despite the adverse effect of Ni on the zooplankton community 

structure, only two zooplankton species (the rotifers ‘group Asplanchna/Testidunela sp.’ 

and ‘Trichocerca group similis’) showed clear effects of Ni (effect class 3 or 4). The 

effect of Ni on these species can most likely be considered as a ‘direct’ effect. This is 

because the abundance of these rotifers decreased, although general food quality for 

rotifers improved in the HC50 treatment as non-edible cyanobacteria densities decreased 

in favour of more suitable food sources like diatoms (Oganjan et al. 2013). This is 

somewhat unexpected, because the only rotifer currently included in the chronic Ni SSD, 
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B. calyciflorus, is also the least sensitive of all zooplankton-species included in the SSD 

(i.e. the bioavailable-normalized EC10 is 320 µg dissolved Ni/L). This suggests that the 

Ni sensitivity of B. calyciflorus is not representative for all rotifer species.  

The most important effects (either direct or indirect) occurring in the microcosms after Ni 

application are summarized in Figure 8. Overall, the observed effects of Ni in the present 

study are relatively similar to the effects of a ternary Ni-Zn-Cu mixture on the same 

planktonic community (described in Van Regenmortel et al. 2018). Van Regenmortel et 

al. (2018) also reported strong direct effects of the metal mixture on Oscillatoria sp. 1 

and rotifer abundances, and indirect effects on diatom abundances. In addition, the 

physico-chemical proxies for community functioning (ΔpH, ΔO2 and DOC) were 

affected in a similar manner. However, unlike in our test system, the ternary Ni-Zn-Cu 

mixture also affected copepods (directly) and Charophyta and Cryptophyta (indirectly). 

Hommen et al. (2016) reported on the effects of long-term (4 months) Ni exposure on an 

aquatic community at a rather high Ni bioavailability (low DOC). In their study, they 

observed long-term adverse effects on some phytoplankton species (Cryptophyceae) and 

on snails. In addition, indirect effects through decreased competition were observed for 

Chlorophyceae, while the zooplankton remained mostly unaffected. 

The indirect effects of Ni on its own bioavailability 

Although the average measured Ni concentrations were relatively stable over time, Ni 

bioavailability varied because the physico-chemistry of the exposure solutions changed 

during the exposure period. pH and DOC changed over the exposure period as a 

consequence of the community functioning. However, the evolution of pH and DOC 
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differed between the different Ni treatments. Given that pH and DOC are important 

factors in determining Ni bioavailability (Deleebeeck et al. 2007; 2008; 2009; Nys et al. 

2016), Ni thus has the ability to indirectly influence its own bioavailability (Figure 1, 

right panel). Similar effects of a metal indirectly influencing its own bioavailability have 

already been reported for Zn (Van de Perre et al. 2016). The changes in DOC and pH and 

the indirect effects of Ni on its own bioavailability via its direct effect on community 

functioning somewhat complicates the interpretation of the effects occurring in the 

microcosm, as these changes also bring about a variation of the calculated potentially 

affected fraction (PAF) of the species over the exposure period and between nickel 

treatments. Using the bioavailability-based SSD normalization based on the water 

chemistry in the control treatment as a reference to determine the PAFs in the Ni 

treatments, the PAF ranged between 4% and 9% in the HC5 treatment and between 43% 

and 53% in the HC50 treatment (Figure S5.1). The PAF increased over time, supporting 

the idea that Ni bioavailability increased during the exposure period. This increased Ni 

bioavailability was mainly the result of the increased pH, which dominated over the 

bioavailability-reducing effects of the increased DOC concentrations over the exposure 

period. Although Ni bioavailability changed over time, the PAF remained relatively 

stable over time. Furthermore, as changes in bioavailability lead to calculated PAFs in the 

HC5 treatment that are higher than 5%, our evaluation of the protectiveness of the HC5 

for our investigated community is somewhat at the conservative side from a regulatory 

point of view. Hence, despite the changes in bioavailability, our initial research question, 

whether the HC5 is protective for community structure and functioning, can still be 

reliably answered with our study. 
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Conclusions and implications for Ni risk assessment 

In the present study, we observed that the bioavailability-normalised HC50-treatment had 

clear effects (i.e. effect classes 3 and 4) on both the structure and functioning of our algae 

and zooplankton-dominated aquatic community. In contrast, at the bioavailability-

normalised HC5, no clear effects on community structure (composition of phytoplankton 

and zooplankton community and abundance of plankton species groups) or functioning 

(community respiration and carbon cycling) were observed, although some endpoints 

were significantly affected on individual sampling days (effect class 2a).  

At the species level, some clear effects (i.e. on at least two consecutive sampling days) in 

the HC5 treatment appeared early in the exposure period, but did not persist after day 28 

of the exposure (effect class 3). Hence, the abundances of the populations of these species 

tended to recover after initially being affected. In addition, significant effects in the HC5 

treatment on the species level on single individual sampling days were observed (effect 

class 2a and 2b) for 4 phytoplankton species (of in total 19 MDD-class 1 & 2 species) 

and 9 zooplankton species (of 18 MDD-class 1 & 2 species). For 3 zooplankton species 

(A. saltans, A. guttata and A. harpae) and 1 phytoplankton species (Chroococcus), effects 

in the HC5 treatment appeared only on the last sampling day (effect class 2b). For these 4 

species, the long-term outcome of the effect at the HC5 is uncertain, as effects may or 

may not have persisted if the exposure duration would have been extended after day 56.  

Overall, based on the present study the procedure to derive the HC5 as currently 

implemented in European legislative frameworks, which includes bioavailability 

normalisations of toxicity data to the physico-chemistry of the receiving waters, protects 
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against clear effects on plankton community structure and function at high DOC. The 

latter is in agreement with the conclusion of Hommen et al. (2016) for a planktonic 

dominated community at lower DOC concentrations. Our study also showed that some 

individual plankton species are affected at the HC5, but this is not in conflict with the 

definition of the HC5, at which 95% (and not 100%) of the species are predicted to be 

unaffected.  

In the present study, the community composition was assessed every two weeks. We 

acknowledge that a more frequent assessment could have been more informative to 

evaluate the effects of Ni, especially on individual phytoplankton species. Given the 

potentially fast dynamics of phytoplankton populations, some of effects in the 

phytoplankton community may have been missed. As such, the conclusions of the 

protectiveness of the HC5 for the phytoplankton community should be interpreted 

somewhat more cautiously than the conclusions for the zooplankton community. 

Within the WFD and REACH, the relevance of a community-level study for deriving an 

EQS or PNEC lies in the fact that it can support the choice of an assessment factor for the 

HC5 derived with an SSD-based method, which is based on species sensitives derived 

from chronic lab toxicity tests with single species (EC 2003, EC 2011). The WFD 

prescribes a set of criteria to assess the quality of a community-level study for supporting 

the assessment factor derivation, among which the presence of sensitive species (EC 

2011). Community-studies are considered most relevant if the community contains 

species that are known to be sensitive to the contaminant. At the specific water chemistry 

conditions of our microcosm studies, cladocerans are among the most sensitive species in 

the chronic Ni SSD (Table S5). Ten different cladoceran species were recorded in our 
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experiment and at least two of the sensitive cladoceran species present in the SSD were 

also observed in our test system. The fact that Lymnaea stagnalis, the most sensitive 

species in the current Ni SSD, was not assessed in the present study could be considered 

a weakness of our study from a regulatory point of view. On the other hand, a clearly 

sensitive cyanobacterium (Oscillatoria sp.) showing clear effects at the HC5 treatment 

(23 µg dissolved Ni/L) was present in our community. This concentration is 

approximately 4-fold lower than bioavailability-normalized EC10 of the most sensitive 

phytoplankton species in the current Ni-SSD (92 µg/L; Scenedesmus accuminatus; Table 

S5). The higher sensitivity of cyanobacteria compared to chlorophytes observed in this 

study is supported by the studies of Wang & Wood (1984) and Chakraborty et al. (2010). 

In addition, Martinez-Ruiz et al. (2016) reported an EC50 and EC10 for the 

cyanobacterium Microcystis aeruginosa as low as 3.7 and 0.7 µg/L (nominal Ni) in high 

bioavailability conditions (low DOC). Normalisation of the Ni SSD to the growth 

medium used by Martinez-Ruiz et al. (2016; AAP-medium) results in a bioavailability-

normalized EC10 for L. stagnalis of 1.0 µg/L (dissolved Ni; Table S5.3). Hence, M. 

aeruginosa might show a similar sensitivity as L. stagnalis, although this requires 

confirmation with a M. aeruginosa toxicity test in which the (low) Ni exposure 

concentrations are analytically confirmed by measurements during the experiment. 

Regardless, given the presence and evaluation of cladocerans and cyanobacteria in our 

test system, the regulatory requirement of the presence of sensitive species in microcosm 

studies is sufficiently fulfilled in the present study to enable a reliable evaluation of the 

protectiveness of the bioavailability-normalized HC5  
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The above discussion also indicates that the toxicity data of the algae species now 

included in the SSD may not be entirely representative of the sensitivity of species in 

actual phytoplankton communities, an observation which was previously also made in the 

study of Hommen et al. (2016). According to the bioavailability normalized SSD, 

zooplankton are considerably more sensitive for Ni than phytoplankton. For instance, the 

bioavailability-normalised EC10 of the most sensitive zooplankton species 

(Ceriodaphnia dubia) was 6-fold lower than that of the most sensitive phytoplankton 

species (Scenedesmus accuminatus) (Table S5). However, in the present study the effects 

of Ni on the zooplankton community were relatively limited, while the phytoplankton 

community showed a higher sensitivity. Similar observations have been made in previous 

community studies with Ni (Hommen et al. 2016), Zn (Van de Perre et al. 2016) and Ni-

Zn-Cu mixtures (Van Regenmortel et al. 2018). The most likely explanation for this is 

that there exists a mismatch between the species in an SSD and species in natural 

communities (Van Regenmortel et al. 2018). For instance, all phytoplankton species 

currently included in the Ni SSD are Chlorophyta, while this taxonomic group seems to 

be relatively insensitive to Ni. On the other hand, the most sensitive phytoplankton group 

in the present study, Cyanobacteria and more specifically the species Oscillatoria sp. 1, is 

currently not represented in the Ni SSD. Overall, this shows that - although our study 

supports that the SSD-method is protective for community structure and functioning -

SSDs cannot be used to predict species sensitivity rankings in community studies. 

Supplemental Data—The Supplemental Data are available on the Wiley Online Library 

at DOI: 10.1002/etc.xxxx 
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FIGURES 

Figure 1. A) Dissolved Ni concentrations measured over the entire exposure duration in 

the microcosms of the HC5 (diamonds) and HC50 treatment (triangles). All data-points 

are the average measurement of 3 replicates. Open symbols represent measurements of 

samples taken before Ni addition, filled symbols represent measurements of samples 

taken 15 to 35 minutes after Ni addition. Dashed lines represent the nominal targeted 

dissolved Ni concentration (i.e. 24 and 97 µg dissolved Ni/L). B) Bioavailability 

normalized HC5 (data points connected with dashed line) and HC50 (data points 

connected with full line). Bioavailability normalizations were performed based on 

measured water chemistry of the control treatment (open circles), HC5 treatment (filled 

diamonds) and HC50 treatment (filled triangle) using the chronic Ni bioavailability tool 

(Nys et al. 2016). The entire chemistry used for bioavailability-normalization is given in 

Table S2.2. 
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Figure 2. Dissolved Organic Carbon (DOC) concentrations over the entire exposure 

duration in the microcosms of the control (squares), HC5 (diamonds) and HC50 

treatment (triangles). Error bars indicate standard deviation on the average based on 4 

(control) and 3 replicates (HC5, HC50). Asterisks indicate significant differences in DOC 

concentrations relative to the DOC concentration in the control microcosms. Calculated 

lowest-observed-effect concentrations (LOEC) are indicated above the graph for every 

sampling day (Williams test, p<0.05). If nothing is plotted this indicates that the LOEC 

was higher than the highest Ni treatment. 
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Figure 3. Principal response curve (PRC) for the community effects analysis for 

phytoplankton (upper panel) and zooplankton (lower panel). The vertical axis represents 

the difference in community structure of the treatments compared to the control, 

expressed as the canonical regression coefficient (Cdt; first PRC axis shown). The affinity 

of a species relative to the PRC is expressed as the species weight (bk; only species for 

which absolute bk>1 are shown). F-statistics and p-value are those of the Monte-Carlo 

permutation test testing the significance of the first PRC axis. Asterisks indicate the 

occurrence of a significant difference in community structure from the control (p<0.05). 

Calculated lowest-observed-effect concentrations (LOEC) are plotted above the PRC for 

every sampling day. If nothing is indicated the LOEC was higher than the highest Ni 

treatment. 
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Figure 4. Population dynamics of the cyanobacteria Oscillatoria sp. 1 (A) and the Single 

cell diatoms (B) (cell densities were ln(0.001x+1)-transformed, with x the abundance of 

the algae); Asterisks indicate significant differences in abundances under Ni exposure 

relative to the control microcosms using the Williams test; p<0.05. Calculated lowest-

observed-effect concentrations (LOEC) for the species effect are plotted above panel A & 

B. Abundance of Oscillatoria sp. 1 (C) and Single cell diatoms (D) relative to the total 

abundance of the phytoplankton. Error bars indicate standard errors on the average based 

on 4 (control) and 3 replicates (HC5, HC50). 
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Figure 5. Phytoplankton community dynamics (community structure endpoint) 

visualized as abundances of the different phytoplankton groups. Plotted abundances are 

ln-transformed (ln(0.001x+1)) Error bars indicate standard errors on the average based on 

4 (control) and 3 replicates (HC5, HC50). Asterisks indicate significant differences in 

abundances under Ni exposure relative to the control microcosms (Williams test; 

p<0.05). Calculated lowest-observed-effect concentrations (LOEC) for the species effect 

are plotted above the figures (Williams test, p<0.05). If nothing is indicated, the LOEC is 

higher than the highest Ni treatment.  
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Figure 6. Zooplankton community dynamics (community structure endpoint) visualized 

as abundances of the different zooplankton groups (rotifers (left upper panel), copepoda 

(right upper panel), cladocera (left lower panel), and ostracoda (right lower panel) ). 

Plotted organism abundances are ln(0.81x+1)-transformed, with x the abundance of the 

zooplankton group. Error bars indicate standard errors on the average based on 4 

(control) and 3 replicates (HC5, HC50). Asterisks indicate significant differences in 

abundances under Ni exposure relative to the control microcosms (Williams test; 

p<0.05). Calculated lowest-observed-effect concentrations (LOEC) are plotted above the 

PRC for every sampling day (Williams test, p<0.05). If nothing is indicated, the LOEC 

was higher than the highest Ni treatment. 
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Figure 7. Effect of Ni addition on indirect physico-chemical proxies for community 

respiration: ΔO2 (mg/L; upper panel), and ΔpH (lower panel). Error bars indicate 

standard errors on the average based on 4 (control) and 3 replicates (HC5, HC50). 

Asterisks indicate significant differences in abundances under Ni exposure relative to the 

control microcosms (Williams test; p<0.05). Calculated lowest-observed-effect 

concentrations (LOEC) for the physico-chemical proxies are plotted above the figures 

(Williams test, p<0.05). If for a sampling day, no LOEC is plotted this indicates that the 

LOEC was higher than the highest Ni treatment.  
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Figure 8. Overview of hypothesized direct and indirect effects occurring in the 

microcosms after Ni application (at HC5 [upper panel] and HC50[lower panel]) on 

zooplankton and algae community structure and functioning. Bold arrows inside the 

rectangles indicate the direction of effect (regardless of it being direct or indirect) (↑= 

increase;↓ = decrease). Only species showing effects belonging to class 3 and 4 are 

included. Higher taxa (cyanobacteria, and diatoms) that are printed bold were also 

classified in effect class 3 and 4; others did not show clear effects. 
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Tables 

Table 1. Overview of the averagea measured water chemistry variables of the 

microcosms the day before the start of the experiment and averages in the microcosms 

over the exposure period. 

 
Nomina

l Ni 

Dissolve
d 

Ni 

pH DOC Ca Mg Na K SO4 Cl DIC T 

Dissolve
d 

O2 

 (µg/L) (µg/L) 

 

(mg/L
) 

(mg/L
) 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (°C) 
(mg/L) 

Test 
initiation

b 
NA <QLc 8.1±0.

3 
14 12±1 

1.6±0.
1 

4.7±0.
3 

0.3±0.
1 

9.8±2 
7.8±0.

5 
4.0±0.

3 
17±

0 

11±1 

Control 0 <QLc 8.3±0.
9 

16±2 14±2 
1.9±0.

1 
5.3±0.

3 
0.2±0.

1 
6.0±1.

2 
7.3±1.

1 
5.9±0.

3 
17±

1 
10±2 

HC5 24 23±3 
8.2±1.

0 
16±1 18±6 

2.2±0.
3 

5.2±0.
7 

0.4±0.
1 

6.8±1.
4 

7.2±1.
5 

6.2±1.
0 

17±
0 

10±2 

HC50 97 93±14 
7.9±1.

0 
13±2 18±6 

2.2±0.
4 

5.2±0.
7 

0.4±0.
1 

7.3±2.
8 

7.9±0.
4 

5.4±1.
0 

17±
0 

10±2 

a Average values ± standard deviations are reported 

b Measured in the microcosms one day prior to test initiation (before first Ni addition; 

average of all 10 microcosms). This physico-chemistry was used to determine the 

bioavailable HC5 and HC50 to be applied to the test-systems using the bioavailability 

normalisation and SSD-derivation of Nys et al. (2016). 

c Measured dissolved Ni concentrations before test initiation and in the control 

microcosms were lower than the quantification limit (QL) of the ICP-OES (QL=4 µg 

Ni/L). 
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DOC = Dissolved Organic Carbon; DIC = Dissolved Inorganic Carbon, T= temperature; 

HC5 = concentration hazardous for 5% of the species; HC50 = concentration hazardous 

for 50% of the species 

Table 2. Lowest observed effect concentrationsa (LOEC) per sampling day for the 
community structure-effect (principal response curves and phytoplankton groupsb), 
species-effectsb , Minimal Detectable Difference (MDD) and effect classificationc for 
both treatments class for the phytoplankton.  

Phytoplankton 
group Endpointspecies 

LOE
C 

Day 
0 

LOEC 

Day 
14 

LOEC 

Day 
28 

LOEC 

Day 
42 

LOEC 

Day 
56 

MDD 
Clas

sa 

Effe
ct 

clas
s at 
HC5 

Effe
ct 

clas
s at 
HC5

0 

Phytoplankton Principal response curve  HC50 HC50 HC50 HC50 - 1 4 

 

Total abundance   HC5 ↓  HC50 
↓  

HC50 
↓  1 2a ↓ 4 ↓ 

 Unknown colony  HC50 
↓   HC50 

↓   2 1 2a ↓ 

Cyanobacteria    HC5 ↓  HC50 
↓  

HC50 
↓  1 2a ↓ 4 ↓ 

 Oscillatoria 1  HC5 ↓  HC5 ↓  HC50 
↓  

HC50 
↓  1 3 ↓ 4 ↓ 

 Aphanocapsa    HC50 
↑   2 1 2a ↑ 

 Pseudanabaenoideae    HC5 ↑    2 2a ↓ 2a ↓ 

 Chroococcus    HC5 ↑  HC5 ↓  2 
2b 
↑↓ 

2b 
↑↓  

Diatoms 

  
HC50 HC50 HC50 HC50 

2 1 4 ↑ 
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↑  ↑  ↑  ↑  

 Single cell Diatoms  HC50 
↑  

HC50 
↑  

HC50 
↑  

HC50 
↑  2 1 4 ↑ 

Chlorophyceae 

 

     1 1 1 

 Chlorococcales    HC50 
↓   2 1 2a ↓ 

 Gonium  HC50 
↑    NR 2 1 2a ↑ 

 Oocystis    HC50 
↑   2 1 2a ↑ 

 Ankistrodesmus  HC50 
↑   NR NR 2 1 2a ↑ 

 Haematococcus   
HC50 

↑    2 1 2a ↑ 

 
Unknown green algae 

colony 
NR NR 

HC50 
↑   

HC50 
↑  2 1 2b ↑ 

Charophyta 

  

HC50 
↑     2 1 2a ↑ 

 Staurodesmus  
HC50 

↑  
HC50 

↑   
HC50 

↑  2 1 2b ↑ 

 Cosmarium  
HC50 

↑    
HC50 

↑  2 1 2b ↑ 

 Staurastrum  HC50 
↑  

HC50 
↑  

  2 1 3 ↑ 

 Mougeotia NR HC50 
↑  

   2 1 2a ↑ 

Cryptophycaea 

 

   HC5 ↑  

 

2 2a ↑ 2a ↑ 

This article is protected by copyright. All rights reserved. 



 
A

cc
ep

te
d 

A
rt

ic
le

  Rhodomonas NR NR NR  HC50 
↑  

2 1 2b ↑ 

 Cryptomonas    HC50 
↑  

 2 1 2a ↑ 

Chrysophyceae 

 

   HC5 ↑  

 

2 2a ↑ 2a ↑ 

 Chrysococcus    HC5 ↑  2 2a ↑ 2a ↑ 

Euglenoida 

 

     1 1 1 

 Euglenida 2     HC50 
↑  

2 1 2b ↑ 

Number of taxa affected at HC5 

(phytoplankton groups/species) 
0/0 0/1 1/2 2/2 0/1    

Number of taxa affected at HC50 

(phytoplankton groups/species) 
0/0 2/8 2/7 4/9 2/8    

a HC5= LOEC is equal to the HC5 treatment (i.e. significant effects at the HC5 treatment observed); HC50= 
LOEC is equal to the HC50-treatment; if nothing is printed , the LOEC is higher than the highest tested 
concentration. LOECs per sampling date were determined using the Williams test (p<0.05). 

b LOEC calculations were done based on total abundances per phytoplankton group/species. Only 
phytoplankton groups and species of MDD class 1 and 2 are listed. If significant effects were observed, the 
direction of effect was indicated as follows: ↑ increase in abundance; ↓ decrease in abundance; ↑↓ both 
increase and decrease in abundance observed on different sampling days 

c Effect classification was defined as follows: 1= no effect; 2a= temporary effect (only on individual sampling 
days, but excluding the last sampling day); 2b= effect on the last sampling day; 3 = clear effect with full 
recovery; 4 = clear effect without full recovery,  

NR= species not recorded on sampling day 
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Table 3. Lowest observed effect concentrationsa (LOEC) per sampling day for the 
community structure-effect (principal response curves and zooplankton groupsb), species-
effectsb, Minimal Detectable Difference (MDD) class and effect classificationc for both 
treatments for the zooplankton.  

Zooplankton group Endpoint/ species 
LOEC 

Day 0 

LOEC 

Day 14 

LOEC 

Day 28 

LOEC 

Day 42 

LOEC 

Day 56 

MDD 
classa 

Effect 
class at 

HC5 

Effect 
class at 

HC50 

Zooplankton Principal response curve   HC5 HC50  - 2a 3 

 Total abundance   HC50 ↑    1 1 2a ↑ 

Rotifers       1 1 1 

 Lecane group luna      1 1 1 

 Lecane group lunaris    HC5 ↓   1 2a ↓ 2a ↓ 

 Lepadella patella      1 1 1 

 Group Asplanchna/Testidunela sp.    HC50 ↓  HC50 ↓  2 1 4 ↓ 

 Trichocerca group similis  HC5 ↓  HC5 ↓    2 3 ↓ 3 ↓ 

 Ascomorpha saltans NR    HC5 ↓  2 2b ↓ 2b↓ 

 Cephalodella gibba   HC5 ↑    2 2a ↑ 2a ↑ 

 Mytilina ventralis    HC50 ↓   2 1 2a ↓ 

Cladocera    

 

  1 1 1 

 Simocephalus vetulus  HC5 ↑    HC50 ↓  2 2a ↑ 2b ↓ 

 Chydorus sphaericus     HC50 ↓  2 1 2b ↓ 

 Alonella nana   HC5 ↓    2 2a ↓ 2a ↓ 
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  Alona quadrangularis    HC5 ↑   2 2a ↑ 2a ↑ 

 Alona rectangula   HC5 ↓    2 2a ↓ 2a ↓ 

 Alona guttata NR    HC5 ↓  2 2b ↓ 2b ↓ 

 Acroperus harpae     HC5 ↓  2 2b ↓ 2b ↓ 

 Graptoleberis testudinaria  NR   HC50 ↓  2 1 2b ↓ 

Copepoda    HC50 ↑    1 1 2a ↑ 

 Cyclopoida   

 

  1 1 1 

 Nauplius   HC50 ↑    1 1 2a ↑ 

Number of taxa affected at HC5 

(zooplankton groups/species) 
0/0 0/2 0/4 0/2 0/3    

Number of taxa affected at HC50 

(zooplankton groups/species) 
0/0 0/2 1/5 0/2 0/7    

a HC5= LOEC is equal to the HC5 treatment (i.e. significant effects at the HC5 treatment observed); HC50= 
LOEC is equal to the HC50-treatment; if nothing is printed, the LOEC is higher than the highest tested 
concentration. LOECs per sampling date were determined using the Williams test (p<0.05). 

b LOEC calculations were done based on total abundances per phytoplankton group/species. Only species 
and groups of MDD class 1 and 2 are listed. If significant effects were observed, the direction of effect was 
indicated as follows: ↑ increase in abundance; ↓ decrease in abundance 

c Effect classification was defined as follows: 1= no effect; 2a= temporary effect (only on individual sampling 
days, but excluding the last sampling day); 2b= effect on the last sampling day; 3 = clear effect with full 
recovery; 4 = clear effect without full recovery  

NR= species not recorded on sampling day 
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Table 4. Lowest observed effect concentrationsa (LOEC) per sampling day for the 
community functioning endpointsb, Minimal Detectable Difference (MDD) class and 
effect classificationc for both treatments  

 Days after first Ni addition 
MD
D 

Cla
ss 

Effe
ct 

clas
s at 
HC5 

Effe
ct 

clas
s at 
HC5 

 

3 7 10 1
4 17 21 24 28 31 35 3

8 42 45 49 5
2 56 

ΔO
2 

 

-   HC5
0↓b 

HC5
↓ 

HC5
0↓ - HC5

0↓   HC5
0↓ -    1 2 ↓ 3 ↓ 

Δp
H 

HC5
0↓ - HC5

0↓  HC5
0↓ 

HC5
0↓ 

HC5
0↓ 

HC5
0↓ 

HC5
0↓    HC5

0↑    1 1 3 ↓ 

DO
C - 

 

-  - 

 

- HC5
0↓ - HC5

0↓ - HC5
0↓ - HC5

0↓ - HC5
0↓ 1 1 4 ↓ 

a HC5= LOEC is equal to the HC5 treatment (i.e. significant effects at the HC5 treatment observed); HC50= 
LOEC is equal to the HC50-treatment; if nothing is printed , the LOEC is higher than the highest tested 
concentration. “-“ means that endpoint was not measured on particular day. LOECs per sampling date were 
determined using the Williams test (p<0.05). If significant effects were observed, the direction of effect was 
indicated as follows: ↑ increase in functional parameter; ↓ decrease in functional parameter 

b ΔO2 and ΔpH are proxies for community respiration, DOC (dissolved organic carbon) is used as a proxy for 
the microbial loop 

c Effect classification was defined as follows: 1= no effect; 2a= temporary effect (only on individual sampling 
days, but excluding the last sampling day); 2b= effect on the last sampling day; 3 = clear effect with full 
recovery; 4 = clear effect without full recovery  
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